ORE in Pricing of Bermudan Swaptions:
Client Experience from Model Validation

Dr. Dmitry Zaykovskiy
Valuation Financial Instruments
Deutsche Pfandbriefbank AG

ORE User Meeting – Frankfurt, 23/11/2018
Disclaimer

This presentation and any accompanying material are being provided solely for information and general illustrative purposes. The author will not be responsible for the consequences of reliance upon any information contained in or derived from the presentation or for any omission of information therefrom and hereby excludes all liability for loss or damage (including, without limitation, direct, indirect, foreseeable, or consequential loss or damage and including loss or profit and even if advised of the possibility of such damages or if such damages were foreseeable) that may be incurred or suffered by any person in connection with the presentation, including (without limitation) for the consequences of reliance upon any results derived therefrom or any error or omission whether negligent or not. No representation or warranty is made or given by the author that the presentation or any content thereof will be error free, updated, complete or that inaccuracies, errors or defects will be corrected.

The views are solely that of the author and not of Deutsche Pfandbriefbank AG.

The presentation may not be reproduced in whole or part or delivered to any other person without prior permission of the author.
Main points

- pbb and Quaternion joint venture on pricing of Bermudan swaptions
- Hull-White 1F (LGM)
- In-depth performance analysis
Agenda

1. Background
2. Hull-White Model
3. Mean Reversion Parameter
4. Final remarks
Background

Bermudan swaption project

- Swap until final maturity
- Option to cancel swap => Bermudan Swaption
- Price is sensitive to the intertemporal correlation

- Reach portfolio of Bermudan callable swaps
- Daily prices from major investment banks in collateral management
- Analysis of model and market prices is possible
One Factor Hull-White Model

Definition

• Short rate process SDE

\[dr(t) = (\theta(t) - \alpha r(t)) \, dt + \sigma(t) \, dW(t) \]

\(\theta(t) \) - a function may be calculated from the discount factors

\(W(t) \) - standard Brownian motion

\(\sigma(t) \) - piecewise constant model volatility (vector)

\(\alpha \) - mean reversion parameter (scalar)

• Short rate \(r(t) \) is normally distributed

\[r(t) \sim \mathcal{N}\left(e^{-\alpha t} r(0) + \frac{\theta}{\alpha} \left(1 - e^{-\alpha t}\right), \frac{\sigma^2}{2\alpha} \left(1 - e^{-2\alpha t}\right) \right) \]
One Factor Hull-White Model
Calibration of model parameters

\[dr(t) = (\theta(t) - ar(t)) dt + \sigma(t) dW(t) \]

- Model volatility \(\sigma(t) \)
 - Calibrated on co-terminal European swaptions for given strikes
 - Has as many “steps” as calibrating swaptions
 - Iteratively stripped to match prices of all swaptions

- Mean Reversion \(\alpha \)
 - Controls intertemporal correlation
 - “Historically estimated”
 - “Implied to produce certain volatility shape”
 - “Somehow set”
 - Ultimately freely selectable, or ?
Mean Reversion Parameter
Example 1: Expectation

\[r(t) \sim \mathcal{N} \left(e^{-\alpha t}r(0) + \frac{\theta}{\alpha} \left(1 - e^{-\alpha t} \right), \frac{\sigma^2}{2\alpha} \left(1 - e^{-2\alpha t} \right) \right) \]

\[\text{corr}(r(T_1), r(T_2)) = \sqrt{\frac{e^{2\alpha T_2} - 1}{e^{2\alpha T_1} - 1}} \]

\[\sigma = 0.65\% \]
\[\theta = 0.03\% \]
\[r(0) = -0.40\% \]
Mean Reversion Parameter

Example 2: Variance

\[r(t) \sim \mathcal{N} \left(e^{-\alpha t} r(0) + \frac{\theta}{\alpha} (1 - e^{-\alpha t}) , \frac{\sigma^2}{2\alpha} (1 - e^{-2\alpha t}) \right) \]

\[\text{corr}(r(T_1), r(T_2)) = \sqrt{\frac{e^{2\alpha T_2} - 1}{e^{2\alpha T_1} - 1}} \]

\[\sigma = 0.65\% \]
\[\theta = 0.03\% \]
\[r(0) = -0.40\% \]
Mean Reversion Parameter

Example 3: Correlation

\[r(t) \sim \mathcal{N} \left(e^{-\alpha t} r(0) + \frac{\theta}{\alpha} (1 - e^{-\alpha t}), \frac{\sigma^2}{2\alpha} (1 - e^{-2\alpha t}) \right) \]

\[\text{corr}(r(T_1), r(T_2)) = \sqrt{\frac{e^{2\alpha T_2} - 1}{e^{2\alpha T_1} - 1}} \]

\[\sigma = 0.65\% \]
\[\theta = 0.03\% \]
\[r(0) = -0.40\% \]
One Factor Hull-White Model
Mean Reversion Parameter – Example 4
Effect on Bermudan swaption price

- Sample Bermudan Swaption
 - Truly calibrated HW1F
 - N=100mln
 - yearly call dates
Mean Reversion Parameter
Example 5a: CMS10y-K at T=30y

\(\alpha = 5\% \)
Mean Reversion Parameter
Example 5b: $T=30y$ CMS10y-K

$\alpha = -5\%$
Mean Reversion Parameter
Example 5c: CMS10y at T=30y

\[\alpha = -10\% \]
Mean Reversion Parameter

Example 6a: Simulation 6m EURIBOR cashflows

$\alpha = -1\%$
Mean Reversion Parameter
Example 6a: Simulation 6m EURIBOR cashflows

\[\alpha = -10\% \]
Mean Reversion Parameter
Negative mean reversion (MR)

- Model volatility $\sigma(t)$
 - Decreases in t for $a<0$
 - In general not all swaption prices can be matched perfectly
 - There exists a MR-dependent maximum maturity until which perfect calibration to European swaptions is possible

<table>
<thead>
<tr>
<th>reversion (κ)</th>
<th>t_{max}</th>
<th>reversion (κ)</th>
<th>t_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.0025</td>
<td>200</td>
<td>-0.0525</td>
<td>10</td>
</tr>
<tr>
<td>-0.005</td>
<td>100</td>
<td>-0.055</td>
<td>9</td>
</tr>
<tr>
<td>-0.0075</td>
<td>67</td>
<td>-0.0575</td>
<td>9</td>
</tr>
<tr>
<td>-0.01</td>
<td>50</td>
<td>-0.06</td>
<td>8</td>
</tr>
<tr>
<td>-0.0125</td>
<td>40</td>
<td>-0.0625</td>
<td>8</td>
</tr>
<tr>
<td>-0.015</td>
<td>33</td>
<td>-0.065</td>
<td>8</td>
</tr>
<tr>
<td>-0.0175</td>
<td>29</td>
<td>-0.0675</td>
<td>7</td>
</tr>
<tr>
<td>-0.02</td>
<td>25</td>
<td>-0.07</td>
<td>7</td>
</tr>
<tr>
<td>-0.0225</td>
<td>22</td>
<td>-0.0725</td>
<td>7</td>
</tr>
<tr>
<td>-0.025</td>
<td>20</td>
<td>-0.075</td>
<td>7</td>
</tr>
<tr>
<td>-0.0275</td>
<td>18</td>
<td>-0.0775</td>
<td>6</td>
</tr>
<tr>
<td>-0.03</td>
<td>17</td>
<td>-0.08</td>
<td>6</td>
</tr>
<tr>
<td>-0.0325</td>
<td>15</td>
<td>-0.0825</td>
<td>6</td>
</tr>
<tr>
<td>-0.035</td>
<td>14</td>
<td>-0.085</td>
<td>6</td>
</tr>
<tr>
<td>-0.0375</td>
<td>13</td>
<td>-0.0875</td>
<td>6</td>
</tr>
<tr>
<td>-0.04</td>
<td>13</td>
<td>-0.09</td>
<td>6</td>
</tr>
<tr>
<td>-0.0425</td>
<td>12</td>
<td>-0.0925</td>
<td>5</td>
</tr>
<tr>
<td>-0.045</td>
<td>11</td>
<td>-0.095</td>
<td>5</td>
</tr>
<tr>
<td>-0.0475</td>
<td>11</td>
<td>-0.0975</td>
<td>5</td>
</tr>
<tr>
<td>-0.05</td>
<td>10</td>
<td>-0.1</td>
<td>5</td>
</tr>
</tbody>
</table>
Mean Reversion Parameter
Optimal Mean Reversion 1

- Find MR leading to the closest match to the counterparty prices
- Market implied mean reversion
- Different optimality criteria on the portfolio level are possible
- Different optimization level are possible
 - deal level
 - CP level
 - global

![Graph showing price as a function of mean reversion](image)

$a^* = 3.5\%$

CP price
Mean reversion optimized at counterparty level varies between -2% and -6%

(20 trades, 10 counterparts, three different optimality criteria)
Mean Reversion Parameter
Optimal Mean Reversion 3

<table>
<thead>
<tr>
<th>Optimal MR</th>
<th>Netted MtM Diff, EUR</th>
<th>Median Diff to N, bp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summit logic (>2%)</td>
<td>9.677.732</td>
<td>116</td>
</tr>
<tr>
<td>Deal level (avr -3.2%)</td>
<td>2.485.357</td>
<td>8</td>
</tr>
<tr>
<td>CP level - sqrt (avr -3.3%)</td>
<td>2.699.485</td>
<td>5</td>
</tr>
<tr>
<td>Global – sqrt (-3.1%)</td>
<td>2.374.666</td>
<td>20</td>
</tr>
</tbody>
</table>

Effect of the mean reversion on MtM differences with counterparties
(20 trades, 10 counterparts)
Final remarks

- Mean reversion parameter controls the price level of Bermudans
- Market implies negative MR values in HW1F framework
 - Not intuitive
 - Theoretically hard to justify for limit cases
 - HW1F model cannot be perfectly calibrated anymore
 - HW1F model reaches its applicability limits

- **It is still working!**
 - Regular monitoring and update of the mean reversion is necessary

- Future work in ORE
 - Swaptions with amortizing notional, rate or spread

Thank you very much for your attention