
ORE User Guide

16 October 2023

1

Document History

Date Author Comment
7 October 2016 Quaternion initial release
28 April 2017 Quaternion updates for release 2
7 December 2017 Quaternion updates for release 3
20 March 2019 Quaternion updates for release 4
19 June 2020 Quaternion updates for release 5
30 June 2021 Acadia updates for release 6
16 September 2022 Acadia updates for release 7
6 December 2022 Acadia updates for release 8
31 March 2023 Acadia updates for release 9
16 June 2023 Acadia updates for release 10
16 October 2023 Acadia updates for release 11

2

Contents
1 Introduction 10

1.1 Scope . 10
1.2 ORE in Python or Java . 13
1.3 Roadmap . 13
1.4 Further Resources . 13

2 Release Notes 14

3 ORE Data Flow 15

4 Getting and Building ORE 16
4.1 ORE Releases . 17
4.2 Building ORE . 18

4.2.1 Git . 18
4.2.2 Boost . 18
4.2.3 ORE Libraries and Application 19

4.3 Python and Jupyter . 22
4.4 Building ORE-SWIG and Python Wheels 23

5 Examples 24
5.1 Interest Rate Swap Exposure, Flat Market 27
5.2 Interest Rate Swap Exposure, Realistic Market 28
5.3 European Swaption Exposure . 29
5.4 Bermudan Swaption Exposure . 29
5.5 Callable Swap Exposure . 30
5.6 Cap/Floor Exposure . 30
5.7 FX Forward and FX Option Exposure 31
5.8 Cross Currency Swap Exposure, without FX Reset 32
5.9 Cross Currency Swap Exposure, with FX Reset 32
5.10 Netting Set, Collateral, XVAs, XVA Allocation 33
5.11 Basel Exposure Measures . 38
5.12 Long Term Simulation with Horizon Shift 38
5.13 Dynamic Initial Margin and MVA . 39
5.14 Minimal Market Data Setup . 40
5.15 Sensitivity Analysis, Stress Testing and Parametric Value-at-Risk 40
5.16 Equity Derivatives Exposure . 44
5.17 Inflation Swap Exposure under Dodgson-Kainth 45
5.18 Bonds and Amortisation Structures . 46
5.19 Swaption Pricing with Smile . 47
5.20 Credit Default Swap Pricing . 47
5.21 CMS and CMS Cap/Floor Pricing . 48
5.22 Option Sensitivity Analysis with Smile 48
5.23 FRA and Average OIS Exposure . 48
5.24 Commodity Derivatives, Pricing, Sensitivity, Exposure 49
5.25 CMS Spread with (Digital) Cap/Floor 49
5.26 Bootstrap Consistency . 49
5.27 BMA Basis Swap . 50

3

5.28 Discount Ratio Curves . 50
5.29 Curve Building using Fixed vs. Float Cross Currency Helpers 51
5.30 USD-Prime Curve Building via Prime-LIBOR Basis Swap 51
5.31 Exposure Simulation using a Close-Out Grid 51
5.32 Inflation Swap Exposure under Jarrow-Yildrim 52
5.33 CDS Exposure Simulation . 53
5.34 Wrong Way Risk . 53
5.35 Flip View . 54
5.36 Choice of Measure . 54
5.37 Multifactor Hull-White Scenario Generation 55
5.38 Cross Currency Swap Exposure using Multifactor Hull-White Models . . 57
5.39 Exposure Simulation using American Monte Carlo 57
5.40 Par Sensitivity Analysis . 64
5.41 Multi-threaded Exposure Simultion . 65
5.42 ORE Python Module . 65
5.43 Credit Portfolio Model . 66
5.44 ISDA SIMM Model . 67
5.45 Collateralized Bond Obligation . 68
5.46 Generic Total Return Swap . 68
5.47 Composite Trade . 68
5.48 Convertible Bond and ASCOT . 69
5.49 Bond Yield Shifted . 69
5.50 Zero to Par sensitivity Conversion Analysis 69
5.51 Custom Trade Fixings . 71
5.52 Scripted Trade . 71
5.53 GBP OIS Curve using MPC Swaps . 73

6 Launchers and Visualisation 74
6.1 Jupyter . 74
6.2 Calc . 74
6.3 Excel . 75

7 Parameterisation 75
7.1 Master Input File: ore.xml . 76

7.1.1 Setup . 76
7.1.2 Logging . 78
7.1.3 Markets . 78
7.1.4 Analytics . 79

7.2 Market: todaysmarket.xml . 91
7.2.1 Discounting Curves . 92
7.2.2 Index Curves . 93
7.2.3 Yield Curves . 93
7.2.4 Swap Index Curves . 94
7.2.5 FX Spot . 94
7.2.6 FX Volatilities . 94
7.2.7 Swaption Volatilities . 95
7.2.8 Cap/Floor Volatilities . 95
7.2.9 Default Curves . 96
7.2.10 Securities . 96

4

7.2.11 Equity Curves . 96
7.2.12 Equity Volatilities . 97
7.2.13 Inflation Index Curves . 97
7.2.14 Inflation Cap/Floor Volatility Surfaces 98
7.2.15 CDS Volatility Structures . 98
7.2.16 Base Correlation Structures . 99
7.2.17 Correlation Structures . 99
7.2.18 Market Configurations . 99

7.3 Pricing Engines: pricingengine.xml . 100
7.4 Simulation: simulation.xml . 104

7.4.1 Parameters . 104
7.4.2 Model . 106
7.4.3 Market . 117

7.5 Sensitivity Analysis: sensitivity.xml 121
7.6 Stress Scenario Analysis: stressconfig.xml 126
7.7 Calendar Adjustment: calendaradjustment.xml 127
7.8 Curves: curveconfig.xml . 128

7.8.1 Yield Curves . 128
7.8.2 Default Curves from CDS . 141
7.8.3 Benchmark Default Curve . 143
7.8.4 Multi-Section Default Curve . 145
7.8.5 Swaption Volatility Structures . 146
7.8.6 Cap Floor Volatility Structures 147
7.8.7 FX Volatility Structures . 162
7.8.8 Equity Curve Structures . 165
7.8.9 Equity Volatility Structures . 167
7.8.10 Inflation Curves . 172
7.8.11 Inflation Cap/Floor Volatility Surfaces 173
7.8.12 CDS Volatilities . 175
7.8.13 Base Correlations . 179
7.8.14 FXSpots . 180
7.8.15 Securities . 180
7.8.16 Correlations . 181
7.8.17 Commodity Curves . 181
7.8.18 Commodity Volatilities . 187
7.8.19 Bootstrap Configuration . 197
7.8.20 One Dimensional Solver Configuration 199

7.9 Reference Data referencedata.xml . 201
7.10 Ibor Fallback Config: iborFallbackConfig.xml 203
7.11 Conventions: conventions.xml . 204

7.11.1 Zero Conventions . 204
7.11.2 Deposit Conventions . 205
7.11.3 Future Conventions . 206
7.11.4 FRA Conventions . 207
7.11.5 OIS Conventions . 208
7.11.6 Swap Conventions . 209
7.11.7 Average OIS Conventions . 209
7.11.8 Tenor Basis Swap Conventions . 210

5

7.11.9 Tenor Basis Two Swap Conventions 212
7.11.10FX Conventions . 212
7.11.11Cross Currency Basis Swap Conventions 213
7.11.12 Inflation Swap Conventions . 215
7.11.13CMS Spread Option Conventions 217
7.11.14 Ibor Index Conventions . 218
7.11.15Overnight Index Conventions . 219
7.11.16 Inflation Index Conventions . 220
7.11.17Swap Index Conventions . 220
7.11.18FX Option Conventions . 221
7.11.19Commodity Forward Conventions 222
7.11.20Commodity Future Conventions 223
7.11.21Credit Default Swap Conventions 228
7.11.22Bond Yield Conventions . 230

8 Trade Data 233
8.1 Envelope . 234

8.1.1 Netting Set Details . 234
8.2 Trade Specific Data . 235

8.2.1 Swap . 235
8.2.2 Zero Coupon Swap . 237
8.2.3 Cap/Floor . 238
8.2.4 Forward Rate Agreement . 240
8.2.5 Swaption . 241
8.2.6 FX Forward . 245
8.2.7 FX Average Forward . 247
8.2.8 FX Swap . 248
8.2.9 FX Option . 249
8.2.10 FX Asian Option . 251
8.2.11 FX Barrier Option . 254
8.2.12 FX Digital Barrier Option . 256
8.2.13 FX Digital Option . 259
8.2.14 FX Double Barrier Option . 260
8.2.15 FX Double Touch Option . 263
8.2.16 FX European Barrier Option . 265
8.2.17 FX KIKO Barrier Option . 267
8.2.18 FX Touch Option . 270
8.2.19 FX Variance and Volatility Swap 272
8.2.20 Equity Option . 273
8.2.21 Equity Futures Option . 276
8.2.22 Equity Forward . 277
8.2.23 Equity Swap . 278
8.2.24 Dividend Swap . 280
8.2.25 Equity Asian Option . 281
8.2.26 Equity Barrier Option . 283
8.2.27 Equity Digital Option . 285
8.2.28 Equity Double Barrier Option . 286
8.2.29 Equity Double Touch Option . 288
8.2.30 Equity European Barrier Option 290

6

8.2.31 Equity Touch Option . 291
8.2.32 Equity Variance Swap . 293
8.2.33 Equity Cliquet Option . 295
8.2.34 Equity Position . 298
8.2.35 Equity Option Position . 299
8.2.36 CPI Swap . 301
8.2.37 Year on Year Inflation Swap . 302
8.2.38 Bond . 303
8.2.39 Bond Position . 306
8.2.40 Forward Bond . 307
8.2.41 Bond Forward / T-Lock / J-Lock (using ref. data) 310
8.2.42 Bond Repo . 313
8.2.43 Bond Option . 314
8.2.44 Bond Option (using bond reference data) 316
8.2.45 Bond Total Return Swap . 318
8.2.46 Convertible Bond . 321
8.2.47 Ascot . 341
8.2.48 Collateral Bond Obligation CBO 343
8.2.49 Composite Trade . 345
8.2.50 Credit Default Swap / Quanto Credit Default Swap 347
8.2.51 Index Credit Default Swap . 350
8.2.52 Index Credit Default Swap Option 353
8.2.53 Synthetic CDO . 356
8.2.54 Credit Linked Swap . 359
8.2.55 Commodity Forward . 360
8.2.56 Commodity Swap and Basis Swap 363
8.2.57 Commodity Swaption . 363
8.2.58 Commodity Option . 365
8.2.59 Commodity Digital Option . 367
8.2.60 Commodity Spread Option . 367
8.2.61 Commodity Average Price Option 369
8.2.62 Commodity Option Strip . 372
8.2.63 Commodity Variance and Volatility Swap 374
8.2.64 Commodity Position . 374
8.2.65 Generic Total Return Swap / Contract for Difference (CFD) . . . 376

8.3 Trade Components . 386
8.3.1 Option Data . 387
8.3.2 Premiums . 393
8.3.3 Leg Data and Notionals . 394
8.3.4 Schedule Data (Rules, Dates and Derived) 399
8.3.5 Fixed Leg Data and Rates . 403
8.3.6 Floating Leg Data, Spreads, Gearings, Caps and Floors 404
8.3.7 Leg Data with Amortisation Structures 411
8.3.8 Indexings . 412
8.3.9 Cashflow Leg Data . 416
8.3.10 CMS Leg Data . 417
8.3.11 Constant Maturity Bond Leg Data 419
8.3.12 Digital CMS Leg Data . 421

7

8.3.13 Duration Adjusted CMS Leg Data 422
8.3.14 CMS Spread Leg Data . 424
8.3.15 Digital CMS Spread Leg Data . 425
8.3.16 Equity Leg Data . 427
8.3.17 CPI Leg Data . 431
8.3.18 YY Leg Data . 435
8.3.19 ZeroCouponFixed Leg Data . 437
8.3.20 Commodity Fixed Leg . 439
8.3.21 Commodity Fixed Leg Data . 439
8.3.22 Commodity Floating Leg . 440
8.3.23 Commodity Schedules . 441
8.3.24 Commodity Floating Leg Data 443
8.3.25 Equity Margin Leg . 450
8.3.26 Equity Margin Leg Data . 450
8.3.27 CDS Reference Information . 452
8.3.28 Basket Data . 453
8.3.29 Underlying . 455
8.3.30 StrikeData . 459
8.3.31 Barrier Data . 460
8.3.32 RangeBound . 462
8.3.33 Bond Basket Data for Cashflow CDO 463
8.3.34 CBO Tranches . 464

8.4 Allowable Values . 466

9 Netting Set Definitions 477
9.1 Uncollateralised Netting Set . 477
9.2 Collateralised Netting Set . 477

10 Market Data 481
10.1 Zero Rate . 483
10.2 Discount Factor . 484
10.3 FX Spot Rate . 484
10.4 FX Forward Rate . 485
10.5 Deposit Rate . 486
10.6 FRA Rate . 486
10.7 Money Market Futures Price . 487
10.8 Overnight Index Futures Price . 488
10.9 Swap Rate . 488
10.10Basis Swap Spread . 489
10.11Cross Currency Basis Swap Spread . 490
10.12CDS Spread . 490
10.13CDS Upfront Price . 491
10.14CDS Recovery Rate . 492
10.15CDS Option Implied Volatility . 492
10.16Security Recovery Rate . 493
10.17Hazard Rate (Instantaneous Probability of Default) 493
10.18FX Option Implied Volatility . 494
10.19Cap Floor Implied Volatility . 495
10.20Swaption Implied Volatility . 496

8

10.21Equity Spot Price . 497
10.22Equity Forward Price . 497
10.23Equity Dividend Yield . 498
10.24Equity Option Implied Volatility . 498
10.25Equity Option Premium . 499
10.26Commodity Spot Price . 499
10.27Commodity Forward Price . 500
10.28Commodity Option Implied Volatility . 500
10.29Zero Coupon Inflation Swap Rate . 502
10.30Year on Year Inflation Swap Rate . 503
10.31Zero Coupon Inflation Cap Floor Price 503
10.32Inflation Seasonality Correction Factors 504
10.33Bond Yield Spreads . 504
10.34Base Correlations . 505
10.35Correlations . 505
10.36Conditional Prepayment Rates . 506

11 Fixing History 507

12 Dividends History 510

A Methodology Summary 512
A.1 Risk Factor Evolution Model . 512
A.2 Analytical Moments of the Risk Factor Evolution Model 515
A.3 Change of Measure . 520
A.4 Exposures . 522
A.5 Exposures using American Monte Carlo 524

A.5.1 Implementation Details . 525
A.5.2 Limitations and Open Points . 528
A.5.3 Outlook: Trade Compression . 529

A.6 CVA and DVA . 529
A.7 FVA . 530
A.8 COLVA . 531
A.9 Collateral Floor Value . 531
A.10 Dynamic Initial Margin and MVA . 532
A.11 KVA (CCR) . 533
A.12 KVA (BA-CVA) . 534
A.13 Collateral Model . 535

A.13.1 Margin Period of Risk . 536
A.14 Exposure Allocation . 538
A.15 Sensitivity Analysis . 539
A.16 Par Sensitivity Analysis . 541
A.17 Value at Risk . 543

9

1 Introduction
The Open Source Risk Project [1] aims at providing a transparent platform for pricing
and risk analysis that serves as

• a benchmarking, validation, training, and teaching reference,

• an extensible foundation for tailored risk solutions.

Its main software project is Open Source Risk Engine (ORE), an application that
provides

• a Monte Carlo simulation framework for contemporary risk analytics and value
adjustments

• simple interfaces for trade data, market data and system configuration

• simple launchers and result visualisation in Jupyter, Excel, LibreOffice

• unit tests and various examples.

ORE is open source software, provided under the Modified BSD License. It is based on
QuantLib, the open source library for quantitative finance [2].

Audience

The project aims at reaching quantitative risk management practitioners (be it in
financial institutions, audit firms, consulting companies or regulatory bodies) who are
looking for accessible software solutions, and quant developers in charge of the
implementation of pricing and risk methods similar to those in ORE. Moreover, the
project aims at reaching academics and students who would like to teach or learn
quantitative risk management using a freely available, contemporary risk application.

Contributions

Quaternion Risk Management [3] has been committed to sponsoring the Open Source
Risk project through ongoing project administration, through providing an initial
release and a series of subsequent releases in order to achieve a wide analytics, product
and risk factor class coverage. Since Quaternion’s acquisition by Acadia Inc. in
February 2021, Acadia [4] is committed to continue the sponsorship. The Open Source
Risk project works will continue with former Quaternion now operating as Acadia’s
Quantitative Services unit.

The community is invited to contribute to ORE, for example through feedback,
discussions and suggested enhancement in the forum on the ORE site [1], as well as
contributions of ORE enhancements in the form of source code. See the FAQ section
on the ORE site [1] on how to get involved.

1.1 Scope

ORE currently provides portfolio pricing, cash flow generation, market risk analysis
and a range of contemporary derivative portfolio analytics. The latter are based on a
Monte Carlo simulation framework which yields the evolution of various exposure
measures:

10

• EE aka EPE (Expected Exposure or Expected Positive Exposure)

• ENE (Expected Negative Exposure, i.e. the counterparty’s perspective)

• ’Basel’ exposure measures relevant for regulatory capital charges under internal
model methods

• PFE (Potential Future Exposure at some user defined quantile)

and derivative value adjustments (xVA)

• CVA (Credit Value Adjustment)

• DVA (Debit Value Adjustment)

• FVA (Funding Value Adjustment)

• COLVA (Collateral Value Adjustment)

• MVA (Margin Value Adjustment)

for portfolios with netting, variation and initial margin agreements.

The market risk framework provides sensitivity analysis, stress testing and several
parametric VaR versions (Delta VaR, Delta-Gamma Normal VaR, Delta-Gamma VaR
with Cornish-Fisher expansion and Saddlepoint method), across all asset classes and
products.

Thanks to Acadia’s open-source strategy, ORE’s financial instrument scope was
extended beyond the initial vanilla scope with quarterly releases since version 7
(September 2022) to cover

• "First Generation" Equity and FX Exotics, released September with ORE v7

• Commodity products (Swaps, Basis Swaps, Average Price Options, Swaptions),
released December 22 with ORE v8

• Credit products (Index CDS and Index CDS Options, Credit-Linked Swaps,
Synthetic CDOs), released March 23 with ORE v9

• Bond products and Hybrids (Bond Options, Bond Repos, Bond TRS, Composite
Trades, Convertible Bonds, Generic TRS with mixed basket underlyings, CFDs),
released in June 23 with ORE v10

These contributions were accompanied by analytics extensions to enhance ORE
usability

• Exposure simulation for xVA and PFE, adding Commodity to the asset class
coverage, and adding American Monte Carlo for Exotics, released in December
22 with ORE v8

• Market Risk including multi-threaded sensitivity analysis, par sensitivity
conversion, parametric delta/gamma VaR with Cornish-Fisher expansion and
Saddlepoint method, released in March 23 with ORE v9

• Portfolio Credit Model, released in June 23 with ORE v10

11

• ISDA’s Standard Initial Margin Model (SIMM), released in June 23 with ORE
v10

With ORE v11 the release of the Scripted Trade framework followed. This allows the
modelling of complex hybrid payoffs such as Accumulators, TARFs, PRDCs, Basket
Options, etc, across IR, FX, INF, EQ, COM classes. Scripted Trades are fully
integrated into the market risk and exposure simulation frameworks, supported by
American Monte Carlo methods for pricing and exposure simulation. The user can
now extend the instrument scope conveniently by adding payoff scripts (embedded into
the trade XML or in separate script "library" XML) and without recompiling the code
base.

The product coverage of the latest release of ORE is sketched in Table 1.

Product Pricing and
Cashflows

Sensitivity
Analysis

Stress
Testing

Exposure
Simulation
& XVA

Fixed and Floating Rate Bonds/Loans Y Y Y N
Interest Rate Swaps Y Y Y Y
Caps/Floors Y Y Y Y
Swaptions Y Y Y Y
Constant Maturity Swaps, CMS Caps/Floors Y Y Y Y
FX Forwards and Average Forwards Y Y Y Y
Cross Currency Swaps Y Y Y Y
FX European and Asian Options Y Y Y Y
FX Exotic Options (see below) Y Y Y Y
Equity Forwards Y Y Y Y
Equity Swaps Y Y Y N
Equity European and Asian Options Y Y Y Y
Equity Exotic Options (see below) Y Y Y Y
Equity Future Options Y Y Y Y
Commodity Forwards and Swaps Y Y Y Y
Commodity European and Asian Options Y Y Y Y
Commodity Digital Options Y Y Y Y
Commodity Swaptions Y Y Y Y
CPI Swaps Y Y N Y
CPI Caps/Floors Y Y N N
Year-on-Year Inflation Swaps Y Y N Y
Year-on-Year Inflation Caps/Floors Y Y N N
Credit Default Swaps, Options Y Y N Y
Index Credit Default Swaps, Options Y Y N Y
Credit Linked Swaps Y Y N Y
Index Tranches, Synthetic CDOs Y Y N Y
Composite Trades Y Y Y Y
Total Return Swaps and Contracts for Difference Y Y Y Y
Convertible Bonds Y Y Y N
ASCOTs Y Y Y Y
Scripted Trades Y Y Y Y

Table 1: ORE product coverage. FX/Equity Exotics include Barrier, Digital, Digital Barrier
(FX only), Double Barrier, European Barrier, KIKO Barrier (FX only), Touch and Double
Touch Options. Scripted Trades cover single and multi-asset products across all asset classes
except Credit (so far), see Example_52 and the separate documentation in Docs/ScriptedTrade.

The simulation models applied in ORE’s risk factor evolution implement the models
discussed in detail in Modern Derivatives Pricing and Credit Exposure Analysis [21]:
The IR/FX/INF/EQ risk factor evolution is based on a cross currency model
consisting of an arbitrage free combination of Linear Gauss Markov models for all
interest rates and lognormal processes for FX rates and EQ prices, Dodgson-Kainth (or
Jarrow-Yildirim) models for inflation. The model components are calibrated to cross

12

currency discounting and forward curves, Swaptions, FX Options, EQ Options and
CPI caps/floors. With the 8th release, Commodity simulation has been added, as well
as the foundation for a multi-factor Hull-White based IR/FX/COM simulation model.

1.2 ORE in Python or Java

ORE is written in C++ and comes with a command line executable ore.exe that
supports batch processes. But since early versions of ORE we also provide language
bindings following QuantLib’s example using SWIG, in ORE’s case with focus on
Python and Java modules. The ORE SWIG module extends (contains) the QuantLib
SWIG module and offers moreover access to a part of ORE’s functionality. Since ORE
v9, Python wheels are provided for each release, so that users can install the most
recent ORE Python module by calling

pip install open-source-risk-engine

See section 5.42 on how to use ORE-Python.

1.3 Roadmap

It is planned that subsequent ORE releases will also provide the calculation of
regulatory capital charges

• for Counterparty Credit Risk under the standardised approach (SA-CCR)

• for Market Risk (FRTB-SA)

• for CVA Risk (BA-CVA, SA-CVA)

We also expect to contribute performance enhancements over time that are currently
in development at Acadia, primarily based on the scripted trade framework

• AAD for fast calculation of trade sensitivities and xVAs

• tailored interfaces for utilising GPUs

There is demand among our clients for extended coverage of the ORE-Python version,
so that we also expect steady growth of the Python wrapper around ORE.

1.4 Further Resources

• Open Source Risk Project site: http://www.opensourcerisk.org

• Frequently Asked Questions: http://www.opensourcerisk.org/faqs

• Forum: http://www.opensourcerisk.org/forum

• Source code and releases: https://github.com/opensourcerisk/engine

• Language bindings: https://github.com/opensourcerisk/ore-swig

• Follow ORE on Twitter @OpenSourceRisk for updates on releases and events

13

http://www.opensourcerisk.org
http://www.opensourcerisk.org/faqs
http://www.opensourcerisk.org/forum
https://github.com/opensourcerisk/engine
https://github.com/opensourcerisk/ore-swig

Organisation of this document

This document focuses on instructions how to use ORE to cover basic workflows from
individual deal analysis to portfolio processing. After an overview over the core ORE
data flow in section 3 and installation instructions in section 4 we start in section 5
with a series of examples that illustrate how to launch ORE using its command line
application, and we discuss typical results and reports. We then illustrate in section 6
interactive analysis of resulting ’NPV cube’ data. The final sections of this text
document ORE parametrisation and the structure of trade and market data input.

2 Release Notes
See the full history of release notes in News.txt in the top level directory of the ORE’s
github repository.

This section summarises the notable changes between release 10 (June 2023) and 11
(October 2023).

INSTRUMENTS

• Add the Scripted Trade framework, see Example 52

• Add support for fixings at trade level, see Example 51

• Add Commodity Heat Rate Option

• Add support for FRA on OIS

• Add support for SIFMA Cap/Floor

MARKETS

• Support Optionlet volatility input

• Add Dated OIS Rate Helper to the ORE yield curve to support instruments
tailored to Central Bank meeting dates, see Example 53

ANALYTICS

• Add SIMM 2.6

• Add support for SIMM with one-day horizon, see updated Example 44

• Convert pre-computed zero sensitivities into par sensitivities, see Example 50

• Add support for Cross Currency MtM Reset Swaps to AMC exposure simulation

TEST

• QuantExt: 272 test functions (vs 267 in the previous release)

• OREData: 257 test functions (vs. 206 in the previous release)

• OREAnalytics: 78 test functions

14

DOCUMENTATION

• A separate guide for the Scripted Trade has been added, see
Docs/ScriptedTrade/scriptedtrade.tex

LANGUAGE BINDINGS

• Upgrade to QuantLib-SWIG-v1.31.1

OTHER

• Added an external compute device interface (to utilise GPUs)

• Logging enhancements (progress, structured logs)

• Introduced Blackduck and Coverity scans of the code base before releases

• Upgrade of ORE’s QuantLib fork to QuantLib-v1.31.1

3 ORE Data Flow
The core processing steps followed in ORE to produce risk analytics results are
sketched in Figure 1. All ORE calculations and outputs are generated in three
fundamental process steps as indicated in the three boxes in the upper part of the
figure. In each of these steps appropriate data (described below) is loaded and results
are generated, either in the form of a human readable report, or in an intermediate
step as pure data files (e.g. NPV data, exposure data).

Portfolio Loading
“Curve” Building
Model Calibration

t0 Pricing
Market Simulation

Forward Pricing

Aggregation
Collateral Modeling
Exposure Analytics

Trade data (xml) NPV Report
Cashflow Report

Exposure Reports
XVA Reports

NPV Cube Net NPV Cube
Market data

Configuration (xml)

Interactive Visualisation:
Evolution of Exposure and NPV distributions

Input
Output

Processing

Figure 1: Sketch of the ORE process, inputs and outputs.

The overall ORE process needs to be parametrised using a set of configuration XML
files which is the subject of section 7. The portfolio is provided in XML format which
is explained in detail in sections 8 and 9. Note that ORE comes with ’Schema’ files for
all supported products so that any portfolio xml file can be validated before running

15

through ORE. Market data is provided in a simple three-column text file with unique
human-readable labelling of market data points, as explained in section 10.
The first processing step (upper left box) then comprises

• loading the portfolio to be analysed,

• building any yield curves or other ’term structures’ needed for pricing,

• calibration of pricing and simulation models.

The second processing step (upper middle box) is then

• portfolio valuation, cash flow generation,

• going forward - conventional risk analysis such as sensitivity analysis and stress
testing, standard-rule capital calculations such as SA-CCR, etc,

• and in particular, more time-consuming, the market simulation and portfolio
valuation through time under Monte Carlo scenarios.

This process step produces several reports (NPV, cashflows etc) and in particular an
NPV cube, i.e. NPVs per trade, scenario and future evaluation date. The cube is
written to a file in both condensed binary and human-readable text format.
The third processing step (upper right box) performs more ’sophisticated’ risk analysis
by post-processing the NPV cube data:

• aggregating over trades per netting set,

• applying collateral rules to compute simulated variation margin as well as
simulated (dynamic) initial margin posting,

• computing various XVAs including CVA, DVA, FVA, MVA for all netting sets,
with and without taking collateral (variation and initial margin) into account, on
demand with allocation to the trade level.

The outputs of this process step are XVA reports and the ’net’ NPV cube, i.e. after
aggregation, netting and collateral.
The example section 5 demonstrates for representative product types how the
described processing steps can be combined in a simple batch process which produces
the mentioned reports, output files and exposure evolution graphs in one ’go’.

Moreover, both NPV cubes can be further analysed interactively using a visualisation
tool introduced in section 6.1. And finally, sections 6.2 and 6.3 demonstrate how ORE
processes can be launched in spreadsheets and key results presented automatically
within the same sheet.

4 Getting and Building ORE
You can get ORE in two ways, either by downloading a release bundle as described in
section 4.1 (easiest if you just want to use ORE) or by checking out the source code
from the github repository as described in section 4.2 (easiest if you want to build and
develop ORE).

16

4.1 ORE Releases

ORE releases are regularly provided in the form of source code archives, Windows
executables ore.exe, example cases and documentation. Release archives will be
provided at https://github.com/opensourcerisk/engine/releases.

The release contains the QuantLib source version that ORE depends on. This is the
latest QuantLib release that precedes the ORE release including a small number of
patches.

The release consists of a single archive in zip format

• ORE-<VERSION>.zip

When unpacked, it creates a directory ORE-<VERSION> with the following files
respectively subdirectories

1. App/

2. Docs/

3. Examples/

4. FrontEnd/

5. OREAnalytics/

6. OREData/

7. ORETest/

8. QuantExt/

9. QuantLib/

10. ThirdPartyLibs/

11. tools/

12. xsd/

13. userguide.pdf

The first three items and userguide.pdf are sufficient to run the compiled ORE
application on the list of examples described in the user guide (this works on Windows
only). The Windows executables are located in App/bin/Win32/Release/ respectively
App/bin/x64/Release/. To continue with the compiled executables:

• Ensure that the scripting language Python is installed on your computer, see also
section 4.3 below;

• Move on to the examples in section 5.

The release bundle contains the ORE source code, which is sufficient to build ORE
from sources as follows (if you build ORE for development purposes, we recommend
using git though, see section 4.2):

• Set up Boost as described in section 4.2.2, unless already installed

17

https://github.com/opensourcerisk/engine/releases

• Build QuantLib, QuantExt, OREData, OREAnalytics, App (in this order) as
described in section 4.2.3

• Note that ThirdPartyLibs does not need to be built, it contains RapidXml,
header only code for reading and writing XML files

• Move on to section 4.3 and the examples in section 5.

Open Docs/html/index.html to see the API documentation for QuantExt, OREData
and OREAnalytics, generated by doxygen.

4.2 Building ORE

ORE’s source code is hosted at https://github.com/opensourcerisk/engine.

4.2.1 Git

To access the current code base on GitHub, one needs to get git installed first.

1. Install and setup Git on your machine following instructions at [6]

2. Fetch ORE from github by running the following:

% git clone https://github.com/opensourcerisk/engine.git ore

This will create a folder ’ore’ in your current directory that contains the codebase.

3. Initially, the QuantLib subdirectory under ore is empty as it is a submodule
pointing to the official QuantLib repository. To pull down locally, use the
following commands:

% cd ore
% git submodule init
% git submodule update

Note that one can also run

% git clone –recurse-submodules https://github.com/opensourcerisk/engine.git ore

in step 2, which also performs the steps in 3.

4.2.2 Boost

QuantLib and ORE depend on the boost C++ libraries. Hence these need to be
installed before building QuantLib and ORE. On all platforms the minimum required
boost version is 1_78.

Windows

1. Download the pre-compiled binaries for your MSVC version (e.g. MSVC-14.2 for
MSVC2019) from [7]

• 32-bit: [7]\VERSION\boost_VERSION-msvc-14.2-32.exe\download

• 64-bit: [7]\VERSION\boost_VERSION-msvc-14.2-64.exe\download

18

https://github.com/opensourcerisk/engine

2. Start the installation file and choose an installation folder (the “boost root
directory”). Take a note of that folder as it will be needed later on.

3. Finish the installation by clicking Next a couple of times.

Alternatively, compile all Boost libraries directly from the source code:

1. Open a Visual Studio Tools Command Prompt

• 32-bit: VS2019 x86 Native Tools Command Prompt

• 64-bit: VS2019 x64 Native Tools Command Prompt

2. Navigate to the boost root directory

3. Run bootstrap.bat

4. Build the libraries from the source code

• 32-bit:
.\b2 –stagedir=.\lib\Win32\lib –build-type=complete toolset=msvc-14.0 \
address-model=32 –with-test –with-system –with-filesystem \
–with-serialization –with-regex –with-date_time stage

• 64-bit:
.\b2 –stagedir=.\lib\x64\lib –build-type=complete toolset=msvc-14.0 \
address-model=64 –with-test –with-system –with-filesystem \
–with-serialization –with-regex –with-date_time stage

Unix

1. Download Boost from [8] and build following the instructions on the site

2. Define the environment variable BOOST that points to the boost directory (so
includes should be in BOOST and libs should be in BOOST/stage/lib)

4.2.3 ORE Libraries and Application

Windows

1. Download and install Visual Studio Community Edition (Version 2017 or later).
During the installation, make sure you install the Visual C++ support under the
Programming Languages features (disabled by default).

2. Configure boost paths:
Set environment variables, e.g.:

• %BOOST% pointing to your directory, e.g, C:\boost_1_72_0

• %BOOST_LIB32% pointing to your Win32 lib directory, e.g,
C:\boost_1_72_0\lib32msvc14.2

• %BOOST_LIB64% pointing to your x64 lib directory, e.g,
C:\boost_1_72_0\lib64msvc14.2

3. Download and install CMake for Windows (https://cmake.org/download/).
Visual Studio Community Edition 2019 or later supports CMake and you can

19

install the feature ’C++ CMake Tools for Windows’ instead of installing CMake
as standalone program.

From Visual Studio 2015 and later supports CMake Projects.

1. Start Visual Studio 2017 or later.

2. Select "Open a local folder" from the start page or menu.

3. In the dialog window, select the ORE root directory.

4. Visual Studio will read the cmake presets from CMakePresets.json and the
project file CMakeList.txt and configure the project.

5. Once the configuration is finished and one can build the project.

6. The executables are built in the subfolder
/build/TARGET/CONFIGURATION/EXECUTABLE, e.g.
/build/App/Release/ore.exe.

ORE is shipped with configuration and build presets using Visual Studio 2022 and the
Ninja build system. Those presets are configured in the CMakePreset.json which is
read by Visual Studio by default when opening the CMake project. If you want to use
Visual Studio 2019 or Visual Studio 2017 instead, you would have to change the
Generator in the CMakePreset.json from "Visual Studio 17 2022" to "Visual Studio 16
2019" or "Visual Studio 15 2017".

You can switch in the solution explorer from the file view to the projects view, where
the CMake Targets View can be selected. In this view, the various target projects can
be seen below "ORE Project" and be used in a similar manner as the usual VS
projects.

Alternatively, Visual Studio project files can be auto-generated from the CMake
project files or ORE can be built with the CMake command line tool, similar to UNIX
/ Mac systems.

1. Generate MSVC project files from CMake files:

• Open a Visual Studio Tools Command Prompt

– 32-bit: VS2022/x86 Native Tools Command Prompt for VS 2022

– 64-bit: VS2022/x64 Native Tools Command Prompt for VS 2022

• Navigate to the ORE root directory

• Run CMake command:

– 64-bit:
cmake -G "Visual Studio 17 2022" -A x64
-DBOOST_INCLUDEDIR=%BOOST% -DBOOST_LIBRARYDIR=%BOOST_LIB64%
-DQL_ENABLE_SESSIONS=ON -DMSVC_LINK_DYNAMIC_RUNTIME=true -B
build

– 32-bit:
cmake -G "Visual Studio 17 2022" -A x32
-DBOOST_INCLUDEDIR=%BOOST% -DBOOST_LIBRARYDIR=%BOOST_LIB32%

20

-DQL_ENABLE_SESSIONS=ON -DMSVC_LINK_DYNAMIC_RUNTIME=true -B
build

Replace the generator "Visual Studio 17 2022" with the actual installed
version. The solution and project files will be generated in the
〈ORE_ROOT〉\build subdirectory.

2. build the cmake project with the command cmake –build build -v –config
Release,

3. or open the MSVC solution file build\ORE.sln and build the entire solution
with Visual Studio (again, make sure to select the correct platform in the
configuration manager first).

Optional: Install optional dependencies with VCPKG

VCPKG is an open source c++ library manager. ORE can be built optionally with
ZLIB and Eigen library support.

For both features the libraries needed to be installed on the system. On Windows one
can use the VCPKG package manager to install those dependencies:

• Install vcpkg: https://vcpkg.io/en/getting-started.html

• Install dependencies with invoking the command

vcpkg install –triplet x64-windows zlib
vcpkg install –triplet x64-windows eigen3

To make VCPKG visible to CMAKE, create an environment variable VCPKG_ROOT
pointing to the root of the vcpkg directory and configure ORE with the flag
-DCMAKE_TOOLCHAIN_FILE=%VCPKG_ROOT%/scripts/buildsystems/vcpkg.cmake.

To use VCPKG with Visual Studio add the toolChainFile to the configurePresets in
the CMakePresets.json:

"toolchainFile": "$env{VCPKG_ROOT}/scripts/buildsystems/vcpkg.cmake",

Unix

With the 5th release we have discontinued automake support so that ORE can only be
built with CMake on Unix systems, as follows.

1. set environment variable to locate the boost include and boost library directories

export BOOST_LIB=path/to/boost/lib
export BOOST_INC=path/to/boost/include

2. Change to the ORE project directory that contains the QuantLib, QuantExt, etc,
folders; create subdirectory build and change to subdirectory build

3. Configure CMake by invoking

cmake -DBOOST_ROOT=$BOOST_INC -DBOOST_LIBRARYDIR=$BOOST_LIB
-DQL_ENABLE_SESSIONS=ON ..

where the QL_ENABLE_SESSIONS variable is set to ON in order to enable some
multi-threading applications in ORE.

21

Alternatively, set environment variables BOOST_ROOT and BOOST_LIBRARYDIR
directly and run

cmake ..

4. Build all ORE libraries, QuantLib, as well as the doxygen API documentation for
QuantExt, OREData and OREAnalytics, by invoking

make -j4

using four threads in this example.

5. Run all test suites by invoking

ctest -j4

6. Run Examples (see section 5)

Note:

• If the boost libraries are not installed in a standard path they might not be
found during runtime because of a missing rpath tag in their path. Run the
script rename_libs.sh to set the rpath tag in all libraries located in
$BOOST/stage/lib.

• Unset LD_LIBRARY_PATH respectively DYLD_LIBRARY_PATH before running the
ORE executable or the test suites, in order not to override the rpath information
embedded into the libaries built with CMake

• On Linux systems, the ’locale’ settings can negatively affect the ORE process
and output. To avoid this, we recommend setting the environment variable
LC_NUMERIC to C, e.g. in a bash shell, do

% export LC_NUMERIC=C

before running ORE or any of the examples below. This will suppress thousand
separators in numbers when converted to strings.

• Generate CMakeLists.txt:

The .cpp and .hpp files included in the build process need to be explicitly
specified in the various CMakeLists.txt files in the project directory. The
python script (in Tools/update_cmake_files.py) can be used to update all
CMakeLists.txt files automatically.

ZLIB support

To enable zlib support configure CMake with the flag -DORE_USE_ZLIB=ON.

If zlib is not installed on the system, it can be installed on Windows with the package
manager VCPKG.

4.3 Python and Jupyter

Python (version 3.5 or higher) is required to use the ORE Python language bindings in
section 4.4, or to run the examples in section 5 and plot exposure evolutions.
Moreover, we use Jupyter [9] in section 6 to visualise simulation results. Both are part

22

of the ’Anaconda Open Data Science Analytics Platform’ [10]. Anaconda installation
instructions for Windows, OS X and Linux are available on the Anaconda site, with
graphical installers for Windows1, Linux and OS X.

With Linux and OS X, the following environment variable settings are required

• set LANG and LC_ALL to en_US.UTF-8 or en_GB.UTF-8

• set LC_NUMERIC to C.

The former is required for both running the Python scripts in the examples section, as
well as successful installation of the following packages.
The full functionality of the Jupyter notebook introduced in section 6.1 requires
furthermore installing

• jupyter_dashboards: https://github.com/jupyter-incubator/dashboards

• ipywidgets: https://github.com/ipython/ipywidgets

• pythreejs: https://github.com/jovyan/pythreejs

• bqplot: https://github.com/bloomberg/bqplot

With Python and Anaconda already installed, this can be done by running these
commands

• conda install -c conda-forge ipywidgets

• pip install jupyter_dashboards

• jupyter dashboards quick-setup –sys-prefix

• conda install -c conda-forge bqplot

• conda install -c conda-forge pythreejs

Note that the bqplot installation requires the environment settings mentioned above.

4.4 Building ORE-SWIG and Python Wheels

Since release 4, ORE comes with Python and Java language bindings following the
QuantLib-SWIG example. The ORE bindings extend the QuantLib SWIG wrappers
and allow calling ORE functionality in the QuantExt/OREData/OREAnalytics
libraries alongside with functionality in QuantLib.

The ORE-SWIG source code is hosted in a separate git repository at
https://github.com/opensourcerisk/ore-swig. The README.md in the top level
directory of this git repository contains build instructions and refers to tutorials for
installing and building Python wrappers and wheels.

Typical usage of the Python wrapper is shown in ORE’s Example_42 and in ORE
SWIG’s OREAnalytics/Python/Examples directory.

1With Windows, after a fresh installation of Python the user may have to run the python command
once in a command shell so that the Python executable will be found subsequently when running the
example scripts in section 5.

23

https://github.com/jupyter-incubator/dashboards
https://github.com/ipython/ipywidgets
https://github.com/jovyan/pythreejs
https://github.com/bloomberg/bqplot
https://github.com/opensourcerisk/ore-swig

5 Examples
The examples shown in table 2 are intended to help with getting started with ORE,
and to serve as plausibility checks for the simulation results generated with ORE.

24

Example Description
1 Vanilla at-the-money Swap with flat yield curve
2 Vanilla Swap with normal yield curve
3 European Swaption
4 Bermudan Swaption
5 Callable Swap
6 Cap/Floor
7 FX Forward

European FX Option
8 Cross Currency Swap without notional reset
9 Cross Currency Swap with notional reset
10 Three-Swap portfolio with netting and collateral

XVAs - CVA, DVA, FVA, MVA, COLVA
Exposure and XVA Allocation to trade level

11 Basel exposure measures - EE, EPE, EEPE
12 Long term simulation with horizon shift
13 Dynamic Initial Margin and MVA
14 Minimal Market Data Setup
15 Sensitivity Analysis and Stress Testing
16 Equity Derivatives Exposure
17 Inflation Swap Exposure under Dodgson-Kainth
18 Bonds and Amortisation Structures
19 Swaption Pricing with Smile
20 Credit Default Swap Pricing
21 Constant Maturity Swap Pricing
22 Option Sensitivity Analysis with Smile
23 Forward Rate Agreement and Averaging OIS Exposure
24 Commodity Forward and Option Pricing and Sensitivity
25 CMS Spread with (Digital) Cap/Floor Pricing, Sensitivity and Exposures
26 Bootstrap Consistency
27 BMA Basis Swap Pricing and Sensitivity
28 Discount Ratio Curves
29 Curve Building using Fixed vs. Float Cross Currency Helpers
30 USD-Prime Curve Building via Prime-LIBOR Basis Swap
31 Exposure Simulation using a Close-out Grid
32 Inflation Swap Exposure under Jarrow-Yildrim
33 CDS Exposure Simulation
34 Wrong Way Risk
35 Flip View
36 Choice of Measure
37 Multifactor Hull-White scenario generation
38 Cross Currency Exposure using Multifactor Hull-White Models
39 Exposure Simulation using American Monte Carlo
40 Par Sensitivity Analysis
41 Multi-threaded Exposure Simulation
42 ORE Python Module
43 Credit Portfolio Model
44 ISDA SIMM Model
45 Collateralized Bond Obligation
46 Generic Total Return Swap
47 Composite Trade
48 Convertible Bond and ASCOT
49 Bond Yield Shifted
50 Par Sensitivity Conversion of external "Raw" Sensis
51 Custom Trade Fixings
52 Scripted Trades

Table 2: ORE examples.

25

All example results can be produced with the Python scripts run.py in the ORE
release’s Examples/Example_# folders which work on both Windows and Unix
platforms. In a nutshell, all scripts call ORE’s command line application with a single
input XML file

ore[.exe] ore.xml

They produce a number of standard reports and exposure graphs in PDF format. The
structure of the input file and of the portfolio, market and other configuration files
referred to therein will be explained in section 7.

ORE is driven by a number of input files, listed in table 3 and explained in detail in
sections 7 to 11. In all examples, these input files are either located in the example’s
sub directory Examples/Example_#/Input or the main input directory
Examples/Input if used across several examples. The particular selection of input files
is determined by the ’master’ input file ore.xml.

File Name Description
ore.xml Master input file, selection of further inputs below and selection of analytics
portfolio.xml Trade data
netting.xml Collateral (CSA) data
simulation.xml Configuration of simulation model and market
market.txt Market data snapshot
fixings.txt Index fixing history
dividends.txt Dividends history
curveconfig.xml Curve and term structure composition from individual market instruments
conventions.xml Market conventions for all market data points
todaysmarket.xml Configuration of the market composition, relevant for the pricing of the given portfolio

as of today (yield curves, FX rates, volatility surfaces etc)
pricingengines.xml Configuration of pricing methods by product

Table 3: ORE input files

The typical list of output files and reports is shown in table 4. The names of output
files can be configured through the master input file ore.xml. Whether these reports
are generated also depends on the setting in ore.xml. For the examples, all output
will be written to the directory Examples/Example_#/Output.

File Name Description
npv.csv NPV report
flows.csv Cashflow report
curves.csv Generated yield (discount) curves report
xva.csv XVA report, value adjustments at netting set and trade level
exposure_trade_*.csv Trade exposure evolution reports
exposure_nettingset_*.csv Netting set exposure evolution reports
rawcube.csv NPV cube in readable text format
netcube.csv NPV cube after netting and colateral, in readable text format
*.csv.gz Intermediate storage of NPV cube and scenario data
*.pdf Exposure graphics produced by the python script run.py after ORE completed

Table 4: ORE output files

Note: When building ORE from sources on Windows platforms, make sure that you
copy your ore.exe to the binary directory App/bin/win32/ respectively
App/bin/x64/. Otherwise the examples may be run using the pre-compiled
executables which come with the ORE release.

26

5.1 Interest Rate Swap Exposure, Flat Market

We start with a vanilla single currency Swap (currency EUR, maturity 20y, notional
10m, receive fixed 2% annual, pay 6M-Euribor flat). The market yield curves (for both
discounting and forward projection) are set to be flat at 2% for all maturities, i.e. the
Swap is at the money initially and remains at the money on average throughout its
life. Running ORE in directory Examples/Example_1 with

python run.py

yields the exposure evolution in

Examples/Example_1/Output/*.pdf

and shown in figure 2. Both Swap simulation and Swaption pricing are run with calls

0 5 10 15 20 25
Time / Years

0

100,000

200,000

300,000

400,000

500,000

600,000

E
x
p
o
su

re

Example 1 - Simulated exposures vs analytical swaption prices

Swap EPE
Swap ENE
NPV Swaptions

Figure 2: Vanilla ATM Swap expected exposure in a flat market environment from both parties’
perspectives. The symbols are European Swaption prices. The simulation was run with monthly
time steps and 10,000 Monte Carlo samples to demonstrate the convergence of EPE and ENE
profiles. A similar outcome can be obtained more quickly with 5,000 samples on a quarterly
time grid which is the default setting of Example_1.

to the ORE executable, essentially

ore[.exe] ore.xml
ore[.exe] ore_swaption.xml

which are wrapped into the script Examples/Example_1/run.py provided with the
ORE release. It is instructive to look into the input folder in Examples/Example_1,
the content of the main input file ore.xml, together with the explanations in section 7.
This simple example is an important test case which is also run similarly in one of the
unit test suites of ORE. The expected exposure can be seen as a European option on
the underlying netting set, see also appendix A.4. In this example, the expected
exposure at some future point in time, say 10 years, is equal to the European Swaption
price for an option with expiry in 10 years, underlying Swap start in 10 years and
underlying Swap maturity in 20 years. We can easily compute such standard European
Swaption prices for all future points in time where both Swap legs reset, i.e. annually

27

in this case2. And if the simulation model has been calibrated to the points on the
Swaption surface which are used for European Swaption pricing, then we can expect to
see that the simulated exposure matches Swaption prices at these annual points, as in
figure 2. In Example_1 we used co-terminal ATM Swaptions for both model
calibration and Swaption pricing. Moreover, as the yield curve is flat in this example,
the exposures from both parties’ perspectives (EPE and ENE) match not only at the
annual resets, but also for the period between annual reset of both legs to the point in
time when the floating leg resets. Thereafter, between floating leg (only) reset and next
joint fixed/floating leg reset, we see and expect a deviation of the two exposure profiles.

5.2 Interest Rate Swap Exposure, Realistic Market

Moving to Examples/Example_2, we see what changes when using a realistic (non-flat)
market environment. Running the example with

python run.py

yields the exposure evolution in

Examples/Example_2/Output/*.pdf

shown in figure 3. In this case, where the curves (discount and forward) are upward

0 5 10 15 20 25
Time / Years

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

E
x
p
o
su

re

Example 2

EPE
ENE
Payer Swaption
Receiver Swaption

Figure 3: Vanilla ATM Swap expected exposure in a realistic market environment as of
05/02/2016 from both parties’ perspectives. The Swap is the same as in figure 2 but receiv-
ing fixed 1%, roughly at the money. The symbols are the prices of European payer and receiver
Swaptions. Simulation with 5000 paths and monthly time steps.

sloping, the receiver Swap is at the money at inception only and moves (on average)
out of the money during its life. Similarly, the Swap moves into the money from the
counterparty’s perspective. Hence the expected exposure evolutions from our
perspective (EPE) and the counterparty’s perspective (ENE) ’detach’ here, while both
can still be be reconciled with payer or respectively receiver Swaption prices.

2Using closed form expressions for standard European Swaption prices.

28

5.3 European Swaption Exposure

This demo case in folder Examples/Example_3 shows the exposure evolution of
European Swaptions with cash and physical delivery, respectively, see figure 4. The

0 5 10 15 20 25
Time / Years

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

E
x
p
o
su

re

Example 3

EPE Swap
EPE Swaption Cash
EPE Swaption Physical
EPE Swaption Cash with Premium

Figure 4: European Swaption exposure evolution, expiry in 10 years, final maturity in 20 years,
for cash and physical delivery. Simulation with 1000 paths and quarterly time steps.

delivery type (cash vs physical) yields significantly different valuations as of today due
to the steepness of the relevant yield curves (EUR). The cash settled Swaption’s
exposure graph is truncated at the exercise date, whereas the physically settled
Swaption exposure turns into a Swap-like exposure after expiry. For comparison, the
example also provides the exposure evolution of the underlying forward starting Swap
which yields a somewhat higher exposure after the forward start date than the
physically settled Swaption. This is due to scenarios with negative Swap NPV at
expiry (hence not exercised) and positive NPVs thereafter. Note the reduced EPE in
case of a Swaption with settlement of the option premium on exercise date.

5.4 Bermudan Swaption Exposure

This demo case in folder Examples/Example_4 shows the exposure evolution of
Bermudan rather than European Swaptions with cash and physical delivery,
respectively, see figure 5. The underlying Swap is the same as in the European
Swaption example in section 5.3. Note in particular the difference between the
Bermudan and European Swaption exposures with cash settlement: The Bermudan
shows the typical step-wise decrease due to the series of exercise dates. Also note that
we are using the same Bermudan option pricing engines for both settlement types, in
contrast to the European case, so that the Bermudan option cash and physical
exposures are identical up to the first exercise date. When running this example, you
will notice the significant difference in computation time compared to the European
case (ballpark 30 minutes here for 2 Swaptions, 1000 samples, 90 time steps). The
Bermudan example takes significantly more computation time because we use an LGM
grid engine for pricing under scenarios in this case. In a realistic context one would
more likely resort to American Monte Carlo simulation, feasible in ORE, but not
provided in the current release. However, this implementation can be used to

29

0 5 10 15 20 25
Time / Years

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

E
x
p
o
su

re

Example 4

EPE Forward Swap
EPE Swaption (Cash)
EPE Swaption (Physical)

Figure 5: Bermudan Swaption exposure evolution, 5 annual exercise dates starting in 10 years,
final maturity in 20 years, for cash and physical delivery. Simulation with 1000 paths and
quarterly time steps.

benchmark any faster / more sophisticated approach to Bermudan Swaption exposure
simulation.

5.5 Callable Swap Exposure

This demo case in folder Examples/Example_5 shows the exposure evolution of a
European callable Swap, represented as two trades - the non-callable Swap and a
Swaption with physical delivery. We have sold the call option, i.e. the Swaption is a
right for the counterparty to enter into an offsetting Swap which economically
terminates all future flows if exercised. The resulting exposure evolutions for the
individual components (Swap, Swaption), as well as the callable Swap are shown in
figure 6. The example is an extreme case where the underlying Swap is deeply in the
money (receiving fixed 5%), and hence the call exercise probability is close to one.
Modify the Swap and Swaption fixed rates closer to the money (≈ 1%) to see the
deviation between net exposure of the callable Swap and the exposure of a ’short’
Swap with maturity on exercise.

5.6 Cap/Floor Exposure

The example in folder Examples/Example_6 generates exposure evolutions of several
Swaps, caps and floors. The example shown in figure 7 (’portfolio 1’) consists of a 20y
Swap receiving 3% fixed and paying Euribor 6M plus a long 20y Collar with both cap
and floor at 4% so that the net exposure corresponds to a Swap paying 1% fixed.
The second example in this folder shown in figure 8 (’portfolio 2’) consists of a short
Cap, long Floor and a long Collar that exactly offsets the netted Cap and Floor.

Further three test portfolios are provided as part of this example. Run the example
and inspect the respective output directories
Examples/Example_6/Output/portfolio_#. Note that these directories have to be
present/created before running the batch with python run.py.

30

0 5 10 15 20 25
Time / Years

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

7,000,000

8,000,000

9,000,000

E
x
p
o
su

re

Example 5

EPE Swap
ENE Swaption
EPE Netting Set
EPE Short Swap

Figure 6: European callable Swap represented as a package consisiting of non-callable Swap and
Swaption. The Swaption has physical delivery and offsets all future Swap cash flows if exercised.
The exposure evolution of the package is shown here as ’EPE Netting Set’ (green line). This
is covered by the pink line, the exposure evolution of the same Swap but with maturity on the
exercise date. The graphs match perfectly here, because the example Swap is deep in the money
and exercise probability is close to one. Simulation with 5000 paths and quarterly time steps.

0 5 10 15 20
Time / Years

0

100,000

200,000

300,000

400,000

500,000

600,000

E
x
p
o
su

re

Example 6, Portfolio 1

EPE Swap
ENE Collar
ENE Netting

Figure 7: Swap+Collar, portfolio 1. The Collar has identical cap and floor rates at 4% so that
it corresponds to a fixed leg which reduces the exposure of the Swap, which receives 3% fixed.
Simulation with 1000 paths and quarterly time steps.

5.7 FX Forward and FX Option Exposure

The example in folder Examples/Example_7 generates the exposure evolution for a
EUR / USD FX Forward transaction with value date in 10Y. This is a particularly
simple show case because of the single cash flow in 10Y. On the other hand it checks
the cross currency model implementation by means of comparison to analytic limits -
EPE and ENE at the trade’s value date must match corresponding Vanilla FX Option
prices, as shown in figure 9.

31

0 5 10 15 20
Time / Years

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

E
x
p
o
su

re

Example 6, Portfolio 2

EPE Floor
ENE Cap
EPE Net Cap and Floor
ENE Collar

Figure 8: Short Cap and long Floor vs long Collar, portfolio 2. Simulation with 1000 paths and
quarterly time steps.

FX Option Exposure

This example (in folder Examples/Example_7, as the FX Forward example) illustrates
the exposure evolution for an FX Option, see figure 10. Recall that the FX Option
value NPV (t) as of time 0 ≤ t ≤ T satisfies

NPV (t)

N(t)
= Nominal× Et

[
(X(T)−K)+

N(T)

]
NPV (0) = E

[
NPV (t)

N(t)

]
= E

[
NPV +(t)

N(t)

]
= EPE (t)

where N(t) denotes the numeraire asset. One would therefore expect a flat exposure
evolution up to option expiry. The deviation from this in ORE’s simulation is due to
the pricing approach chosen here under scenarios. A Black FX option pricer is used
with deterministic Black volatility derived from today’s volatility structure (pushed or
rolled forward, see section 7.4.3). The deviation can be removed by extending the
volatility modelling, e.g. implying model consistent Black volatilities in each
simulation step on each path.

5.8 Cross Currency Swap Exposure, without FX Reset

The case in Examples/Example_8 is a vanilla cross currency Swap. It shows the typical
blend of an Interest Rate Swap’s saw tooth exposure evolution with an FX Forward’s
exposure which increases monotonically to final maturity, see figure 11.

5.9 Cross Currency Swap Exposure, with FX Reset

The effect of the FX resetting feature, common in Cross Currency Swaps nowadays, is
shown in Examples/Example_9. The example shows the exposure evolution of a
EUR/USD cross currency basis Swap with FX reset at each interest period start, see
figure 12. As expected, the notional reset causes an exposure collapse at each period
start when the EUR leg’s notional is reset to match the USD notional.

32

0 2 4 6 8 10 12
Time / Years

0

50,000

100,000

150,000

200,000

250,000

300,000

E
x
p
o
su

re

Example 7 - FX Forward

EPE
ENE
Call Price
Put Price

Figure 9: EUR/USD FX Forward expected exposure in a realistic market environment as of
26/02/2016 from both parties’ perspectives. Value date is obviously in 10Y. The flat lines are
FX Option prices which coincide with EPE and ENE, respectively, on the value date. Simulation
with 5000 paths and quarterly time steps.

0 2 4 6 8 10 12
Time / Years

0

50,000

100,000

150,000

200,000

250,000

300,000

E
x
p
o
su

re

Example 7 - FX Option

EPE
ENE
Call Price
Put Price

Figure 10: EUR/USD FX Call and Put Option exposure evolution, same underlying and mar-
ket data as in section 5.7, compared to the call and put option price as of today (flat line).
Simulation with 5000 paths and quarterly time steps.

5.10 Netting Set, Collateral, XVAs, XVA Allocation

In this example (see folder Examples/Example_10) we showcase a small netting set
consisting of three Swaps in different currencies, with different collateral choices

• no collateral - figure 13,

• collateral with threshold (THR) 1m EUR, minimum transfer amount (MTA)
100k EUR, margin period of risk (MPOR) 2 weeks - figure 14

• collateral with zero THR and MTA, and MPOR 2w - figure 15

The exposure graphs with collateral and positive margin period of risk show typical
spikes. What is causing these? As sketched in appendix A.13, ORE uses a classical

33

0 5 10 15 20 25
Time / Years

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

3,500,000

E
x
p
o
su

re

Example 8

EPE CCSwap
ENE CCSwap

Figure 11: Cross Currency Swap exposure evolution without mark-to-market notional reset.
Simulation with 1000 paths and quarterly time steps.

0 2 4 6 8 10 12
Time / Years

0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

14,000,000

E
x
p
o
su

re

Example 9

Swap
Resettable Swap

Figure 12: Cross Currency Basis Swap exposure evolution with and without mark-to-market
notional reset. Simulation with 1000 paths and quarterly time steps.

collateral model that applies collateral amounts to offset exposure with a time delay
that corresponds to the margin period of risk. The spikes are then caused by
instrument cash flows falling between exposure measurement dates d1 and d2 (an
MPOR apart), so that a collateral delivery amount determined at d1 but settled at d2

differs significantly from the closeout amount at d2 causing a significant residual
exposure for a short period of time. See for example [23] for a recent detailed discussion
of collateral modelling. The approach currently implemented in ORE corresponds to
Classical+ in [23], the more conservative approach of the classical methods. The less
conservative alternative, Classical-, would assume that both parties stop paying trade
flows at the beginning of the MPOR, so that the P&L over the MPOR does not
contain the cash flow effect, and exposure spikes are avoided. Note that the size and
position of the largest spike in figure 14 is consistent with a cash flow of the 40 million
GBP Swap in the example’s portfolio that rolls over the 3rd of March and has a cash
flow on 3 March 2020, a bit more than four years from the evaluation date.

34

0 2 4 6 8 10 12
Time / Years

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

3,500,000

4,000,000

E
x
p
o
su

re

Example 10

EPE Swap 1
EPE Swap 2
EPE Swap 3
EPE NettingSet

Figure 13: Three Swaps netting set, no collateral. Simulation with 5000 paths and bi-weekly
time steps.

CVA, DVA, FVA, COLVA, MVA, Collateral Floor

We use one of the cases in Examples/Example_10 to demonstrate the XVA outputs,
see folder Examples/Example_10/Output/collateral_threshold_dim.

The summary of all value adjustments (CVA, DVA, FVA, COLVA, MVA, as well as the
Collateral Floor) is provided in file xva.csv. The file includes the allocated CVA and
DVA numbers to individual trades as introduced in the next section. The following
table illustrates the file’s layout, omitting the three columns containing allocated data.

TradeId NettingSetId CVA DVA FBA FCA COLVA MVA CollateralFloor BaselEPE BaselEEPE
CPTY_A 6,521 151,193 -946 72,103 2,769 -14,203 189,936 113,260 1,211,770

Swap_1 CPTY_A 127,688 211,936 -19,624 100,584 n/a n/a n/a 2,022,590 2,727,010
Swap_3 CPTY_A 71,315 91,222 -11,270 43,370 n/a n/a n/a 1,403,320 2,183,860
Swap_2 CPTY_A 68,763 100,347 -10,755 47,311 n/a n/a n/a 1,126,520 1,839,590

The line(s) with empty TradeId column contain values at netting set level, the others
contain uncollateralised single-trade VAs. Note that COLVA, MVA and Collateral
Floor are only available at netting set level at which collateral is posted.

Detailed output is written for COLVA and Collateral Floor to file
colva_nettingset_*.csv which shows the incremental contributions to these two
VAs through time.

Exposure Reports & XVA Allocation to Trades

Using the example in folder Examples/Example_10 we illustrate here the layout of an
exposure report produced by ORE. The report shows the exposure evolution of
Swap_1 without collateral which - after running Example_10 - is found in folder
Examples/Example_10/Output/collateral_none/exposure_trade_Swap_1.csv:

35

0 2 4 6 8 10 12
Time / Years

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

E
x
p
o
su

re

Example 10

EPE NettingSet, Threshold 1m
EPE NettingSet, Threshold 1m, Breaks

Figure 14: Three Swaps netting set, THR=1m EUR, MTA=100k EUR, MPOR=2w. The red
evolution assumes that the each trade is terminated at the next break date. The blue evolution
ignores break dates. Simulation with 5000 paths and bi-weekly time steps.

0 2 4 6 8 10 12
Time / Years

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

3,500,000

4,000,000

E
x
p
o
su

re

Example 10

EPE NettingSet
EPE NettingSet, MPOR 2W

Figure 15: Three Swaps, THR=MTA=0, MPOR=2w. Simulation with 5000 paths and bi-weekly
time steps.

TradeId Date Time EPE ENE AllocEPE AllocENE PFE BaselEE BaselEEE
Swap_1 05/02/16 0.0000 0 1,711,748 0 0 0 0 0
Swap_1 19/02/16 0.0383 38,203 1,749,913 -1,200,677 511,033 239,504 38,202 38,202
Swap_1 04/03/16 0.0765 132,862 1,843,837 -927,499 783,476 1,021,715 132,845 132,845
Swap_1

The exposure measures EPE, ENE and PFE, and the Basel exposure measures EEB
and EEEB, are defined in appendix A.4. Allocated exposures are defined in appendix
A.14. The PFE quantile and allocation method are chosen as described in section 7.1.4.
In addition to single trade exposure files, ORE produces an exposure file per netting
set. The example from the same folder as above is:

NettingSet Date Time EPE ENE PFE ExpectedCollateral BaselEE BaselEEE
CPTY_A 05/02/16 0.0000 1,203,836 0 1,203,836 0 1,203,836 1,203,836
CPTY_A 19/02/16 0.0383 1,337,713 137,326 3,403,460 0 1,337,651 1,337,651
CPTY_A

36

Allocated exposures are missing here, as they make sense at the trade level only, and
the expected collateral balance is added for information (in this case zero as
collateralisation is deactivated in this example).

The allocation of netting set exposure and XVA to the trade level is frequently
required by finance departments. This allocation is also featured in
Examples/Example_10. We start again with the uncollateralised case in figure 16,
followed by the case with threshold 1m EUR in figure 17. In both cases we apply the

0 2 4 6 8 10 12
Time / Years

-1,500,000

-1,000,000

-500,000

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

E
x
p
o
su

re

Example 10

Allocated EPE Swap 1
Allocated EPE Swap 2
Allocated EPE Swap 3

Figure 16: Exposure allocation without collateral. Simulation with 5000 paths and bi-weekly
time steps.

marginal (Euler) allocation method as published by Pykhtin and Rosen in 2010, hence
we see the typical negative EPE for one of the trades at times when it reduces the
netting set exposure. The case with collateral moreover shows the typical spikes in the
allocated exposures. The analytics results also feature allocated XVAs in file xva.csv

0 2 4 6 8 10
Time / Years

-6,000,000

-4,000,000

-2,000,000

0

2,000,000

4,000,000

6,000,000

8,000,000

Ex
po

su
re

Example 10
Allocated EPE Swap 1
Allocated EPE Swap 2
Allocated EPE Swap 3

Figure 17: Exposure allocation with collateral and threshold 1m EUR. Simulation with 5000
paths and bi-weekly time steps.

which are derived from the allocated exposure profiles. Note that ORE also offers
alternative allocation methods to the marginal method by Pykhtin/Rosen, which can
be explored with Examples/Example_10.

37

5.11 Basel Exposure Measures

Example Example_11 demonstrates the relation between the evolution of the expected
exposure (EPE in our notation) to the ‘Basel’ exposure measures EE_B, EEE_B,
EPE_B and EEPE_B as defined in appendix A.4. In particular the latter is used in
internal model methods for counterparty credit risk as a measure for the exposure at
default. It is a ‘derivative’ of the expected exposure evolution and defined as a time
average over the running maximum of EE_B up to the horizon of one year.

0 5 10 15 20
Time / Years

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

E
x
p
o
su

re

Example 11 - Basel Measures

EPE
BASEL EE
BASEL EEE
BaselEPE
BaselEEPE

Figure 18: Evolution of the expected exposure of Vanilla Swap, comparison to the ‘Basel’ expo-
sure measures EEE_B, EPE_B and EEPE_B. Note that the latter two are indistinguishable
in this case, because the expected exposure is increasing for the first year.

5.12 Long Term Simulation with Horizon Shift

The example in folder Example_12 finally demonstrates an effect that, at first glance,
seems to cause a serious issue with long term simulations. Fortunately this can be
avoided quite easily in the Linear Gauss Markov model setting that is used here.
In the example we consider a Swap with maturity in 50 years in a flat yield curve
environment. If we simulate this naively as in all previous cases, we obtain a
particularly noisy EPE profile that does not nearly reconcile with the known exposure
(analytical Swaption prices). This is shown in figure 19 (‘no horizon shift’). The origin
of this issue is the width of the risk-neutral NPV distribution at long time horizons
which can turn out to be quite small so that the Monte Carlo simulation with finite
number of samples does not reach far enough into the positive or negative NPV range
to adequately sample the distribution, and estimate both EPE and ENE in a single
run. Increasing the number of samples may not solve the problem, and may not even
be feasible in a realistic setting.
The way out is applying a ‘shift transformation’ to the Linear Gauss Markov model,
see Example_12/Input/simulation2.xml in lines 92-95:

<ParameterTransformation>
<ShiftHorizon>30.0</ShiftHorizon>
<Scaling>1.0</Scaling>

</ParameterTransformation>

38

The effect of the ’ShiftHorizon’ parameter T is to apply a shift to the Linear Gauss
Markov model’s H(t) parameter (see appendix A.1) after the model has been
calibrated, i.e. to replace:

H(t)→ H(t)−H(T)

It can be shown that this leaves all expectations computed in the model (such as EPE
and ENE) invariant. As explained in [21], subtracting an H shift effectively means
performing a change of measure from the ‘native’ LGM measure to a T-Forward
measure with horizon T , here 30 years. Both negative and positive shifts are
permissible, but only negative shifts are connected with a T-Forward measure and
improve numerical stability.
In our experience it is helpful to place the horizon in the middle of the portfolio
duration to significantly improve the quality of long term expectations. The effect of
this change (only) is shown in the same figure 19 (‘shifted horizon’). Figure 20 further

0 10 20 30 40 50 60
Time / Years

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

E
x
p
o
su

re

Example 12 - Simulated exposures with and without horizon shift

Swap EPE (no horizon shift)
Swap ENE (no horizon shift)
Swap EPE (shifted horizon)
Swap ENE (shifted horizon)
NPV Swaptions

Figure 19: Long term Swap exposure simulation with and without horizon shift.

illustrates the origin of the problem and its resolution: The rate distribution’s mean
(without horizon shift or change of measure) drifts upwards due to convexity effects
(note that the yield curve is flat in this example), and the distribution’s width is then
too narrow at long horizons to yield a sufficient number of low rate scenarios with
contributions to the Swap’s EPE (it is a floating rate payer). With the horizon shift
(change of measure), the distribution’s mean is pulled ’back’ at long horizons, because
the convexity effect is effectively wiped out at the chosen horizon, and the expected
rate matches the forward rate.

5.13 Dynamic Initial Margin and MVA

This example in folder Examples/Example_13 demonstrates Dynamic Initial Margin
calculations (see also appendix A.10) for a number of elementary products:

• A single currency Swap in EUR (case A),

• a European Swaption in EUR with physical delivery (case B),

• a single currency Swap in USD (case C), and

39

2017 2022 2027 2032 2037 2042 2047 2052 2057 2062
Time

-0.0200

0.0000

0.0200

0.0400

0.0600

0.0800

0.1000

0.1200

0.1400

0.1600

Z
e
ro

 R
a
te

Example 12 - 5y zero rate (EUR) distribution with and without horizon shift

No horizon shift (mean)
No horizon shift (mean +/- std)
Shifted horizon (mean)
Shifted horizon (mean +/- std)

Figure 20: Evolution of rate distributions with and without horizon shift (change of measure).
Thick lines indicate mean values, thin lines are contours of the rate distribution at ± one
standard deviation.

• a EUR/USD cross currency Swap (case D).

The examples can be run as before with

python run_A.py

and likewise for cases B, C and D. The essential results of each run are are visualised
in the form of

• evolution of expected DIM

• regression plots at selected future times

illustrated for cases A and B in figures 21 - 24. In the three swap cases, the regression
orders do make a noticeable difference in the respective expected DIM evolution. In
the Swaption case B, first and second order polynomial choice makes a difference
before option expiry. More details on this DIM model and its performance can be
found in [22, 25].

5.14 Minimal Market Data Setup

The example in folder Examples/Example_14 demonstrates using a minimal market
data setup in order to rerun the vanilla Swap exposure simulation shown in
Examples/Example_1. The minimal market data uses single points per curve where
possible.

5.15 Sensitivity Analysis, Stress Testing and Parametric
Value-at-Risk

The example in folder Examples/Example_15 demonstrates the calculation of
sensitivities and stress scenarios. The portfolio used in this example consists of

• a vanilla swap in EUR

40

0 50 100 150 200 250 300
Timestep

0

100,000

200,000

300,000

400,000

500,000

600,000

D
IM

Example 13 (A) - DIM Evolution Swap EUR

Zero Order Regression
First Order Regression
Second Order Regression

Figure 21: Evolution of expected Dynamic Initial Margin (DIM) for the EUR Swap of Example
13 A. DIM is evaluated using regression of NPV change variances versus the simulated 3M
Euribor fixing; regression polynomials are zero, first and second order (first and second order
curves are not distinguishable here). The simulation uses 1000 samples and a time grid with
bi-weekly steps in line with the Margin Period of Risk.

0.03 0.02 0.01 0.00 0.01 0.02 0.03
Rate

0

0

1

1

2

2

3

3

C
le

a
n
 N

P
V

 V
a
ri

a
n
ce

Example 13 (A) - DIM Regression Swap EUR, Timestep 100

Simulation Data
Zero Order Regression
First Order Regression
Second Order Regression

Figure 22: Regression snapshot at time step 100 for the EUR Swap of Example 13 A.

• a cross currency swap EUR-USD

• a resettable cross currency swap EUR-USD

• a FX forward EUR-USD

• a FX call option on USD/GBP

• a FX put option on USD/EUR

• an European swaption

• a Bermudan swaption

• a cap and a floor in USD

41

0 100 200 300 400 500 600
Timestep

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

D
IM

Example 13 (B) - DIM Evolution Swaption (physical delivery) EUR

Zero Order Regression
First Order Regression
Second Order Regression

Figure 23: Evolution of expected Dynamic Initial Margin (DIM) for the EUR Swaption of
Example 13 B with expiry in 10Y around time step 100. DIM is evaluated using regression of
NPV change variances versus the simulated 3M Euribor fixing; regression polynomials are zero,
first and second order. The simulation uses 1000 samples and a time grid with bi-weekly steps
in line with the Margin Period of Risk.

0.03 0.02 0.01 0.00 0.01 0.02 0.03 0.04
Regressor

0

2

4

6

8

C
le

a
n
 N

P
V

 V
a
ri

a
n
ce

Example 13 (B) - DIM Regression Swaption (physical delivery) EUR, Timestep 100

Simulation Data
Zero Order Regression
First Order Regression
Second Order Regression

Figure 24: Regression snapshot at time step 100 (before expiry) for the EUR Swaption of
Example 13 B.

• a cap and a floor in EUR

• a fixed rate bond

• a floating rate bond with floor

• an Equity call option, put option and forward on S&P500

• an Equity call option, put option and forward on Lufthansa

• a CPI Swap referencing UKRPI

• a Year-on-Year inflation swap referencing EUHICPXT

• a USD CDS.

42

The sensitivity configuration in sensitivity.xml aims at computing the following
sensitivities

• discount curve sensitivities in EUR, USD; GBP, CHF, JPY, on pillars 6M, 1Y,
2Y, 3Y, 5Y, 7Y, 10Y, 15Y, 20Y (absolute shift of 0.0001)

• forward curve sensitivities for EUR-EURIBOR 6M and 3M indices,
EUR-EONIA, USD-LIBOR 3M and 6M, GBP-LIBOR 3M and 6M,
CHF-LIBOR-6M and JPY-LIBOR-6M indices (absolute shift of 0.0001)

• yield curve shifts for a bond benchmark curve in EUR (absolute shift of 0.0001)

• FX spot sensitivities for USD, GBP, CHF, JPY against EUR as the base
currency (relative shift of 0.01)

• FX vegas for USDEUR, GBPEUR, JPYEUR volatility surfaces (relative shift of
0.01)

• swaption vegas for the EUR surface on expiries 1Y, 5Y, 7Y, 10Y and underlying
terms 1Y, 5Y, 10Y (relative shift of 0.01)

• caplet vegas for EUR and USD on an expiry grid 1Y, 2Y, 3Y, 5Y, 7Y, 10Y and
strikes 0.01, 0.02, 0.03, 0.04, 0.05. (absolute shift of 0.0001)

• credit curve sensitivities on tenors 6M, 1Y, 2Y, 5Y, 10Y (absolute shift of
0.0001).

• Equity spots for S&P500 and Lufthansa

• Equity vegas for S&P500 and Lufthansa at expiries 6M, 1Y, 2Y, 3Y, 5Y

• Zero inflation curve deltas for UKRPI and EUHICPXT at tenors 6M, 1Y, 2Y,
3Y, 5Y, 7Y, 10Y, 15Y, 20Y

• Year on year inflation curve deltas for EUHICPXT at tenors 6M, 1Y, 2Y, 3Y,
5Y, 7Y, 10Y, 15Y, 20Y

Furthermore, mixed second order derivatives (“cross gammas”) are computed for
discount-discount, discount-forward and forward-forward curves in EUR.

By definition the sensitivities are zero rate sensitivities and optionlet sensitivities, no
par sensitivities are provided. The sensitivity analysis produces three output files.

The first, scenario.csv, contains the shift direction (UP, DOWN, CROSS), the base NPV,
the scenario NPV and the difference of these two for each trade and sensitivity key.
For an overview over the possible scenario keys see 7.5.

The second file, sensitivity.csv, contains the shift size (in absolute terms always)
and first (“Delta”) and second (“Gamma”) order finite differences computed from the
scenario results. Note that the Delta and Gamma results are pure differences, i.e. they
are not divided by the shift size.

The second file also contains second order mixed differences according to the specified
cross gamma filter, along with the shift sizes for the two factors involved.

The stress scenario definition in stresstest.xml defines two stress tests:

43

• parallel_rates: Rates are shifted in parallel by 0.01 (absolute). The EUR
bond benchmark curve is shifted by increasing amounts 0.001, ..., 0.009 on the
pillars 6M, ..., 20Y. FX Spots are shifted by 0.01 (relative), FX vols by 0.1
(relative), swaption and cap floor vols by 0.0010 (absolute). Credit curves are not
yet shifted.

• twist: The EUR bond benchmark curve is shifted by amounts -0.0050, -0.0040,
-0.0030, -0.0020, 0.0020, 0.0040, 0.0060, 0.0080, 0.0100 on pillars 6M, 1Y, 2Y, 3Y,
5Y, 7Y, 10Y, 15Y, 20Y.

The corresponding output file stresstest.csv contains the base NPV, the NPV
under the scenario shifts and the difference of the two for each trade and scenario label.

Finally, this example demonstrates a parametric VaR calculation based on the
sensitivity and cross gamma output from the sensitivity analysis (deltas, vegas,
gammas, cross gammas) and an external covariance matrix input. The result in
var.csv shows a breakdown by portfolio, risk class (All, Interest Rate, FX, Inflation,
Equity, Credit) and risk type (All, Delta & Gamma, Vega). The results shown are
Delta Gamma Normal VaRs for the 95% and 99% quantile, the holding period is
incorporated into the input covariances. Alternatively, one can choose a Monte Carlo
VaR which means that the sensitivity based P&L distribution is evaluated with MC
simulation assuming normal respectively log-normal risk factor distribution.

5.16 Equity Derivatives Exposure

The example in folder Examples/Example_16 demonstrates the computation of NPV,
sensitivities, exposures and XVA for a portfolio of OTC equity derivatives. The
portfolio used in this example consists of:

• an equity call option denominated in EUR (“Luft”)

• an equity put option denominated in EUR (“Luft”)

• an equity forward denominated in EUR (“Luft”)

• an equity call option denominated in USD (“SP5”)

• an equity put option denominated in USD (“SP5”)

• an equity forward denominated in USD (“SP5”)

• an equity Swap in USD with return type “price” (“SP5”)

• an equity Swap in USD with return type “total” (“SP5”)

The step-by-step procedure for running ORE is identical for equities as for other asset
classes; the same market and portfolio data files are used to store the equity market
data and trade details, respectively. For the exposure simulation, the calibration
parameters for the equity risk factors can be set in the usual simulation.xml file.

Looking at the MtM results in the output file npv.csv we observe that put-call parity
(VFwd = VCall − VPut) is observed as expected. Looking at Figure 25 we observe that
the Expected Exposure profile of the equity call option trade is relatively smooth over
time, while for the equity forward trade the Expected Exposure tends to increase as we

44

approach maturity. This behaviour is similar to what we observe in sections 5.7 and
5.7.

0 5 10 15 20 25
Time / Years

0

500

1,000

1,500

2,000

E
x
p
o
su

re

Example 16 - Simulated exposures for Luft call option and fwd trade

Call EE
Fwd EE

Figure 25: Equity (“Luft”) call option and OTC forward exposure evolution, maturity in ap-
proximately 2.5 years. Simulation with 10000 paths and quarterly time steps.

5.17 Inflation Swap Exposure under Dodgson-Kainth

The example portfolio in folder Examples/Example_17 contains two CPI Swaps and
one Year-on-Year Inflation Swap. The terms of the three trades are as follows:

• CPI Swap 1: Exchanges on 2036-02-05 a fixed amount of 20m GBP for a 10m
GBP notional inflated with UKRPI with base CPI 210

• CPI Swap 2: Notional 10m GBP, maturity 2021-07-18, exchanging GBP Libor
for GBP Libor 6M vs. 2% x CPI-Factor (Act/Act), inflated with index UKRPI
with base CPI 210

• YOY Swap: Notional 10m EUR, maturity 2021-02-05, exchanging fixed coupons
for EUHICPXT year-on-year inflation coupons

• YOY Swap with capped/floored YOY leg: Notional 10m EUR, maturity
2021-02-05, exchanging fixed coupons for EUHICPXT year-on-year inflation
coupons, YOY leg capped with 0.03 and floored with 0.005

• YOY Swap with scheduled capped/floored YOY leg: Notional 10m EUR,
maturity 2021-02-05, exchanging fixed coupons for EUHICPXT year-on-year
inflation coupons, YOY leg capped with cap schedule and floored with floor
schedule

The example generates cash flows, NPVs, exposure evolutions, XVAs, as well as two
exposure graphs for CPI Swap 1 respectively the YOY Swap. For the YOY Swap and
the both YOY Swaps with capped/floored YOY leg, the example generates their cash
flows, NPVs, exposure evolutions, XVAs and sensitivities. Figure 26 shows the CPI
Swap exposure evolution.

Figure 27 shows the evolution of the 5Y maturity Year-on-Year inflation swap for
comparison. Note that the inflation simulation model (Dodgson-Kainth, see appendix

45

0 5 10 15 20 25
Time / Years

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

E
x
p
o
su

re

Example 17

EPE CPI Swap

Figure 26: CPI Swap 1 exposure evolution. Simulation with 1000 paths and quarterly time
steps.

A.1) yields the evolution of inflation indices and inflation zero bonds which allows
spanning future inflation zero curves and the pricing of CPI swaps. To price
Year-on-Year inflation Swaps under future scenarios, we imply Year-on-Year inflation
curves from zero inflation curves3. Note that for pricing Year-on-Year Swaps as of
today we use a separate inflation curve bootstrapped from quoted Year-on-Year
inflation Swaps.

0 5 10 15 20 25
Time / Years

0

50,000

100,000

150,000

200,000

250,000

300,000

E
x
p
o
su

re

Example 17

EPE YoY Swap

Figure 27: Year-on-Year Inflation Swap exposure evolution. Simulation with 1000 paths and
quarterly time steps.

5.18 Bonds and Amortisation Structures

The example in folder Examples/Example_18 computes NPVs and cash flow
projections for a vanilla bond portfolio consisting of a range of bond products, in
particular demonstrating amortisation features:

3Currently we discard the required (small) convexity adjustment. This will be supplemented in a
subsequent release.

46

• fixed rate bond

• floating rate bond linked to Euribor 6M

• bond switching from fixed to floating

• bond with ’fixed amount’ amortisation

• bond with percentage amortisation relative to the initial notional

• bond with percentage amortisation relative to the previous notional

• bond with fixed annuity amortisation

• bond with floating annuity amortisation (this example needs QuantLib 1.10 or
higher to work, in particular the amount() method in the Coupon class needs to
be virtual)

• bond with fixed amount amortisation followed by percentage amortisation
relative to previous notional

After running the example, the results of the computation can be found in the output
files npv.csv and flows.csv, respectively.

Note that the amortisation features used here are linked to the LegData structure,
hence not limited to the Bond instrument, see section 8.3.7.

5.19 Swaption Pricing with Smile

This example in folder Examples/Example_19 demonstrates European Swaption
pricing with and without smile. Calling

python run.py

will launch two ORE runs using config files ore_flat.xml and ore_smile.xml,
respectively. The only difference in these is referencing alternative market
configurations todaymarket_flat.xml and todaysmarket_smile.xml using an ATM
Swaption volatility matrix and a Swaption cube, respectively. NPV results are written
to npv_flat.cvs and npv_smile.csv.

5.20 Credit Default Swap Pricing

This example in folder Examples/Example_20 demonstrates Credit Default Swap
pricing via ORE. Calling

python run.py

will launch a single ORE run to process a single name CDS example and to generate
NPV and cash flows in the usual result files.

CDS can be included in sensitivity analysis and stress testing. Exposure simulation for
credit derivatives will follow in the next ORE release.

47

5.21 CMS and CMS Cap/Floor Pricing

This example in folder Examples/Example_21 demonstrates the pricing of CMS and
CMS Cap/Floor using a portfolio consisting of a CMS Swap (CMS leg vs. fixed leg)
and a CMS Cap. Calling

python run.py

will launch a single ORE run to process the portfolio and generate NPV and cash flows
in the usual result files.

CMS structures can be included in sensitivity analysis, stress testing and exposure
simulation.

5.22 Option Sensitivity Analysis with Smile

The example in folder Examples/Example_22 demonstrates the current state of
sensitivity calculation for European options where the volatility surface has a smile.

The portfolio used in this example consists of

• an equity call option denominated in USD (“SP5”)

• an equity put option denominated in USD (“SP5”)

• a receiver swaption in EUR

• an FX call option on EUR/USD

Refer to appendix A.15 for the current status of sensitivity implementation with smile.
In this example the setup is as follows

• today’s market is configured with volatility smile for all three products above

• simulation market has two configurations, to simulate “ATM only” or the “full
surface”; “ATM only” means that only ATM volatilities are to be simulated and
shifts to ATM vols are propagated to the respective smile section (see appendix
A.15);

• the sensitivity analysis has two corresponding configurations as well, “ATM only”
and “full surface”; note that the “full surface” configuration leads to explicit
sensitivities by strike only in the case of Swaption volatilities, for FX and Equity
volatilities only ATM sensitivity can be specified at the moment and sensitivity
output is currently aggregated to the ATM bucket (to be extended in subsequent
releases).

The respective output files end with “_fullSurface.csv” respectively
“_atmOnly.csv”.

5.23 FRA and Average OIS Exposure

This example in folder Examples/Example_23 demonstrates pricing, cash flow
projection and exposure simulation for two additional products

• Forward Rate Agreements

48

• Averaging Overnight Index Swaps

using a minimal portfolio of four trades, one FRA and three OIS. The essential results
are in npv.csv, flows.csv and four exposure_trade_*.csv files.

5.24 Commodity Derivatives, Pricing, Sensitivity, Exposure

Calling

python run.py

in folder Examples/Example_24 will launch two ORE runs. The first one determined
by ore.xml demonstrates pricing and sensitivity analysis for

• Commodity Forwards

• European Commodity Options

using a minimal portfolio of four forwards and two options referencing WTI and Gold.
The essential results are in npv.csv and sensitivity.csv.

The second run determined by ore_wti.xml demonstrates Commodity exposure
simulation for a portfolio including a

• Commodity Forward

• Commodity Swap

• European Commodity Option

• Commodity Average Price Option

• Commodity Swaption

with the usual results, exposure reports and graphs.

5.25 CMS Spread with (Digital) Cap/Floor

The example in folder Examples/Example_25 demonstrates pricing, sensitivity analysis
and exposure simulation for

• Capped/Floored CMS Spreads

• CMS Spreads with Digital Caps/Floors

The example can be run with

python run.py

and results are in npv.csv, sensitivity.csv, exposure_*.csv and the exposure
graphs in mpl_cmsspread.pdf.

5.26 Bootstrap Consistency

The example in folder Examples/Example_26 confirms that bootstrapped curves
correctly reprice the bootstrap instruments (FRAs, Interest Rate Swaps, FX Forwards,
Cross Currency Basis Swaps) using three pricing setups with

49

• EUR collateral discounting (configuration xois_eur)

• USD collateral discounting (configuration xois_usd)

• in-currency OIS discounting (configuration collateral_inccy)

all defined in Examples/Input/todaysmarket.xml.

The required portfolio files need to be generated from market data and conventions in
Examples/Input and trade templates in Examples/Example_26/Helpers, calling

python TradeGenerator.py

This will place three portfolio files *_portfolio.xml in the input folder. Thereafter,
the three consistency checks can be run calling

python run.py

Results are in three files *_npv.csv and should show zero NPVs for all benchmark
instruments.

5.27 BMA Basis Swap

The example in folder Examples/Example_27 demonstrates pricing and sensitivity
analysis for a series of USD Libor 3M vs. Averaged BMA (SIFMA) Swaps that
correspond to the instruments used to bootstrap the BMA curve.

The example can be run with

python run.py

and results are in npv.csv and sensitivity.csv.

5.28 Discount Ratio Curves

The example in folder Examples/Example_28 shows how to use a yield curve built
from a DiscountRatio segment. In particular, it builds a GBP collateralized in EUR
discount curve by referencing three other discount curves:

• a GBP collateralised in USD curve

• a EUR collateralised in USD curve

• a EUR OIS curve i.e. a EUR collateralised in EUR curve

The implicit assumption in building the curve this way is that EUR/GBP FX forwards
collateralised in EUR have the same fair market rate as EUR/GBP FX forwards
collateralised in USD. This assumption is illustrated in the example by the NPV of the
two forward instruments in the portfolio returning exactly 0 under both discounting
regimes i.e. under USD collateralization with direct curve building and under EUR
collateralization with the discount ratio modified “GBP-IN-EUR” curve.

Also, in this example, an assumption is made that there are no direct GBP/EUR FX
forward or cross currency quotes available which in general is false. The example s
merely for illustration.

Both collateralizaton scenarios can be run calling python run.py.

50

5.29 Curve Building using Fixed vs. Float Cross Currency
Helpers

The example in folder Examples/Example_29 demonstrates using fixed vs. float cross
currency swap helpers. In particular, it builds a TRY collateralised in USD discount
curve using TRY annual fixed vs USD 3M Libor swap quotes.

The portfolio contains an at-market fixed vs. float cross currency swap that is included
in the curve building. The NPV of this swap should be zero when the example is run,
using python run.py or “directly” calling ore[.exe] ore.xml.

5.30 USD-Prime Curve Building via Prime-LIBOR Basis Swap

The example in folder Examples/Example_30 demonstrates the implementation of the
USD-Prime index in the ORE. The USD-Prime yield curve is built from USD-Prime vs
USD 3M Libor basis swap quotes. The portfolio consists of two fair basis swaps (NPVs
equal to 0):

• US Dollar Prime Rate vs 3 Month LIBOR

• US Dollar 3 Month LIBOR vs Fed Funds + 0.027

In particular, it is confirmed that the bootstrapped curves USD-FedFunds and
USD-Prime follow the 3% rule observed on the market: U.S. Prime Rate = (The
Fed Funds Target Rate + 3%). (See http://www.fedprimerate.com/.)

Running ORE in directory Examples/Example_30 with python run.py yields the
USD-Prime curve in Examples/Example_30/Output/curves.csv.

5.31 Exposure Simulation using a Close-Out Grid

In the previous examples we have used a “lagged” approach, described at the end of
appendix A.13, to take the Margin Period of Risk into account in exposure modelling.
This has the disadvantage in ORE that we need to use equally-spaced time grids with
time steps that match the MPoR, e.g. 2W, out to final portfolio maturity.

In this example we demonstrate an alternative approach supported by ORE since
release 6. In this approach we use two nested grids: The (almost) arbitrary main
simulation grid is used to compute “default values” which feed into the collateral
balance C(t) filtered by MTA and Threshold etc; an auxiliary “close-out” grid, offset
from the main grid by the MPoR, is used to compute the delayed close-out values V (t)
associated with time default time t. The difference between V (t) and C(t) causes a
residual exposure [V (t)− C(t)]+ even if minimum transfer amounts and thresholds are
zero.

The close-out date value can be computed in two ways in ORE

• as of default date, by just evolving the market from default date to close-out date
(“sticky date”), or

• as of close-out date, by evolving both valuation date and market over the
close-out period (“actual date”), i.e., the portfolio ages and cash flows might
occur in the close-out period causing spikes in the evolution of exposures.

51

http://www.fedprimerate.com/

We are reusing one case from Example 10 here, perfect CSA with zero threshold and
minimum transfer amount, so that the remaining exposure is solely due to the MPoR
effect. The portfolio consists of a single at-the-money Swap in GBP. The relevant
configuration changes that trigger this modelling are in the Parameters section of
simulation.xml as shown in Listing 1

Listing 1: Close-out grid specification

<Parameters>
<Grid> ... </Grid>
<Calendar> ... </Calendar>
<Sequence> ... </Sequence>
<Scenario> ... </Scenario>
<Seed> ... </Seed>
<Samples> ... </Samples>
<CloseOutLag> 2W </CloseOutLag>
<MporMode> StickyDate </MporMode><!-- Alternative: ActualDate -->

</Parameters>

and moreover in the XVA analytics section of ore_mpor.xml as shown in Listing 2.

Listing 2: Close-out grid specification

<Analytic type="xva">
...
<Parameter name="calculationType"> NoLag </Parameter>
...

</Parameters>

Run as usual calling python run.py.

5.32 Inflation Swap Exposure under Jarrow-Yildrim

The example here is similar to that in Section 5.17 in that we are generating exposures
for inflation swaps. The example in Section 5.17 uses the Dodgson-Kainth model
whereas this example uses the Jarrow-Yildrim model. The valuation date is 5 Oct 2020
and the portfolio contains four spot starting inflation swaps:

• trade_01: 20Y standard UKRPI ZCIIS struck at the fair market rate of 3.1925%
giving an NPV of 0.0.

• trade_02: 20Y standard EUHICPXT ZCIIS struck at the fair market rate of
1.16875% giving an NPV of 0.0.

• trade_03: 20Y year on year EUHICPXT swap.

• trade_04: 20Y year on year UKRPI swap.

The example generates cash flows, NPVs, exposure evolutions and XVAs.

52

5.33 CDS Exposure Simulation

The example in folder Examples/Example_33 is the credit variant of the example in
5.1. Running ORE in directory Examples/Example_33 with

python run.py

yields the exposure evolution in

Examples/Example_33/Output/*.pdf

and shown in figure 28. Both CDS simulation and CDS Option pricing are run with

0 1 2 3 4 5
Time / Years

0

20,000

40,000

60,000

80,000

Ex
po

su
re

Example 35 - Simulated exposures vs analytical cds option prices
CDS EPE
CDS ENE
NPV CDS Ooptions

Figure 28: Credit Default Swap expected exposure in a flat market environment from both
parties’ perspectives. The symbols are CDS Option prices. The simulation was run with bi-
weekly time steps and 10,000 Monte Carlo samples to demonstrate the convergence of EPE and
ENE profiles. A similar outcome can be obtained more quickly with 5,000 samples on a monthly
time grid which is the default setting of Example_33.

calls to the ORE executable, essentially

ore[.exe] ore.xml
ore[.exe] ore_cds_option.xml

which are wrapped into the script Examples/Example_33/run.py provided with the
ORE release.

This example demonstrates credit simulation using the LGM model and the
calculation of Wrong Way Risk due to credit correlation between the underlying entity
of the CDS and the counterparty of the CDS trade via dynamic credit. Positive
correlation between the two names weakens the protection of the CDS whilst negative
correlation strengthens the protection.

The following table lists the XVA result from the example at different levels of
correlation.

5.34 Wrong Way Risk

The example in folder Examples/Example_34 is an extension of the example in 5.1
with dynamic credit and IR-CR correlation. As we are paying float, negative
correlation implies that we pay more when the counterparty’s credit worsens, leading
to a surge of CVA.

53

Correlation NettingSetId CVA DVA FBA FCA
-100% CPTY_B -2,638 2,906 486 -1,057
-90% CPTY_B -2,204 2,906 488 -1,053
-50% CPTY_B -485 2,906 493 -1,040
-40% CPTY_B -60 2,906 495 -1,037
-30% CPTY_B 363 2,906 496 -1,033
-20% CPTY_B 784 2,906 498 -1,030
-10% CPTY_B 1,204 2,906 500 -1,027
0% CPTY_B 1,621 2,906 501 -1,023

10% CPTY_B 2,036 2,906 503 -1,020
20% CPTY_B 2,450 2,906 504 -1,017
30% CPTY_B 2,861 2,906 506 -1,013
40% CPTY_B 3,271 2,906 507 -1,010
50% CPTY_B 3,679 2,906 509 -1,017
90% CPTY_B 5,290 2,906 515 -994

100% CPTY_B 5,689 2,906 517 -991

Table 5: CDS XVA results with LGM model

The following table lists the XVA result from the example at different levels of
correlation.

Correlation NettingSetId CVA DVA FBA FCA
-30% CPTY_A 105,146 68,061 31,519 -4,127
-20% CPTY_A 88,442 68,061 30,976 -4,219
-10% CPTY_A 71,059 68,061 30,439 -4,314
0% CPTY_A 52,983 68,061 29,909 -4,411

10% CPTY_A 34,199 68,061 29,386 -4,511
20% CPTY_A 14,691 68,061 28,869 -4,614
30% CPTY_A -5,554 68,061 28,360 -4,719

Table 6: IR Swap XVA results with LGM model

5.35 Flip View

The example in folder Examples/Example_35 demonstrates how ORE can be used to
quickly switch perspectives in XVA calculations with minimal changes in the ore.xml
file only. In particular it does not involve manipulating the portfolio input or the
netting set.

5.36 Choice of Measure

The example in folder Examples/Example_36 illustrates the effect of measure changes
on simulated expected and peak exposures. For that purpose we reuse Example 1
(un-collateralized vanilla swap exposure) and run the simulation three times with
different risk-neutral measures,

• in the LGM measure as in Example 1 (note <Measure>LGM</Measure> in
simulation_lgm.xml, this is the default also if the Measure tag is omitted)

• in the more common Bank Account measure (note <Measure>BA</Measure> in
simulation_ba.xml)

• in the T-Forward measure with horizon T=20 at the Swap maturity (note
<Measure>LGM</Measure> and <ShiftHorizon>20.0</ShiftHorizon> in
simulation_fwd.xml)

The results are summarized in the exposure evolution graphs in figure 29. As expected,
the expected exposures evolutions match across measures, as these are expected

54

discounted NPVs and hence measure independent. However, peak exposures are
dependent on the measure choice as confirmed graphically here. Many more measures
are accessible with ORE, by way of varying the T-Forward horizon which was chosen
arbitrarily here to match the Swap’s maturity.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time / Years

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

Ex
po

su
re

Example 36
PFE LGM
PFE BA
PFE FWD
EPE LGM
EPE BA
EPE FWD

Figure 29: Evolution of expected exposures (EPE) and peak exposures (PFE at the 95% quantile)
in three measures, LGM, Bank Account, T-Forward with T=20, with 10k Monte Carlo samples.

5.37 Multifactor Hull-White Scenario Generation

The example in folder Examples/Example_37 illustrates the scenario generation under
a Hull-White multifactor model. The model is driven by two independent Brownian
motions and has four states. The diffusion matrix sigma is therefore 2 x 4. The
reversion matrix is a 4 x 4 diagonal matrix and entered as an array. Both diffusion and
reversion are constant in time. Their values are not calibrated to the option market,
but hardcoded in simulation.xml.

The values for the diffusion and reversion matrices were fitted to the first two principal
components of a (hypothetical) analyis of absolute rate curve movements. These input
principal components can be found in inputeigenvectors.csv in the input folder. The
tenor is given in years, and the two components are given as column vectors, see table
7.

tenor eigenvector 1 eigenvector 2
1 0.353553390593 -0.537955502871
2 0.353553390593 -0.374924478795
3 0.353553390593 -0.252916811525
5 0.353553390593 -0.087587539893
10 0.353553390593 0.12267800393
15 0.353553390593 0.240659435416
20 0.353553390593 0.339148675322
30 0.353553390593 0.552478951238

Table 7: Input principal components

The first eigenvector represent perfectly parallel movements. The second eigenvector
represent a rotation around the 7y point of the curve. Furthermore we prescribe an
annual volatility of 0.0070 for the first components and 0.0030 for the second one. The
values can be compared to normal (bp) volatilities.

55

We follow [24] chapter 12.1.5 “Multi-Factor Statistical Gaussian Model” to calibrate
the diffusion and reversion matrices to the prescribed components and volatilities. We
do not detail the procedure here and refer the interested reader to the given reference.

The example generates a single monte carlo path with 5000 daily steps and outputs
the generated scenarios in scenariodump.csv. The python script pca.py performs a
principal component analysis on this output. The model implied eigenvalues are given
in table 8.

number value
1 4.9144936649319346e-05
2 8.846877641067412e-06
3 5.82566039467854e-10
4 2.1298948225571415e-10
5 9.254913949332787e-11
6 1.0861256211767673e-11
7 8.478795662698618e-14
8 9.74468069377584e-13

Table 8: Input principal components

Only the first two values are relevant, the following are all close to zero. The square
root of the first two eigenvalues is given in table 9.

number sqrt(value)
1 0.007010344973631422
2 0.0029743701250966414

Table 9: Input principal components

matching the prescribed input values of 0.0070 and 0.0030 quite well. The
correpsonding eigenvectors are given in etable 10.

tenor eigenvector 1 eigenvector 2
1 0.34688826736335926 0.5441204725042812
2 0.3489303472083185 0.380259707350115
3 0.350362134519783 0.2581408080614405
5 0.3523983915961889 0.09230899007104967
10 0.3550169593982022 -0.11856777284904292
15 0.35647835947136625 -0.23676104168229614
20 0.3577146190751303 -0.3354486339442275
30 0.36042236352102563 -0.549124709243042

Table 10: Input principal components

again matching the input principal components quite well. The second eigenvector is
the negative of the input vector here (the principal compoennt analysis can not
distinguish these of course).

The example also produces a plot comparing the input eigenvectors and the model
implied eigenvectors as shown in figure 30.

56

0 5 10 15 20 25 30
Time / Years

0.6

0.4

0.2

0.0

0.2

0.4

0.6

sh
ift

Example 37 - Model implied principal components vs. input principal components

Model Eigenvector 1
Model Eigenvector 2
Input Eigenvector 1
Input Eigenvector 2

Figure 30: Input and model implied eigenvectors for a Hull-White 4-factor model calibrated to
2 principal components of rate curve movements (parallel + rotation). Notice that the model
implied 2nd eigenvector is the negative of the input vector.

5.38 Cross Currency Swap Exposure using Multifactor
Hull-White Models

The example in folder Examples/Example_38 is similar to Example 8 (EPE, ENE for
xccy swap), but uses a multifactor HW model for EUR and USD to generate scenarios.
The parametrization of the HW models is taken from Example 37.

Each of the two factors of each HW model is correlated with each of the two factors of
the other currency’s HW model and with the FX factors. Remember that the factors
represent principal components of interest rate movements and so the correlations can
be interpreted as correlations of these principal components with each other and the fx
rate processes.

5.39 Exposure Simulation using American Monte Carlo

The example in folder Examples/Example_39 demonstrates how to use American
Monte Carlo simulation (AMC) to generate exposures in ORE. For a sketch of the
methodology and comments on its implementation in ORE see appendix A.5.

Calling

python run.py

performs two ORE runs, a ’classical’ exposure simulation and an American Monte
Carlo simulation, both on a quarterly simulation grid and for the same portfolio
consisting of four trades:

• Bermudan swaption

• Single Currency Swap

• Cross Currency Swap

• FX Option

57

0 5 10 15 20
Time / Years

0

10,000

20,000

30,000

40,000

50,000

Ex
po

su
re

Example 39 - Simulated exposure for 10y10y EUR Bermudan Payer Swaption
AMC Swaption EPE
AMC Swaption ENE
Classic Swaption EPE
Classic Swaption ENE

Figure 31: EPE of a EUR Bermudan Swaption computed with the classic and AMC valuation
engines, using 50k training paths for the AMC simulation.

We use a ’flat’ market here (yield curve and Swaption volatility surface). The number
of simulation paths is 2k in the classic simulations. If not stated otherwise below, the
number of training paths and simulation paths is 10k in the AMC simulations.

In the following we compare the AMC exposure profiles to those produced by the
’classic’ valuation engine for each trade and the netting set.

Figure 31 shows the EPE and ENE for a Bermudan Swaption 10y into 10y in (base
ccy) EUR with physical settlement. The classic run uses the LGM grid engine for
valuation. We observe close agreement between the two runs. To achieve the observed
agreement, it is essential to set the LGM model’s mean reversion speed to zero in both

• the Bermudan Swaption LGM pricing model (see Input/pricingengine.xml), and

• the Cross Asset Model’s IR model components (see Input/simulation.xml and
Input/simulation_amc.xml)

and to use a high order 6 of the regression polynomials (see
Input/pricingengine_amc.xml).

Figure 32 shows the EPE and ENE for a 20y vanilla Swap in USD. The currency of the
amc calculator is USD in this case, i.e. it is different from the base ccy of the
simulation (EUR). The consistency of the classic and amc runs in particular
demonstrates the correct application of the currency conversion factor 24. To get a
better accuracy for purposes of the plot in this document we increased the number of
training paths for this example to 50k and the order of the basis functions to 6.

Figure 33 shows the EPE and ENE for a 20y cross currency Swap EUR-USD.

Figure 34 shows the EPE and ENE for a vanilla FX Option EUR-USD with 10y1m
expiry. For the classic run the FX volatility surface is not implied by the cross asset
model but kept flat, which yields a slight hump in the profile. The AMC profile is flat
on the other hand which demonstrates the consistency of the FX Option pricing with
the risk factor evolution model.

Analytic Configuration

To use the AMC engine for an XVA simulation the following needs to be added to the
simulation analytic in ore.xml:

58

0 5 10 15 20
Time / Years

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

Ex
po

su
re

Example 39 - Simulated exposure for 20y EUR Payer Swap
AMC Vanilla Swap USD EPE
AMC Vanilla Swap USD ENE
Classic Vanilla Swap USD EPE
Classic Vanilla Swap USD ENE

Figure 32: EPE of a USD swap computed with the classic and AMC valuation engines

0 5 10 15 20
Time / Years

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

30,000,000

35,000,000

Ex
po

su
re

Example 39 - Simulated exposure for XCcy Swap EUR-USD
AMC XCcy Swap EPE
AMC XCcy Swap ENE
Classic XCcy Swap EPE
Classic XCcy Swap ENE

Figure 33: EPE of a EUR-USD cross currency swap computed with the classic and AMC
valuation engines

0 5 10 15 20
Time / Years

0

50,000

100,000

150,000

200,000

250,000

Ex
po

su
re

Example 39 - Simulated exposure for FX Call Option EUR-USD
AMC FX Call Option EPE
AMC FX Call Option ENE
Classic FX Call Option EPE
Classic FX Call Option ENE

Figure 34: EPE of a EUR-USD FX option computed with the classic and AMC valuation
engines

59

<Analytic type="simulation">
...
<Parameter name="amc">Y</Parameter>
<Parameter name="amcPricingEnginesFile">pricingengine_amc.xml</Parameter>
<Parameter name="amcTradeTypes">Swaption</Parameter>
...

</Analytic>

The trades which have a trade type matching one of the types in the amcTradeTypes
list, will be built against the pricing engine config provided and processed in the AMC
engine. As a naming convention, pricing engines with engine type AMC provide the
required functionality to be processed by the AMC engine, for technical details cf. A.5.

All other trades are processed by the classic simulation engine in ORE. The resulting
cubes from the classic and AMC simulation are joined and passed to the post processor
in the usual way.

Note that since sometimes the AMC pricing engines have a different base ccy than the
risk factor evolution model (see below), a horizon shift parameter in the simulation set
up should be set for all currencies, so that the shift also applies to these reduced
models.

Pricing Engine Configuration

At this point we assume that the reader is generally familiar with the configuration
section 7, in particular pricing engine configuration in section 7.3.

The pricing engine configuration is similar for all AMC enabled products, e.g. for
Bermudan Swaptions:

<Product type="BermudanSwaption">
<Model>LGM</Model>
<ModelParameters/>
<Engine>AMC</Engine>
<EngineParameters>

<Parameter name="Training.Sequence">MersenneTwisterAntithetic</Parameter>
<Parameter name="Training.Seed">42</Parameter>
<Parameter name="Training.Samples">50000</Parameter>
<Parameter name="Training.BasisFunction">Monomial</Parameter>
<Parameter name="Training.BasisFunctionOrder">6</Parameter>
<Parameter name="Pricing.Sequence">SobolBrownianBridge</Parameter>
<Parameter name="Pricing.Seed">17</Parameter>
<Parameter name="Pricing.Samples">0</Parameter>
<Parameter name="BrownianBridgeOrdering">Steps</Parameter>
<Parameter name="SobolDirectionIntegers">JoeKuoD7</Parameter>
<Parameter name="MinObsDate">true</Parameter>
<Parameter name="RegressionOnExerciseOnly">false</Parameter>

</EngineParameters>
</Product>

The Model differs by product type, table 11 summarises the supported product types
and model and engine types. The engine parameters are the same for all products:

1. Training.Sequence: The sequence type for the traning phase, can be
MersenneTwister, MersenneTwisterAntithetc, Sobol or
SobolBrownianBridge

2. Training.Seed: The seed for the random number generation in the training
phase

60

3. Training.Samples: The number of samples to be used for the training phase

4. Pricing.Sequence: The sequence type for the pricing phase, same values
allowed as for training

5. Training.BasisFunction: The type of basis function system to be used for the
regression analysis, can be Monomial, Laguerre, Hermite, Hyperbolic,
Legendre, Chbyshev, Chebyshev2nd

6. BasisFunctionOrder: The order of the basis function system to be used

7. Pricing.Seed: The seed for the random number generation in the pricing

8. Pricing.Samples: The number of samples to be used for the pricing phase. If
this number is zero, no pricing run is performed, instead the (T0) NPV is
estimated from the training phase (this result is used to fill the T0 slice of the
NPV cube)

9. BrownianBridgeOrdering: variate ordering for Brownian bridges, can be Steps,
Factors, Diagonal

10. SobolDirectionIntegers: direction integers for Sobol generator, can be Unit,
Jaeckel, SobolLevitan, SobolLevitanLemieux, JoeKuoD5, JoeKuoD6,
JoeKuoD7, Kuo, Kuo2, Kuo3

11. MinObsDate: if true the conditional expectation of each cashflow is taken from
the minimum possible observation date (i.e. the latest exercise or simulation date
before the cashflow’s event date); recommended setting is true

12. RegressionOnExerciseOnly: if true, regression coefficients are computed only
on exercise dates and extrapolated (flat) to earlier exercise dates; only for
backwards compatibility to older versions of the AMC module, recommended
setting is false

Product Type Model Engine
Swap CrossAssetModel AMC
CrossCurrencySwap CrossAssetModel AMC
FxOption CrossAssetModel AMC
BermudanSwaption LGM AMC
MultiLegOption CrossAssetModel AMC

Table 11: AMC enabled products with engine and model types

Additional Features

As a side product the AMC module provides plain MC pricing engines for Bermudan
Swaptions and a new trade type MultiLegOption with a corresponding MC pricing
engine.

MC pricing engine for Bermudan swaptions

The following listing shows a sample configuration for the MC Bermudan Swaption
engine. The model parameters are identical to the LGM Grid engine configuration.
The engine parameters on the other hand are the same as for the AMC engine, see 5.39.

61

<Product type="BermudanSwaption">
<Model>LGM</Model>
<ModelParameters>

<Parameter name="Calibration">Bootstrap</Parameter>
<Parameter name="CalibrationStrategy">CoterminalDealStrike</Parameter>
<Parameter name="Reversion_EUR">0.0050</Parameter>
<Parameter name="Reversion_USD">0.0030</Parameter>
<Parameter name="ReversionType">HullWhite</Parameter>
<Parameter name="VolatilityType">HullWhite</Parameter>
<Parameter name="Volatility">0.01</Parameter>
<Parameter name="ShiftHorizon">0.5</Parameter>
<Parameter name="Tolerance">1.0</Parameter>

</ModelParameters>
<Engine>MC</Engine>
<EngineParameters>

<Parameter name="Training.Sequence">MersenneTwisterAntithetic</Parameter>
<Parameter name="Training.Seed">42</Parameter>
<Parameter name="Training.Samples">10000</Parameter>
<Parameter name="Training.BasisFunction">Monomial</Parameter>
<Parameter name="Training.BasisFunctionOrder">6</Parameter>
<Parameter name="Pricing.Sequence">SobolBrownianBridge</Parameter>
<Parameter name="Pricing.Seed">17</Parameter>
<Parameter name="Pricing.Samples">25000</Parameter>
<Parameter name="BrownianBridgeOrdering">Steps</Parameter>
<Parameter name="SobolDirectionIntegers">JoeKuoD7</Parameter>

</EngineParameters>
</Product>

Multi Leg Options / MC pricing engine

The following listing shows a sample MultiLegOption trade. It consists of

1. an option data block; this is optional, see below

2. a number of legs; in principle all leg types are supported, the number of legs is
arbitrary and they can be in different currencies; if the payment currency of a leg
is different from a floating index currency, this is interpreted as a quanto payoff

If the option block is given, the trade represents a Bermudan swaption on the
underlying legs. If the option block is missing, the legs themselves represent the trade.

See A.5.2 for limitations of the multileg option pricing engine.

<Trade id="Sample_MultiLegOption">
<TradeType>MultiLegOption</TradeType>
<Envelope>...</Envelope>
<MultiLegOptionData>

<OptionData>
<LongShort>Long</LongShort>
<OptionType>Call</OptionType>
<Style>Bermudan</Style>
<Settlement>Physical</Settlement>
<PayOffAtExpiry>false</PayOffAtExpiry>
<ExerciseDates>

<ExerciseDate>2026-02-25</ExerciseDate>
<ExerciseDate>2027-02-25</ExerciseDate>
<ExerciseDate>2028-02-25</ExerciseDate>

</ExerciseDates>
</OptionData>
<LegData>

<LegType>Floating</LegType>
<Payer>false</Payer>
<Currency>USD</Currency>
<Notionals>

<Notional>100000000</Notional>
</Notionals>
...

62

</LegData>
<LegData>

<LegType>Floating</LegType>
<Payer>true</Payer>
<Currency>EUR</Currency>
<Notionals>

<Notional>100000000</Notional>
</Notionals>
...

</LegData>
</MultiLegOptionData>

</Trade>

The pricing engine configuration is similar to that of the MC Bermudan swaption
engine, cf. 5.39, also see the following listing.

<Product type="MultiLegOption">
<Model>CrossAssetModel</Model>
<ModelParameters>

<Parameter name="Tolerance">0.0001</Parameter>
<!-- IR -->
<Parameter name="IrCalibration">Bootstrap</Parameter>
<Parameter name="IrCalibrationStrategy">CoterminalATM</Parameter>
<Parameter name="ShiftHorizon">1.0</Parameter>
<Parameter name="IrReversion_EUR">0.0050</Parameter>
<Parameter name="IrReversion_GBP">0.0070</Parameter>
<Parameter name="IrReversion_USD">0.0080</Parameter>
<Parameter name="IrReversion">0.0030</Parameter>
<Parameter name="IrReversionType">HullWhite</Parameter>
<Parameter name="IrVolatilityType">HullWhite</Parameter>
<Parameter name="IrVolatility">0.0050</Parameter>
<!-- FX -->
<Parameter name="FxCalibration">Bootstrap</Parameter>
<Parameter name="FxVolatility_EURUSD">0.10</Parameter>
<Parameter name="FxVolatility">0.08</Parameter>
<Parameter name="ExtrapolateFxVolatility_EURUSD">false</Parameter>
<Parameter name="ExtrapolateFxVolatility">true</Parameter>
<!-- Correlations IR-IR, IR-FX, FX-FX -->
<Parameter name="Corr_IR:EUR_IR:GBP">0.80</Parameter>
<Parameter name="Corr_IR:EUR_FX:GBPEUR">-0.50</Parameter>
<Parameter name="Corr_IR:GBP_FX:GBPEUR">-0.15</Parameter>

</ModelParameters>
<Engine>MC</Engine>
<EngineParameters>

<Parameter name="Training.Sequence">MersenneTwisterAntithetic</Parameter>
<Parameter name="Training.Seed">42</Parameter>
<Parameter name="Training.Samples">10000</Parameter>
<Parameter name="Pricing.Sequence">SobolBrownianBridge</Parameter>
<Parameter name="Pricing.Seed">17</Parameter>
<Parameter name="Pricing.Samples">25000</Parameter>
<Parameter name="Training.BasisFunction">Monomial</Parameter>
<Parameter name="Training.BasisFunctionOrder">4</Parameter>
<Parameter name="BrownianBridgeOrdering">Steps</Parameter>
<Parameter name="SobolDirectionIntegers">JoeKuoD7</Parameter>

</EngineParameters>
</Product>

Model Parameters special to that product are

1. IrCalibrationStrategy can be None, CoterminalATM, UnderlyingATM

2. FXCalibration can be None or Bootstrap

3. ExtrapolateFxVolatility can be true or false; if false, no calibration
instruments are used that require extrapolation of the market fx volatilty surface
in option expiry direction

4. Corr_Key1_Key2: These entries describe the cross asset model correlations to be

63

used; the syntax for Key1 and Key2 is the same as in the simulation configuration
for the cross asset model

5.40 Par Sensitivity Analysis

The example in folder Examples/Example_40 demonstrates ORE’s par sensitivity
analysis (e.g. to Swap rates) that is implemented by means of a Jacobi transformation
of the "raw" sensitivities (e.g. to zero rates), see a sketch of the methodology in
appendix A.16 and section 7.5 for configuration details.

To perform a par sensitivity analysis, the following required change in ore.xml is
required

<Analytic type="sensitivity">
<Parameter name="active">Y</Parameter>
<Parameter name="marketConfigFile">simulation.xml</Parameter>
<Parameter name="sensitivityConfigFile">sensitivity.xml</Parameter>
<Parameter name="pricingEnginesFile">../../Input/pricingengine.xml</Parameter>
<Parameter name="scenarioOutputFile">sensi_scenarios.csv</Parameter>
<Parameter name="sensitivityOutputFile">sensitivity.csv</Parameter>
<Parameter name="outputSensitivityThreshold">0.000001</Parameter>
<!-- Additional parametrisation for par sensitivity analysis -->
<Parameter name="parSensitivity">Y</Parameter>
<Parameter name="parSensitivityOutputFile">parsensitivity.csv</Parameter>
<Parameter name="outputJacobi">Y</Parameter>
<Parameter name="jacobiOutputFile">jacobi.csv</Parameter>
<Parameter name="jacobiInverseOutputFile">jacobi_inverse.csv</Parameter>

</Analytic>

The portfolio used in this example includes products sensitive to

• Discount and index curves

• Credit curves

• Inflation curves

• CapFloor volatilities

The usual sensitivity analysis is performed by bumping the "raw" rates (zero rates,
hazard rates, inflation zero rates, optionlet vols). This is followed by the Jacobi
transformation that turns "raw" sensitivities into sensitivities in the par domain
(Deposit/FRA/Swap rates, FX Forwards, CC Basis Swap spreads, CDS spreads, ZC
and YOY Inflation Swap rates, flat Cap/Floor vols). The conversion is controlled by
the additional ParConversion data blocks in sensitivity.xml where the assumed
par instruments and corresponding conventions are coded, as shown below for three
types of discount curves.

<DiscountCurves>

<DiscountCurve ccy="EUR">
<ShiftType>Absolute</ShiftType>
<ShiftSize>0.0001</ShiftSize>
<ShiftTenors>2W,1M,3M,6M,9M,1Y,2Y,3Y,4Y,5Y,7Y,10Y,15Y,20Y,25Y,30Y</ShiftTenors>
<ParConversion>

<!--DEP, FRA, IRS, OIS, FXF, XBS -->
<Instruments>OIS,OIS,OIS,OIS,OIS,OIS,OIS,OIS,OIS,OIS,OIS,OIS,OIS,OIS,OIS,OIS</Instruments>
<SingleCurve>true</SingleCurve>
<Conventions>

<Convention id="OIS">EUR-OIS-CONVENTIONS</Convention>
</Conventions>

64

</ParConversion>
</DiscountCurve>

<DiscountCurve ccy="USD">
<ShiftType>Absolute</ShiftType>
<ShiftSize>0.0001</ShiftSize>
<ShiftTenors>2W,1M,3M,6M,9M,1Y,2Y,3Y,4Y,5Y,7Y,10Y,15Y,20Y,25Y,30Y</ShiftTenors>
<ParConversion>

<Instruments>FXF,FXF,FXF,FXF,FXF,XBS,XBS,XBS,XBS,XBS,XBS,XBS,XBS,XBS,XBS,XBS</Instruments>
<SingleCurve>true</SingleCurve>
<Conventions>

<Convention id="XBS">EUR-USD-XCCY-BASIS-CONVENTIONS</Convention>
<Convention id="FXF">EUR-USD-FX-CONVENTIONS</Convention>

</Conventions>
</ParConversion>

<DiscountCurve ccy="GBP">
<ShiftType>Absolute</ShiftType>
<ShiftSize>0.0001</ShiftSize>
<ShiftTenors>2W,1M,3M,6M,9M,1Y,2Y,3Y,4Y,5Y,7Y,10Y,15Y,20Y,25Y,30Y</ShiftTenors>
<ParConversion>

<Instruments>DEP,DEP,DEP,DEP,DEP,IRS,IRS,IRS,IRS,IRS,IRS,IRS,IRS,IRS,IRS,IRS</Instruments>
<SingleCurve>true</SingleCurve>
<Conventions>

<Convention id="DEP">GBP-DEPOSIT</Convention>
<Convention id="IRS">GBP-6M-SWAP-CONVENTIONS</Convention>

</Conventions>
</ParConversion>

</DiscountCurve>

</DiscountCurves>

Finally note that par sensitivity analysis requires that the shift tenor grid in the
sensitivity data above matches the corresponding grid in the simulation (market)
configuration. See also section 7.5.

5.41 Multi-threaded Exposure Simultion

The example in folder Examples/Example_41 demonstrates the multithreaded
valuation engine to generate the exposure for a portfolio of 8 copies of the vanilla swap
in Example_1.

5.42 ORE Python Module

Since release 9 (March 2023) we provide easy access to ORE via a pre-compiled
Python module. Some example scripts using this ORE module are provided in this
example, so change to this directory first

cd Example_42

The examples require Python 3. The ORE Python module is then installed with a
one-liner, see step 3 below. However, to separate ORE from any other Python
environments on your machine, we recommend creating a virtual environment first. In
that case the steps are as follows.

1. To create a virtual environment: python -m venv env1

2. To activate this environment on Windows: .\env1\Scripts\activate.bat
or on macOS/Linux: ./env1/bin/activate

3. Then install the latest release of ORE:

65

pip install open-source-risk-engine

4. Try examples:

• python ore.py
This demonstrates the Python-wrapped version of the ORE application that
is also used in the command line application ore.exe. We use it here to
re-run the Swap exposure of Example_1.

• python ore2.py
This extends the previous example and shows how to access and
post-process ORE in-memory results in the Python framework without
reading files.

• python commodityforward.py
The ORE Python module also allows lower-level access to the QuantLib and
QuantExt libraries, demonstrated here for a CommodityForward instrument
defined in QuantExt. Note that the ORE Python module contains the
entire QuantLib Python functionality.

More use cases of the ORE Python module including Jupyter notebooks can be
found in the ORE SWIG repository, in particular in folder
OREAnalytics-SWIG/Python/Examples.

5. You can deactivate the environment with deactivate
or even fully remove the environment again by removing the env1 folder.

Finally, you can build the Python module and installable packages yourself following
the instructions in sections 4.4, ??, ?? based on your local ORE code.

5.43 Credit Portfolio Model

The purpose of the credit portfolio model in ORE is to generate an integrated portfolio
gain/loss distribution at a given future horizon which is driven by

• credit defaults and rating migrations in Bonds and CDS, and

• the PnL of a portfolio of derivatives over the specified time horizon.

The model integrates Credit and Market Risk by jointly evolving systemic credit risk
drivers alongside the usual risk factors in ORE’s Cross Asset Model. See also the
separate documentation in Docs/UserGuide/creditmodel.tex.

By running
python run.py

this example demonstrates the model’s outcome for seven demo portfolios

66

Case Credit Mode Exposure Mode Evaluation
Single Bond Migration Value Analytic
Bond and Swap Migration Value Analytic
3 Bonds Migration Value Analytic
10 Bonds Migration Value Analytic
10 Bonds Migration Value Terminal Simulation
Bonds and CDS Migration Notional Analytic
100 Bonds Default Notional Analytic

The last demo case in this table can be activated by uncommenting the corresponding
section at the end of the run.py script.

5.44 ISDA SIMM Model

This example demonstrates the calculation of initial margin using ISDA’s Standard
Initial Margin Model (SIMM) based on a provided sensitivity file in ISDA’s Common
Risk Interchange Format (CRIF). ORE covers all SIMM versions since inception to
date, i.e. 1.0, 1.1, 1.2, 1.3, 1.3.38, 2.0, 2.1, 2.2, 2.3, 2.4 (=2.3.8), 2.5, 2.5A, 2.6 (=2.5.6).
All versions have been tested against the respective ISDA SIMM model unit test suites
and pass these tests. Any new SIMM versions will be added with each ORE release.

For SIMM versions >= 2.2 we support SIMM calculation for both MPoR horizons, 1d
and 10d.

Note that you need to purchase a SIMM model license from ISDA if you want to use
the model in production, and the unit test suites mentioned above are provided to
licensed vendors only. Therefore we unfortunately cannot share our ORE SIMM model
test suite here either.

By running
python run.py

ORE will pick up the small example CRIF file in Input/crif.csv (i.e. par sensitivities
rebucketed and reformatted to match the ISDA CRIF template) and generate the
resulting SIMM report in a simm.csv file. This report shows ISDA SIMM results with
the usual breakdown by product class, risk class, margin type, bucket and SIMM “side”
(IM to call or post). The SIMM calculation in this example is done for SIMM version
2.4 and 2.6, with MPoR 1d and 10d:

• SIMM 2.4, 1-day MPoR

• SIMM 2.4, 10-day MPoR

• SIMM 2.6, 1-day MPoR

• SIMM 2.6, 10-day MPoR

There are four input files – ore_SIMM2.4_1D.xml, ore_SIMM2.4_10D.xml,
ore_SIMM2.6_1D.xml, ore_SIMM2.6_10D.xml – with corresponding folders in the
Output/ directory. The relevant inputs in the files are:

• SIMM version

• name of the CRIF file to be loaded

67

• calculation currency - this determines which Risk_FX entries of the CRIF will
be ignored in the SIMM calculation

• result currency (optional) - currency of the resulting SIMM amounts in the
report, by default equal to the calculation currency

• MPoR horizon, in terms of days

The market data input and todays’s market configuration required here is minimal -
limited to FX rates for conversions from base/calculation currency into USD and into
the result currency.

If the ORE Python module is installed, as shown in Example 42, then you can also run
the SIMM example using

python ore.py

5.45 Collateralized Bond Obligation

This example in folder Examples/Example_45 demonstrates a Cashflow CDO or
Collateralized Bond Obligation (CBO) via ORE. Calling

python run.py

will launch a single ORE run to process a CBO example, referencing underyling bond
portfolio of 20 trades. The CBO is represented by a CBO reference datum specified in
the reference data file. NPV results are calculated for the investment in the junior
tranche.

5.46 Generic Total Return Swap

This example in folder Examples/Example_46 demonstrates ORE’s generic Total
Return Swap referencing a CBO. Calling

python run.py

will launch a single ORE run to process a TRS example and to generate NPV and cash
flows in the usual result files. As opposed to example 45, the CBO and its bondbasket
are represented explicitly in the CBO node.

5.47 Composite Trade

This example in folder Examples/Example_47 demonstrates the input of ORE’s
Composite Trade that can consist on any number and type of products covered by
ORE. In this case the composite consists of two Equity Swaps. Calling

python run.py

runs ORE and generates an NPV report.

68

5.48 Convertible Bond and ASCOT

This example in folder Examples/Example_48 demonstrates the input of

• a ConvertibleBond trade

• a related Asset Swapped Convertible Option Transaction (ASCOT)

• a vanilla Swap that represents the package of Convertible Bond position and
ASCOT

Calling
python run.py

runs ORE and generates an NPV report.

5.49 Bond Yield Shifted

The example in folder Examples/Example_49 shows how to use a yield curve built
from a BondYieldShifted segment, as described in section 7.8.1.

In particular, it builds the curve USD.BMK.GVN.CURVE_SHIFTED shifted by three liquid
Bonds:

• Fixed rate USD Bond maturing in August 2023 with id EJ7706660.

• Fixed rate USD Bond maturing in September 2049 with id ZR5330686.

• Floating Rate Bond maturing in May 2025 with id AS064441.

The resulting curve is exhibited in the curves.csv output file. Moreover, the results
can be crosschecked against the NPVs, i.e. prices, of the ZeroBonds comprised in the
portfolio.

• ZeroBond_long, maturing 2052-06-03 shows a price of 0.2022 akin to the 0.2022
in the curves output at the same date.

• ZeroBond_short, maturing 2032-06-01 shows a price of 0.5754 aktin to the
0.5754 in the curves output at the same date.

The example can be run calling python run.py.

5.50 Zero to Par sensitivity Conversion Analysis

The example in folder Examples/Example_50 demonstrates ORE’s capability to
convert external computed zero sensitivities (e.g Zero rates) to par sensitivities (e.g. to
Swap rates) that is implemented by means of a Jacobi transformation of the "raw"
sensitivities (e.g. to zero rates), see a sketch of the methodology in appendix A.16 and
section 7.5 for configuration details.

To perform a par sensitivity analysis, the following required change in ore.xml is
required

<Analytic type="zeroToParSensiConversion">
<Parameter name="active">Y</Parameter>
<Parameter name="marketConfigFile">simulation.xml</Parameter>

69

<Parameter name="sensitivityConfigFile">sensitivity.xml</Parameter>
<Parameter name="pricingEnginesFile">../../Input/pricingengine.xml</Parameter>

<!-- Input file with the raw sensitivities -->
<Parameter name="sensitivityInputFile">sensitivity.csv</Parameter>
<Parameter name="idColumn">TradeId</Parameter>
<Parameter name="riskFactorColumn">Factor_1</Parameter>
<Parameter name="deltaColumn">Delta</Parameter>

<Parameter name="currencyColumn">Currency</Parameter>
<Parameter name="baseNpvColumn">Base NPV</Parameter>
<Parameter name="shiftSizeColumn">ShiftSize_1</Parameter>

<Parameter name="outputThreshold">0.000001</Parameter>
<Parameter name="outputFile">parconversion_sensitivity.csv</Parameter>
<Parameter name="outputJacobi">Y</Parameter>
<Parameter name="jacobiOutputFile">jacobi.csv</Parameter>
<Parameter name="jacobiInverseOutputFile">jacobi_inverse.csv</Parameter>

</Analytic>

The portfolio used in this example includes zero sensitivities of

• Discount and index curves

• Credit curves

• Inflation curves

• CapFloor volatilities

ORE reads the raw sensitivites from the csv input file *sensitivityInputFile*. The
input file needs to have six columns, the column names can be user configured. Here is
a description of each of the columns:

1. idColumn : Column with a unique identifier for the trade / nettingset / portfolio.

2. riskFactorColumn: Column with the identifier of the zero/raw sensitiviy. The
risk factor name needs to follow the ORE naming convention, e.g.
DiscountCurve/EUR/5/1Y (the 6th bucket in EUR discount curve as specified in
the sensitivity.xml)

3. deltaColumn: The raw sensitivity of the trade/nettingset / portfolio with respect
to the risk factor

4. currencyColumn: The currency in which the raw sensitivity is expressed, need to
be the same as the BaseCurrency in the simulation settings.

5. shiftSizeColumn: The shift size applied to compute the raw sensitivity, need to
be consistent to the sensitivity configuration.

6. baseNpvColumn: The base npv of the trade / nettingset / portfolio in currency.

This is followed by the Jacobi transformation that turns "raw" sensitivities into
sensitivities in the par domain (Deposit/FRA/Swap rates, FX Forwards, CC Basis
Swap spreads, CDS spreads, ZC and YOY Inflation Swap rates, flat Cap/Floor vols).
The conversion is controlled by the additional ParConversion data blocks in
sensitivity.xml where the assumed par instruments and corresponding conventions
are coded, as shown below for three types of discount curves.

<DiscountCurves>

<DiscountCurve ccy="EUR">
<ShiftType>Absolute</ShiftType>
<ShiftSize>0.0001</ShiftSize>

70

<ShiftTenors>2W,1M,3M,6M,9M,1Y,2Y,3Y,4Y,5Y,7Y,10Y,15Y,20Y,25Y,30Y</ShiftTenors>
<ParConversion>

<!--DEP, FRA, IRS, OIS, FXF, XBS -->
<Instruments>OIS,OIS,OIS,OIS,OIS,OIS,OIS,OIS,OIS,OIS,OIS,OIS,OIS,OIS,OIS,OIS</Instruments>
<SingleCurve>true</SingleCurve>
<Conventions>

<Convention id="OIS">EUR-OIS-CONVENTIONS</Convention>
</Conventions>

</ParConversion>
</DiscountCurve>

<DiscountCurve ccy="USD">
<ShiftType>Absolute</ShiftType>
<ShiftSize>0.0001</ShiftSize>
<ShiftTenors>2W,1M,3M,6M,9M,1Y,2Y,3Y,4Y,5Y,7Y,10Y,15Y,20Y,25Y,30Y</ShiftTenors>
<ParConversion>

<Instruments>FXF,FXF,FXF,FXF,FXF,XBS,XBS,XBS,XBS,XBS,XBS,XBS,XBS,XBS,XBS,XBS</Instruments>
<SingleCurve>true</SingleCurve>
<Conventions>

<Convention id="XBS">EUR-USD-XCCY-BASIS-CONVENTIONS</Convention>
<Convention id="FXF">EUR-USD-FX-CONVENTIONS</Convention>

</Conventions>
</ParConversion>

<DiscountCurve ccy="GBP">
<ShiftType>Absolute</ShiftType>
<ShiftSize>0.0001</ShiftSize>
<ShiftTenors>2W,1M,3M,6M,9M,1Y,2Y,3Y,4Y,5Y,7Y,10Y,15Y,20Y,25Y,30Y</ShiftTenors>
<ParConversion>

<Instruments>DEP,DEP,DEP,DEP,DEP,IRS,IRS,IRS,IRS,IRS,IRS,IRS,IRS,IRS,IRS,IRS</Instruments>
<SingleCurve>true</SingleCurve>
<Conventions>

<Convention id="DEP">GBP-DEPOSIT</Convention>
<Convention id="IRS">GBP-6M-SWAP-CONVENTIONS</Convention>

</Conventions>
</ParConversion>

</DiscountCurve>

</DiscountCurves>

Finally note that par sensitivity analysis requires that the shift tenor grid in the
sensitivity data above matches the corresponding grid in the simulation (market)
configuration. See also section 7.5.

5.51 Custom Trade Fixings

The example in folder Examples/Example_51 demonstrates ORE’s capability to use
custom trade specific fixings. For OIS and Ibor floating legs one can specify historical
fixing on a trade level, see 8.3.6. Those trade level fixings will be only use for the
specific trade, all other trades will use the global fixings.

5.52 Scripted Trade

The scripted trade was added to ORE to gain more flexibility in representing exotic
products, with hyprid payoffs across asset classes, path-dependence, multiple kinds of
early termination options. The scripted trade module uses Monte Carlo and Finite
Difference pricing approaches, it is an evolving interface to implement parallel
processing with GPUs and a central interface to implement AD methods in ORE. See
the separate documentation in folder Docs/ScriptedTrade for an introduction to trade
representation, scripting language, model and pricing engine configuration.

The example in this folder Examples/Example_52 is a basic demonstration of ORE’s

71

scripted trade functionality. In this example we provide a self-contained case that can
be run as usual calling

python run.py

This generates an NPV and cash flow report for the following portfolio

• Trade 1: Vanilla European Equity Option, represented as standard ORE XML
with analytical pricing

• Trade 2: Same Option as above, represented as “generic” scripted trade with
scripted payoff embedded into the trade XML, pricing via Monte Carlo

• Trade 3: Same Option as above, same representation, pricing via Finite
Differences triggered by a ProductTag assigned to the script and used in
pricingengine.xml

• Trade 4: Same Option as above, the scripted trade now refers to an “external”
script in scriptlibrary.xml, MC pricing

• Trade 4b: Same as trade 4, but “compact” scripted trade representation
(uncomment trade 4b in portfolio.xml)

• Trade 5: Barrier Option with single continuously observed Up & Out barrier,
represented as standard ORE XML with analytical pricing

• Trade 6: Same Barrier Option as above, approximated as generic scripted trade
with daily barrier observation

• Trade 6b: Same Barrier Option as above, approximated as “compact” scripted
trade with daily barrier observation (uncomment trade 6b in portfolio.xml)

• Trade 7: Same Barrier Option as above, represented as generic scripted trade
with continuously observed barrier, i.e. adjusting for the probability of knock-out
between daily observations

• Trade 7b: Same Barrier Option as of above, represented as “compact” scripted
trade (uncomment trade 7b in portfolio.xml)

• Trade 8: Equity Accumulator, represented as generic scripted trade with external
payoff script

• Trade 8b: Same Equity Accumulator as above, represented as compact scripted
trade with external payoff script (uncomment trade 8b in portfolio.xml)

Note:

• In all cases we use the Black-Scholes model to drive the Equity process.

• The Barrier Option pricing using the scripted trade deviates noticeably from the
analytical pricing when we use daily observations (trade 6 and 6b), but matches
quite closely when we adjust for the probability of knock-out between
observation dates (trade 7 and 7b)

• We are not aware of analytical pricing for the Accumulator product in trade 8 to
benchmark against; trade 8 is priced with MC, FD pricing of the Accumulator is

72

possible as well but requires a separate payoff script, only in the vanilla
European option case we can utilize the same script for both MC and FD pricing

Though this initial Example_52 shows only single-asset Equity cases, the scripted
trade in its current version is significantly more versatile, more examples and scripts to
follow.

5.53 GBP OIS Curve using MPC Swaps

This example demonstrates the build of a GBP OIS curve using MPC Swaps at the
short end.

73

6 Launchers and Visualisation

6.1 Jupyter

ORE comes with an experimental Jupyter notebook for launching ORE batches and in
particular for drilling into NPV cube data. The notebook is located in directory
FrontEnd/Python/Visualization/npvcube. To launch the notebook, change to this
directory and follow instructions in the Readme.txt. In a nutshell, type4

jupyter notebook

to start the ipython console and open a browser window. From the list of files
displayed in the browser then click

ore_jupyter_dashboard.ipynb

to open the ORE notebook. The notebook offers

• launching an ORE job

• selecting an NPV cube file and netting sets or trades therein

• plotting a 3d exposure probability density surface

• viewing exposure probability density function at a selected future time

• viewing expected exposure evolution through time

The cube file loaded here by default when processing all cells of the notebook (without
changing it or launching a ORE batch) is taken from Example_7 (FX Forwards and
FX Options).

6.2 Calc

ORE comes with a simple LibreOffice Calc [11] sheet as an ORE launcher and basic
result viewer. This is demonstrated on the example in section 5.1. It is currently based
on the stable LibreOffice version 5.0.6 and tested on OS X.
To launch Calc, open a terminal, change to directory Examples/Example_1, and run

./launchCalc.sh

The user can choose a configuration (one of the ore*.xml files in Example_1’s
subfolder Input) by hitting the ’Select’ button. Initially Input/ore.xml is pre-selected.
The ORE process is then kicked off by hitting ’Run’. Once completed, standard ORE
reports (NPV, Cashflow, XVA) are loaded into several sheets. Moreover, exposure
evolutions can then be viewed by hitting ’View’ which shows the result in figure 35.
This demo uses simple Libre Office Basic macros which call Python scripts to execute
ORE. The Libre Office Python uno module (which comes with Libre Office) is used to
communicate between Python and Calc to upload results into the sheets.

4With Mac OS X, you may need to set the environment variable LANG to en_US.UTF-8 before
running jupyter, as mentioned in the installation section 4.3.

74

Figure 35: Calc sheet after hitting ’Run’.

6.3 Excel

ORE also comes with a basic Excel sheet to demonstrate launching ORE and
presenting results in Excel. This demo is more self-contained than the Calc demo in
the previous section, as it uses VBA only rather than calls to external Python scripts.
The Excel demo is available in Example_1. Launch Example_1.xlsm. Then modify
the paths on the first sheet, and kick off the ORE process.

7 Parameterisation
A run of ORE is kicked off with a single command line parameter

ore[.exe] ore.xml

which points to the ’master input file’ referred to as ore.xml subsequently. This file is
the starting point of the engine’s configuration explained in the following sub section.
An overview of all input configuration files respectively all output files is shown in
Table 3 respectively Table 4. To set up your own ORE configuration, it might be not
be necessary to start from scratch, but instead use any of the examples discussed in
section 5 as a boilerplate and just change the folders, see section 7.1, and the trade
data, see section 8, together with the netting definitions, see section 9.

75

7.1 Master Input File: ore.xml

The master input file contains general setup information (paths to configuration, trade
data and market data), as well as the selection and configuration of analytics. The file
has an opening and closing root element <ORE>, </ORE> with three sections

• Setup

• Logging

• Markets

• Analytics

which we will explain in the following.

7.1.1 Setup

This subset of data is easiest explained using an example, see listing 3.

Listing 3: ORE setup example

<Setup>
<Parameter name="asofDate">2016-02-05</Parameter>
<Parameter name="inputPath">Input</Parameter>
<Parameter name="outputPath">Output</Parameter>
<Parameter name="logFile">log.txt</Parameter>
<Parameter name="logMask">255</Parameter>
<Parameter name="marketDataFile">../../Input/market_20160205.txt</Parameter>
<Parameter name="fixingDataFile">../../Input/fixings_20160205.txt</Parameter>
<Parameter name="dividendDataFile">../../Input/dividends_20160205.txt</Parameter> <!-- Optional -->
<Parameter name="implyTodaysFixings">Y</Parameter>
<Parameter name="curveConfigFile">../../Input/curveconfig.xml</Parameter>
<Parameter name="conventionsFile">../../Input/conventions.xml</Parameter>
<Parameter name="marketConfigFile">../../Input/todaysmarket.xml</Parameter>
<Parameter name="pricingEnginesFile">../../Input/pricingengine.xml</Parameter>
<Parameter name="portfolioFile">portfolio.xml</Parameter>
<Parameter name="calendarAdjustment">../../Input/calendaradjustment.xml</Parameter>
<Parameter name="currencyConfiguration">../../Input/currencies.xml</Parameter>
<Parameter name="referenceDataFile">../../Input/referencedata.xml</Parameter>
<Parameter name="iborFallbackConfig">../../Input/iborFallbackConfig.xml</Parameter>
<!-- None, Unregister, Defer or Disable -->
<Parameter name="observationModel">Disable</Parameter>
<Parameter name="lazyMarketBuilding">false</Parameter>
<Parameter name="continueOnError">false</Parameter>
<Parameter name="buildFailedTrades">true</Parameter>
<Parameter name="nThreads">4</Parameter>

</Setup>

Parameter names are self explanatory: Input and output path are interpreted relative
from the directory where the ORE executable is executed, but can also be specified
using absolute paths. All file names are then interpreted relative to the ’inputPath’
and ’outputPath’, respectively. The files starting with ../../Input/ then point to
files in the global Example input directory Example/Input/*, whereas files such as
portfolio.xml are local inputs in Example/Example_#/Input/.

76

Parameter logMask determines the verbosity of log file output. Log messages are
internally labelled as Alert, Critical, Error, Warning, Notice, Debug, associated with
logMask values 1, 2, 4, 8, ..., 64. The logMask allows filtering subsets of these
categories and controlling the verbosity of log file output5. LogMask 255 ensures
maximum verbosity.
When ORE starts, it will initialise today’s market, i.e. load market data, fixings and
dividends, and build all term structures as specified in todaysmarket.xml. Moreover,
ORE will load the trades in portfolio.xml and link them with pricing engines as
specified in pricingengine.xml. When parameter implyTodaysFixings is set to Y,
today’s fixings would not be loaded but implied, relevant when pricing/bootstrapping
off hypothetical market data as e.g. in scenario analysis and stress testing. The
curveConfigFile curveconfig.xml, the conventionsFile conventions.xml, the
referenceDataFile referencedata.xml, the iborFallbackConfig, the marketDataFile
and the fixingDataFile are explained in the sections below.

Parameter calendarAdjustment includes the calendarAdjustment.xml which lists
out additional holidays and business days to be added to specified calendars.

The optional parameter currencyConfiguration points to a configuration file that
contains additional currencies to be added to ORE’s setup, see
Examples/Input/currencies.xml for a full list of ISO currencies and a few unofficial
currency codes that can thus be made available in ORE. Note that the external
configuration does not override any currencies that are hard-coded in the
QuantLib/QuantExt libraries, only currencies not present already are added from the
external configuration file.

The last parameter observationModel can be used to control ORE performance
during simulation. The choices Disable and Unregister yield similarly improved
performance relative to choice None. For users familiar with the QuantLib design - the
parameter controls to which extent QuantLib observer notifications are used when
market and fixing data is updated and the evaluation date is shifted:

• The ’Unregister’ option limits the amount of notifications by unregistering
floating rate coupons from indices;

• Option ’Defer’ disables all notifications during market data and fixing updates
with ObservableSettings::instance().disableUpdates(true) and kicks off
updates afterwards when enabled again

• The ’Disable’ option goes one step further and disables all notifications during
market data and fixing updates, and in particular when the evaluation date is
changed along a path, with
ObservableSettings::instance().disableUpdates(false)
Updates are not deferred here. Required term structure and instrument
recalculations are triggered explicitly.

If the parameter lazyMarketBuilding is set to true, the build of the curves in the
TodaysMarket is delayed until they are actually requested. This can speed up the

5by bitwise comparison of the the external logMask value with each message’s log level

77

processing when some curves configured in TodaysMarket are not used. If not given,
the parameter defaults to true.

If the parameter continueOnError is set to true, the application will not exit on an
error, but try to continue the processing. If not given, the parameter defaults to false.

If the parameter buildFailedTrades is set to true, the application will build a dummy
trade if loading or building the original trade fails. The dummy trade has trade type
“Failed”, zero notional and NPV. If not given, the parameter defaults to false.

If the parameter nThreads is given, multiple threads will be used for valuation engine
runs where applicable (Sensitivity, Exposure Classic, Exposure AMC). If not given, the
parameter defaults to 1.

7.1.2 Logging

The Logging section (see listing 4) is used to configure some ORE logging options.

Listing 4: ORE logging

<Logging>
<Parameter name="logFile">log.txt</Parameter>
<Parameter name="logMask">31</Parameter>
<Parameter name="progressLogFile">my_log_progress_%N.json</Parameter>
<Parameter name="progressLogRotationSize">102400</Parameter>
<Parameter name="progressLogToConsole">false</Parameter>
<Parameter name="structuredLogFile">my_structured_logs_%N.txt</Parameter>
<Parameter name="structuredLogRotationSize">102400</Parameter>

</Logging>

Parameter logFile and logMask will override the same parameters in the Setup
section.

Parameters progressLogFile and structuredLogFile are the filename where
progress log messages and structured log messages are written out to, respectively,
which supports Boost string patterns.This defaults to “log_progress_%N.json” and
“log_structured_%N.json”, respectively, where N will be an integer (beginning at 0)
used for log file rotation.

Parameters progressLogRotationSize and structuredLogRotationSize are the size
limit (in bytes) of each log file before applying log file rotation to the progress log file
and structured log message file, respectively.. For example, 10 ∗ 1024 ∗ 1024 = 10MiB.
Defaults to 100 MiB.

If the parameter progressLogToConsole is set to true, then progress logs will be
written to std::cout. This can be used simultaneously with progressLogFile, i.e.
progress logs can be written out to both file and std::cout.

7.1.3 Markets

The Markets section (see listing 5) is used to choose market configurations for
calibrating the IR, FX and EQ simulation model components, pricing and simulation,

78

respectively. These configurations have to be defined in todaysmarket.xml (see
section 7.2).

Listing 5: ORE markets

<Markets>
<Parameter name="lgmcalibration">collateral_inccy</Parameter>
<Parameter name="fxcalibration">collateral_eur</Parameter>
<Parameter name="eqcalibration">collateral_inccy</Parameter>
<Parameter name="pricing">collateral_eur</Parameter>
<Parameter name="simulation">collateral_eur</Parameter>

</Markets>

For example, the calibration of the simulation model’s interest rate components
requires local OIS discounting whereas the simulation phase requires cross currency
adjusted discount curves to get FX product pricing right. So far, the market
configurations are used only to distinguish discount curve sets, but the market
configuration concept in ORE applies to all term structure types.

7.1.4 Analytics

The Analytics section lists all permissible analytics using tags <Analytic
type="..."> ... </Analytic> where type can be (so far) in

• npv

• cashflow

• curves

• simulation

• xva

• sensitivity

• stress

• parametricVar

• simm

Each Analytic section contains a list of key/value pairs to parameterise the analysis of
the form <Parameter name="key">value</Parameter>. Each analysis must have one
key active set to Y or N to activate/deactivate this analysis. The following listing 6
shows the parametrisation of the first four basic analytics in the list above.

79

Listing 6: ORE analytics: npv, cashflow, curves, additional results, todays market calibration

<Analytics>
<Analytic type="npv">
<Parameter name="active">Y</Parameter>
<Parameter name="baseCurrency">EUR</Parameter>
<Parameter name="outputFileName">npv.csv</Parameter>
<Parameter name="additionalResults">Y</Parameter>

</Analytic>
<Analytic type="cashflow">
<Parameter name="active">Y</Parameter>
<Parameter name="outputFileName">flows.csv</Parameter>
<Parameter name="includePastCashflows">N</Parameter>

</Analytic>
<Analytic type="curves">
<Parameter name="active">Y</Parameter>
<Parameter name="configuration">default</Parameter>
<Parameter name="grid">240,1M</Parameter>
<Parameter name="outputFileName">curves.csv</Parameter>
<Parameter name="outputTodaysMarketCalibration">N</Parameter>

</Analytic>
<Analytic type="...">

<!-- ... -->
</Analytic>

</Analytics>

The cashflow analytic writes a report containing all future cashflows of the portfolio.
Table 12 shows a typical output for a vanilla swap.

#ID Type LegNo PayDate Amount Currency Coupon Accrual fixingDate fixingValue Notional
tr123 Swap 0 13/03/17 -111273.76 EUR -0.00201 0.50556 08/09/16 -0.00201 100000000.00
tr123 Swap 0 12/09/17 -120931.71 EUR -0.002379 0.50833 09/03/17 -0.002381 100000000.00
. . .

Table 12: Cashflow Report

The amount column contains the projected amount including embedded caps and
floors and convexity (if applicable), the coupon column displays the corresponding rate
estimation. The fixing value on the other hand is the plain fixing projection as given
by the forward value, i.e. without embedded caps and floors or convexity.

Note that the fixing value might deviate from the coupon value even for a vanilla
coupon, if the QuantLib library was compiled without the flag
QL_USE_INDEXED_COUPON (which is the default case). In this case the coupon value
uses a par approximation for the forward rate assuming the index estimation period to
be identical to the accrual period, while the fixing value is the actual forward rate for
the index estimation period, i.e. whenever the index estimation period differs from the
accrual period the values will be slightly different.

The Notional column contains the underlying notional used to compute the amount of
each coupon. It contains #NA if a payment is not a coupon payment.

The curves analytic exports all yield curves that have been built according to the
specification in todaysmarket.xml. Key configuration selects the curve set to be
used (see explanation in the previous Markets section). Key grid defines the time grid

80

on which the yield curves are evaluated, in the example above a grid of 240 monthly
time steps from today. The discount factors for all curves with configuration default
will be exported on this monthly grid into the csv file specified by key
outputFileName. The grid can also be specified explicitly by a comma separated list
of tenor points such as 1W, 1M, 2M, 3M,

The additionalResults analytic writes a report containing any additional results
generated for the portfolio. The results are pricing engine specific but Table 13 shows
the output for a vanilla swaption.

#TradeId ResultId ResultType ResultValue
example_swaption annuity double 2123720984
example_swaption atmForward double 0.01664135
example_swaption spreadCorrection double 0
example_swaption stdDev double 0.00546015
example_swaption strike double 0.024
example_swaption swapLength double 4
example_swaption vega double 309237709.5
. . .

Table 13: AdditionalResults Report

The todaysMarketCalibration analytic writes a report containing information on the
build of the t0 market.

The purpose of the simulation ’analytics’ is to run a Monte Carlo simulation which
evolves the market as specified in the simulation config file. The primary result is an
NPV cube file, i.e. valuations of all trades in the portfolio file (see section Setup), for
all future points in time on the simulation grid and for all paths. Apart from the NPV
cube, additional scenario data (such as simulated overnight rates etc) are stored in this
process which are needed for subsequent XVA analytics.

Listing 7: ORE analytic: simulation

<Analytics>
<Analytic type="simulation">
<Parameter name="active">Y</Parameter>
<Parameter name="simulationConfigFile">simulation.xml</Parameter>
<Parameter name="pricingEnginesFile">../../Input/pricingengine.xml</Parameter>
<Parameter name="baseCurrency">EUR</Parameter>
<Parameter name="storeFlows">Y</Parameter>
<Parameter name="storeSurvivalProbabilities">Y</Parameter>
<Parameter name="cubeFile">cube_A.csv.gz</Parameter>
<Parameter name="nettingSetCubeFile">nettingSetCube_A.csv.gz</Parameter>
<Parameter name="cptyCubeFile">cptyCube_A.csv.gz</Parameter>
<Parameter name="aggregationScenarioDataFileName">scenariodata.csv.gz</Parameter>
<Parameter name="aggregationScenarioDump">scenariodump.csv</Parameter>

</Analytic>
</Analytics>

The pricing engines file specifies how trades are priced under future scenarios which
can differ from pricing as of today (specified in section Setup). Key base currency
determines into which currency all NPVs will be converted. Key store scenarios (Y or
N) determines whether the market scenarios are written to a file for later reuse. Key

81

‘store flows’ (Y or N) controls whether cumulative cash flows between simulation dates
are stored in the (hyper-) cube for post processing in the context of Dynamic Initial
Margin and Variation Margin calculations. And finally, the key ‘store survival
probabilities’ (Y or N) controls whether survival probabilities on simulation dates are
stored in the cube for post processing in the context of Dynamic Credit XVA
calculation. The additional scenario data (written to the specified file here) is likewise
required in the post processor step. These data comprise simulated index fixing e.g.
for collateral compounding and simulated FX rates for cash collateral conversion into
base currency. The scenario dump file, if specified here, causes ORE to write simulated
market data to a human-readable csv file. Only those currencies or indices are written
here that are stated in the AggregationScenarioDataCurrencies and
AggregationScenarioDataIndices subsections of the simulation files market section, see
also section 7.4.3.

The XVA analytic section offers CVA, DVA, FVA and COLVA calculations which can
be selected/deselected here individually. All XVA calculations depend on a previously
generated NPV cube (see above) which is referenced here via the cubeFile parameter.
This means one can re-run the XVA analytics without regenerating the cube each
time. The XVA reports depend in particular on the settings in the csaFile which
determines CSA details such as margining frequency, collateral thresholds, minimum
transfer amounts, margin period of risk. By splitting the processing into pre-processing
(cube generation) and post-processing (aggregation and XVA analysis) it is possible to
vary these CSA details and analyse their impact on XVAs quickly without
re-generating the NPV cube. The cube file is usually a compressed csv file (using gzip
compression, with file ending .csv.gz), except when the file extension is set explicitly to
txt or csv in which case an uncompressed version of the file is written to disk.

82

Listing 8: ORE analytic: xva

<Analytics>
<Analytic type="xva">
<Parameter name="active">Y</Parameter>
<Parameter name="csaFile">netting.xml</Parameter>
<Parameter name="cubeFile">cube.csv.gz</Parameter>
<Parameter name="scenarioFile">scenariodata.csv.gz</Parameter>
<Parameter name="baseCurrency">EUR</Parameter>
<Parameter name="exposureProfiles">Y</Parameter>
<Parameter name="exposureProfilesByTrade">Y</Parameter>
<Parameter name="quantile">0.95</Parameter>
<Parameter name="calculationType">NoLag</Parameter>
<Parameter name="allocationMethod">None</Parameter>
<Parameter name="marginalAllocationLimit">1.0</Parameter>
<Parameter name="exerciseNextBreak">N</Parameter>
<Parameter name="cva">Y</Parameter>
<Parameter name="dva">N</Parameter>
<Parameter name="dvaName">BANK</Parameter>
<Parameter name="fva">N</Parameter>
<Parameter name="fvaBorrowingCurve">BANK_EUR_BORROW</Parameter>
<Parameter name="fvaLendingCurve">BANK_EUR_LEND</Parameter>
<Parameter name="colva">Y</Parameter>
<Parameter name="collateralFloor">Y</Parameter>
<Parameter name="dynamicCredit">N</Parameter>
<Parameter name="kva">Y</Parameter>
<Parameter name="kvaCapitalDiscountRate">0.10</Parameter>
<Parameter name="kvaAlpha">1.4</Parameter>
<Parameter name="kvaRegAdjustment">12.5</Parameter>
<Parameter name="kvaCapitalHurdle">0.012</Parameter>
<Parameter name="kvaOurPdFloor">0.03</Parameter>
<Parameter name="kvaTheirPdFloor">0.03</Parameter>
<Parameter name="kvaOurCvaRiskWeight">0.005</Parameter>
<Parameter name="kvaTheirCvaRiskWeight">0.05</Parameter>
<Parameter name="dim">Y</Parameter>
<Parameter name="mva">Y</Parameter>
<Parameter name="dimQuantile">0.99</Parameter>
<Parameter name="dimHorizonCalendarDays">14</Parameter>
<Parameter name="dimRegressionOrder">1</Parameter>
<Parameter name="dimRegressors">EUR-EURIBOR-3M,USD-LIBOR-3M,USD</Parameter>
<Parameter name="dimLocalRegressionEvaluations">100</Parameter>
<Parameter name="dimLocalRegressionBandwidth">0.25</Parameter>
<Parameter name="dimScaling">1.0</Parameter>
<Parameter name="dimEvolutionFile">dim_evolution.txt</Parameter>
<Parameter name="dimRegressionFiles">dim_regression.txt</Parameter>
<Parameter name="dimOutputNettingSet">CPTY_A</Parameter>
<Parameter name="dimOutputGridPoints">0</Parameter>
<Parameter name="rawCubeOutputFile">rawcube.csv</Parameter>
<Parameter name="netCubeOutputFile">netcube.csv</Parameter>
<Parameter name="fullInitialCollateralisation">true</Parameter>
<Parameter name="flipViewXVA">N</Parameter>
<Parameter name="flipViewBorrowingCurvePostfix">_BORROW</Parameter>
<Parameter name="flipViewLendingCurvePostfix">_LEND</Parameter>

</Analytic>
</Analytics>

Parameters:

83

• csaFile: Netting set definitions file covering CSA details such as margining
frequency, thresholds, minimum transfer amounts, margin period of risk

• cubeFile: NPV cube file previously generated and to be post-processed here

• scenarioFile: Scenario data previously generated and used in the
post-processor (simulated index fixings and FX rates)

• baseCurrency: Expression currency for all NPVs, value adjustments, exposures

• exposureProfiles: Flag to enable/disable exposure output for each netting set

• exposureProfilesByTrade: Flag to enable/disable stand-alone exposure output
for each trade

• quantile: Confidence level for Potential Future Exposure (PFE) reporting

• calculationType: Determines the settlement of margin calls. The admissible
choices depend on having a close-out grid, see table 14;

– if there isn’t any “close-out” grid -see section 7.4-, the choices are:

∗ Symmetric - margin for both counterparties settled after the margin
period of risk;

∗ AsymmetricCVA - margin requested from the counterparty settles with
delay, margin requested from us settles immediately;

∗ AsymmetricDVA - vice versa.

– If there is a “close-out” grid -see section 7.4-, only choice is:

∗ NoLag - used to disable any delayed settlement of the margin.

NoLag is the default configuration.

Grid Type calculationType Comment

without close-out grid

NoLag Not Supported
Symmetric Supported6

AsymmetricCVA Supported 6

AsymmetricDVA Supported 6

with close-out grid

NoLag Supported7
Symmetric Not Supported

AsymmetricCVA Not Supported
AsymmetricDVA Not Supported

Table 14: Overview of admissible calculation types with combination of grid types.

• allocationMethod: XVA allocation method, choices are None, Marginal,
RelativeXVA, RelativeFairValueGross, RelativeFairValueNet

6 The calculations are correct only if the simulation grid (see section 7.4) is equally-spaced with
time steps that match the MPoR defined in netting-set definition (see section 9.2). See section A.13.1
for further explanation.

7Close-out lag (see section 7.4) must be equal to MPoR defined in netting-set definition (see section
9.2). Otherwise, an error will be thrown.

84

• marginalAllocationLimit: The marginal allocation method a la
Pykhtin/Rosen breaks down when the netting set value vanishes while the
exposure does not. This parameter acts as a cutoff for the marginal allocation
when the absolute netting set value falls below this limit and switches to equal
distribution of the exposure in this case.

• exerciseNextBreak: Flag to terminate all trades at their next break date
before aggregation and the subsequent analytics

• cva, dva, fva, colva, collateralFloor, dim, mva: Flags to
enable/disable these analytics.

• dvaName: Credit name to look up the own default probability curve and recovery
rate for DVA calculation

• fvaBorrowingCurve: Identifier of the borrowing yield curve

• fvaLendingCurve: Identifier of the lending yield curve

• dynamicCredit: Flag to enable using pathwise survival probabilities when
calculating CVA, DVA, FVA and MVA increments from exposures. If set to N
the survival probabilities are extracted from T0 curves.

• kva: Flag to enable setting the kva ccr parameters.

• kvaCapitalDiscountRate, kvaAlpha, kvaRegAdjustment,
kvaCapitalHurdle, kvaOurPdFloor, kvaTheirPdFloor
kvaOurCvaRiskWeight, kvaTheirCvaRiskWeight: the kva CCR parameters
(see A.11 and A.12.

• dimQuantile: Quantile for Dynamic Initial Margin (DIM) calculation

• dimHorizonCalendarDays: Horizon for DIM calculation, 14 calendar days for 2
weeks, etc.

• dimRegressionOrder: Order of the regression polynomial (netting set clean
NPV move over the simulation period versus netting set NPV at period start)

• dimRegressors: Variables used as regressors in a single- or multi-dimensional
regression; these variable names need to match entries in the simulation.xml’s
AggregationScenarioDataCurrencies and AggregationScenarioDataIndices
sections (only these scenario data are passed on to the post processor); if the list
is empty, the NPV will be used as a single regressor

• dimLocalRegressionEvaluations: Nadaraya-Watson local regression evaluated
at the given number of points to validate polynomial regression. Note that
Nadaraya-Watson needs a large number of samples for meaningful results.
Evaluating the local regression at many points (samples) has a significant
performance impact, hence the option here to limit the number of evaluations.

• dimLocalRegressionBandwidth: Nadaraya-Watson local regression bandwidth
in standard deviations of the independent variable (NPV)

• dimScaling: Scaling factor applied to all DIM values used, e.g. to reconcile
simulated DIM with actual IM at t0

85

• dimEvolutionFile: Output file name to store the evolution of zero order DIM
and average of nth order DIM through time

• dimRegressionFiles: Output file name(s) for a DIM regression snapshot,
comma separated list

• dimOutputNettingSet: Netting set for the DIM regression snapshot

• dimOutputGridPoints: Grid point(s) (in time) for the DIM regression snapshot,
comma separated list

• rawCubeOutputFile: File name for the trade NPV cube in human readable csv
file format (per trade, date, sample), leave empty to skip generation of this file.

• netCubeOutputFile: File name for the aggregated NPV cube in human
readable csv file format (per netting set, date, sample) after taking collateral into
account. Leave empty to skip generation of this file.

• fullInitialCollateralisation: If set to true, then for every netting set, the
collateral balance at t = 0 will be set to the NPV of the setting set. The
resulting effect is that EPE, ENE and PFE are all zero at t = 0. If set to false
(default value), then the collateral balance at t = 0 will be set to zero.

• flipViewXVA: If set to Y, the perspective in XVA calculations is switched to the
cpty view, the npvs and the netting sets being reverted during calculation. In
order to get the lending/borrowing curve, the calculation assumes these curves
being set up with the cptyname + the postfix given in the next two settings.

• flipViewBorrowingCurvePostfix: postfix for the borrowing curve, the
calculation assumes this is curves being set up with cptyname + postfix given.

• flipViewLendingCurvePostfix: postfix for the lending curve, the calculation
assumes this is curve being set up with cptyname + postfix given.

The two cube file outputs rawCubeOutputFile and netCubeOutputFile are provided
for interactive analysis and visualisation purposes, see section 6.

The sensitivity and stress ’analytics’ provide computation of bump and revalue
(zero rate resp. optionlet) sensitivities and NPV changes under user defined stress
scenarios. Listing 9 shows a typical configuration for sensitivity calculation.

86

Listing 9: ORE analytic: sensitivity

<Analytics>
<Analytic type="sensitivity">
<Parameter name="active">Y</Parameter>
<Parameter name="marketConfigFile">simulation.xml</Parameter>
<Parameter name="sensitivityConfigFile">sensitivity.xml</Parameter>
<Parameter name="pricingEnginesFile">../../Input/pricingengine.xml</Parameter>
<Parameter name="scenarioOutputFile">scenario.csv</Parameter>
<Parameter name="sensitivityOutputFile">sensitivity.csv</Parameter>
<Parameter name="crossGammaOutputFile">crossgamma.csv</Parameter>
<Parameter name="outputSensitivityThreshold">0.000001</Parameter>
<Parameter name="recalibrateModels">Y</Parameter>
<!-- Additional parametrisation for par sensitivity analysis -->
<Parameter name="parSensitivity">Y</Parameter>
<Parameter name="parSensitivityOutputFile">parsensitivity.csv</Parameter>
<Parameter name="outputJacobi">Y</Parameter>
<Parameter name="jacobiOutputFile">jacobi.csv</Parameter>
<Parameter name="jacobiInverseOutputFile">jacobi_inverse.csv</Parameter>

</Analytic>
</Analytics>

The parameters have the following interpretation:

• marketConfigFile: Configuration file defining the simulation market under
which sensitivities are computed, see 7.4. Only a subset of the specification is
needed (the one given under Market, see 7.4.3 for a detailed description).

• sensitivityConfigFile: Configuration file for the sensitivity calculation, see
section 7.5.

• pricingEnginesFile: Configuration file for the pricing engines to be used for
sensitivity calculation.

• scenarioOutputFile: File containing the results of the sensitivity calculation in
terms of the base scenario NPV, the scenario NPV and their difference.

• sensitivityOutputFile: File containing the results of the sensitivity
calculation in terms of the base scenario NPV, the shift size together with the
risk-factor and the resulting first and (pure) second order finite differences. Also
included is a second set of shift sizes together with the risk-factor with a (mixed)
second order finite difference associated to a cross gamma calculation

• outputSensitivityThreshold: Only finite differences with absolute value
greater than this number are written to the output files.

• recalibrateModels: If set to Y, then recalibrate pricing models after each shift
of relevant term structures; otherwise do not recalibrate

• parSensitivity: If set to Y, par sensitivity analysis is performed following the
"raw" sensitivity analysis; note that in this case the sensitivityConfigFile
needs to contain ParConversion sections, see Example_40

• parSensitivityOutputFile: Output file name for the par sensitivity report

87

• outputJacobi: If set to Y, then the relevant Jacobi and inverse Jacobi matrix is
written to a file, see below

• jacobiOutputFile: Output file name for the Jacobi matrx

• jacobiInverseOutputFile: Output file name for the inverse Jacobi matrix

The zero to par sensitivity conversion analytics configuration is similar to the one of
the sensitivity calculation. Listing 10 shows an example.

Listing 10: ORE analytic: Zero to Par Sensitivity Conversion

<Analytics>
<Analytic type="zeroToParSensiConversion">

<Parameter name="active">Y</Parameter>
<Parameter name="marketConfigFile">simulation.xml</Parameter>
<Parameter name="sensitivityConfigFile">sensitivity.xml</Parameter>
<Parameter name="pricingEnginesFile">../../Input/pricingengine.xml</Parameter>
<Parameter name="sensitivityInputFile">sensitivity.csv</Parameter>
<Parameter name="outputThreshold">0.000001</Parameter>
<Parameter name="outputFile">parconversion_sensitivity.csv</Parameter>
<Parameter name="outputJacobi">Y</Parameter>
<Parameter name="jacobiOutputFile">jacobi.csv</Parameter>
<Parameter name="jacobiInverseOutputFile">jacobi_inverse.csv</Parameter>

</Analytic>
</Analytics>

The parameters have the same interpretation as for the sensitivity analytic. There is
one new parameter *sensitivityInputFile* which points to a csv file with the raw
(zero)sensitivites. Those raw sensitivites will be converted into par sensitivities, using
the the same methodology described in A.16 and the configuration is described in 7.5.

The raw sensitivites csv input file *sensitivityInputFile* needs to have at least six
columns, the column names can be user configured in the master input file. Here is a
description of each of the columns:

1. idColumn : Column with a unique identifier for the trade / nettingset / portfolio.

2. riskFactorColumn: Column with the identifier of the zero/raw sensitiviy. The
risk factor name needs to follow the ORE naming convention, e.g.
DiscountCurve/EUR/5/1Y (the 6th bucket in EUR discount curve as specified in
the sensitivity.xml)

3. deltaColumn: The raw sensitivity of the trade/nettingset / portfolio with respect
to the risk factor

4. currencyColumn: The currency in which the raw sensitivity is expressed, need to
be the same as the BaseCurrency in the simulation settings.

5. shiftSizeColumn: The shift size applied to compute the raw sensitivity, need to
be consistent to the sensitivity configuration.

6. baseNpvColumn: The base npv of the trade / nettingset / portfolio in currency.

Here is an example for an input file:

88

#TradeId Factor_1 ShiftSize_1 Currency Base NPV Delta
0 Swap DiscountCurve/EUR/3/6M 0.0001 EUR 1335.27 5.05
1 Swap DiscountCurve/EUR/4/9M 0.0001 EUR 1335.27 0.35
2 Swap DiscountCurve/EUR/5/1Y 0.0001 EUR 1335.27 -5.41
3 Swap DiscountCurve/EUR/6/2Y 0.0001 EUR 1335.27 -0.22
4 Swap DiscountCurve/EUR/7/3Y 0.0001 EUR 1335.27 -0.32

The stress analytics configuration is similar to the one of the sensitivity calculation.
Listing 11 shows an example.

Listing 11: ORE analytic: stress

<Analytics>
<Analytic type="stress">
<Parameter name="active">Y</Parameter>
<Parameter name="marketConfigFile">simulation.xml</Parameter>
<Parameter name="stressConfigFile">stresstest.xml</Parameter>
<Parameter name="pricingEnginesFile">../../Input/pricingengine.xml</Parameter>
<Parameter name="scenarioOutputFile">stresstest.csv</Parameter>
<Parameter name="outputThreshold">0.000001</Parameter>

</Analytic>
</Analytics>

The parameters have the same interpretation as for the sensitivity analytic. The
configuration file for the stress scenarios is described in more detail in section 7.6.

The VaR ’analytics’ provide computation of Value-at-Risk measures based on the
sensitivity (delta, gamma, cross gamma) data above. Listing 12 shows a configuration
example.

Listing 12: ORE analytic: VaR

<Analytics>
<Analytic type="parametricVar">
<Parameter name="active">Y</Parameter>
<Parameter name="portfolioFilter">PF1|PF2</Parameter>
<Parameter name="sensitivityInputFile">

../Output/sensitivity.csv,../Output/crossgamma.csv
</Parameter>
<Parameter name="covarianceInputFile">covariance.csv</Parameter>
<Parameter name="salvageCovarianceMatrix">N</Parameter>
<Parameter name="quantiles">0.01,0.05,0.95,0.99</Parameter>
<Parameter name="breakdown">Y</Parameter>
<!-- Delta, DeltaGammaNormal, Cornish-Fisher, Saddlepoint, MonteCarlo -->
<Parameter name="method">DeltaGammaNormal</Parameter>
<Parameter name="mcSamples">100000</Parameter>
<Parameter name="mcSeed">42</Parameter>
<Parameter name="outputFile">var.csv</Parameter>

</Analytic>
</Analytics>

The parameters have the following interpretation:

• �portfolioFilter: Regular expression used to filter the portfolio for which VaR is
computed; if the filter is not provided, then the full portfolio is processed

89

• sensitivityInputFile: Reference to the sensitivity (deltas, vegas, gammas)
and cross gamma input as generated by ORE in a comma separated list

• covarianceFile: Reference to the covariances input data; these are currently
not calculated in ORE and need to be provided externally, in a
blank/tab/comma separated file with three columns (factor1, factor2,
covariance), where factor1 and factor2 follow the naming convention used in
ORE’s sensitivity and cross gamma output files. Covariances need to be
consistent with the sensitivity data provided. For example, if sensitivity to
factor1 is computed by absolute shifts and expressed in basis points, then the
covariances with factor1 need to be based on absolute basis point shifts of
factor1; if sensitivity is due to a relative factor1 shift of 1%, then covariances
with factor1 need to be based on relative shifts expressed in percentages to, etc.
Also note that covariances are expected to include the desired holding period, i.e.
no scaling with square root of time etc is performed in ORE;

• salvageCovarianceMatrix: If set to Y, turn the input covariance matrix into a
valid (positive definite) matrix applying a Salvaging algorithm; if set to N, throw
an exception if the matrix is not positive definite

• quantiles: Several desired quantiles can be specified here in a comma separated
list; these lead to several columns of results in the output file, see below. Note
that e.g. the 1% quantile corresponds to the lower tail of the P&L distribution
(VaR), 99% to the upper tail.

• breakdown: If yes, VaR is computed by portfolio, risk class (All, Interest Rate,
FX, Inflation, Equity, Credit) and risk type (All, Delta & Gamma, Vega)

• method: Choices are Delta, DeltaGammaNormal, Cornish-Fisher, Saddlepoint,
MonteCarlo, see appendix A.17

• mcSamples: Number of Monte Carlo samples used when the MonteCarlo method
is chosen

• mcSeed: Random number generator seed when the MonteCarlo method is chosen

• outputFile: Output file name

The simm ’analytic’ provides computation of initial margin using ISDA’s Standard
Initial Margin Model (SIMM) based on sensitivities in the Common Risk Interchange
Format (CRIF) defined by ISDA. Listing 13 shows a configuration example.

90

Listing 13: ORE analytic: SIMM

<Analytics>
<Analytic type="simm">

<Parameter name="active">Y</Parameter>
<Parameter name="version">2.1</Parameter>
<Parameter name="crif">crif.csv</Parameter>
<Parameter name="calculationCurrency">USD</Parameter>
<Parameter name="resultCurrency">USD</Parameter>
<Parameter name="enforceIMRegulations">true</Parameter>
<Parameter name="mporDays">1</Parameter>

</Analytic>
<Analytics>

The parameters have the following interpretation:

• version: SIMM model version string
Allowable values: 1.0, 1.1, 1.2, 1.3, 1.3.38, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.5A
Note that any new SIMM model versions are integrated into ORE with each
release, tested against the official ISDA SIMM unit tests.

• crif: Name of the CRIF file to be loaded

• calculationCurrency: Determines the Risk_FX CRIF entry that is ignored in
ISDA SIMM calculation
Allowable values: See Table 28 Currency.

• resultCurrency (optional): Currency for expressing the amounts in the
resulting SIMM report, by default set to the calculationCurrency.
Allowable values: See Table 28 Currency.

• enforceIMRegulations (optional): Whether to take collect/post regulations into
account.
Allowable values: Allowable boolean values are given in Table 42. Defaults to
False if omitted.

• mporDays (optional): Currency for expressing the amounts in the resulting
SIMM report, by default set to the calculationCurrency.
Allowable values: See Table 28 Currency.

The SIMM analytic requires minimal market data input and today’s market
configuration - FX rates for conversions calculation currency, USD and result currency.

7.2 Market: todaysmarket.xml

This configuration file determines the subset of the ’market’ universe which is going to
be built by ORE. It is the user’s responsibility to make sure that this subset is
sufficient to cover the portfolio to be analysed. If it is not, the application will
complain at run time and exit.

We assume that the market configuration is provided in file todaysmarket.xml,
however, the file name can be chosen by the user. The file name needs to be entered
into the master configuration file ore.xml, see section 7.1.

91

The file starts and ends with the opening and closing tags <TodaysMarket> and
</TodaysMarket>. The file then contains configuration blocks for

• Discounting curves

• Index curves (to project index fixings)

• Yield curves (for other purposes, e.g. as benchmark curve for bond pricing)

• Swap index curves (to project Swap rates)

• FX spot rates

• Inflation index curves (to project zero or yoy inflation fixings)

• Equity curves (to project forward prices)

• Default curves

• Swaption volatility structures

• Cap/Floor volatility structures

• FX volatility structures

• Inflation Cap/Floor volatility surfaces

• Equity volatility structures

• CDS volatility structures

• Base correlation structures

• Correlation structures

• Securities

There can be alternative versions of each block each labeled with a unique identifier
(e.g. Discount curve block with ID ’default’, discount curve block with ID ’ois’,
another one with ID ’xois’, etc). The purpose of these IDs will be explained at the end
of this section. We now discuss each block’s layout.

7.2.1 Discounting Curves

We pick one discounting curve block as an example here (see
Examples/Input/todaysmarket.xml), the one with ID ’ois’

Listing 14: Discount curve block with ID ’ois’

<DiscountingCurves id="ois">
<DiscountingCurve currency="EUR">Yield/EUR/EUR1D</DiscountingCurve>
<DiscountingCurve currency="USD">Yield/USD/USD1D</DiscountingCurve>
<DiscountingCurve currency="GBP">Yield/GBP/GBP1D</DiscountingCurve>
<DiscountingCurve currency="CHF">Yield/CHF/CHF6M</DiscountingCurve>
<DiscountingCurve currency="JPY">Yield/JPY/JPY6M</DiscountingCurve>
<!-- ... -->

</DiscountingCurves>

92

This block instructs ORE to build five discount curves for the indicated currencies.
The string within the tags, e.g. Yield/EUR/EUR1D, uniquely identifies the curve to
be built. Curve Yield/EUR/EUR1D is defined in the curve configuration file explained
in section 7.8 below. In this case ORE is instructed to build an Eonia Swap curve
made of Overnight Deposit and Eonia Swap quotes. The right most token of the string
Yield/EUR/EUR1D (EUR1D) is user defined, the first two tokens Yield/EUR have to
be used to point to a yield curve in currency EUR.

7.2.2 Index Curves

See an excerpt of the index curve block with ID ’default’ from the same example file:

Listing 15: Index curve block with ID ’default’

<IndexForwardingCurves id="default">
<Index name="EUR-EURIBOR-3M">Yield/EUR/EUR3M</Index>
<Index name="EUR-EURIBOR-6M">Yield/EUR/EUR6M</Index>
<Index name="EUR-EURIBOR-12M">Yield/EUR/EUR12M</Index>
<Index name="EUR-EONIA">Yield/EUR/EUR1D</Index>
<Index name="USD-LIBOR-3M">Yield/USD/USD3M</Index>
<!-- ... -->

</IndexForwardingCurves>

This block of curve specifications instructs ORE to build another set of yield curves,
unique strings (e.g. Yield/EUR/EUR6M etc.) point to the curveconfig.xml file
where these curves are defined. Each curve is then associated with an index name (of
format Ccy-IndexName-Tenor, e.g. EUR-EURIBOR-6M) so that ORE will project the
respective index using the selected curve (e.g. Yield/EUR/EUR6M).

7.2.3 Yield Curves

See an excerpt of the yield curve block with ID ’default’ from the same example file:

Listing 16: Yield curve block with ID ’default’

<YieldCurves id="default">
<YieldCurve name="BANK_EUR_LEND">Yield/EUR/BANK_EUR_LEND</YieldCurve>
<YieldCurve name="BANK_EUR_BORROW">Yield/EUR/BANK_EUR_BORROW</YieldCurve>
<!-- ... -->

</YieldCurves>

This block of curve specifications instructs ORE to build another set of yield curves,
unique strings (e.g. Yield/EUR/EUR6M etc.) point to the curveconfig.xml file
where these curves are defined. Other than discounting and index curves the yield
curves in this block are not tied to a particular purpose. The curves defined in this
block typically include

• additional curves needed in the XVA post processor, e.g. for the FVA calculation

• benchmark curves used for bond pricing

93

7.2.4 Swap Index Curves

The following is an excerpt of the swap index curve block with ID ’default’ from the
same example file:

Listing 17: Swap index curve block with ID ’default’

<SwapIndexCurves id="default">
<SwapIndex name="EUR-CMS-1Y">
<Index>EUR-EURIBOR-6M</Index>
<Discounting>EUR-EONIA</Discounting>

</SwapIndex>
<SwapIndex name="EUR-CMS-30Y">
<Index>EUR-EURIBOR-6M</Index>
<Discounting>EUR-EONIA</Discounting>

</SwapIndex>
<!-- ... -->

</SwapIndexCurves>

These instructions do not build any additional curves. They only build the respective
swap index objects and associate them with the required index forwarding and
discounting curves already built above. This enables a swap index to project the fair
rate of forward starting Swaps. Swap indices are also containers for conventions.
Swaption volatility surfaces require two swap indices each available in the market
object, a long term and a short term swap index. The curve configuration file below
will show that in particular the required short term index has term 1Y, and the
required long term index has 30Y term. This is why we build these two indices at this
point.

7.2.5 FX Spot

The following is an excerpt of the FX spot block with ID ’default’ from the same
example file:

Listing 18: FX spot block with ID ’default’

<FxSpots id="default">
<FxSpot pair="EURUSD">FX/EUR/USD</FxSpot>
<FxSpot pair="EURGBP">FX/EUR/GBP</FxSpot>
<FxSpot pair="EURCHF">FX/EUR/CHF</FxSpot>
<FxSpot pair="EURJPY">FX/EUR/JPY</FxSpot>
<!-- ... -->

</FxSpots>

This block instructs ORE to provide four FX quotes, all quoted with target currency
EUR so that foreign currency amounts can be converted into EUR via multiplication
with that rate.

7.2.6 FX Volatilities

The following is an excerpt of the FX Volatilities block with ID ’default’ from the same
example file:

94

Listing 19: FX volatility block with ID ’default’

<FxVolatilities id="default">
<FxVolatility pair="EURUSD">FXVolatility/EUR/USD/EURUSD</FxVolatility>
<FxVolatility pair="EURGBP">FXVolatility/EUR/GBP/EURGBP</FxVolatility>
<FxVolatility pair="EURCHF">FXVolatility/EUR/CHF/EURCHF</FxVolatility>
<FxVolatility pair="EURJPY">FXVolatility/EUR/JPY/EURJPY</FxVolatility>
<!-- ... -->

</FxVolatilities>

This instructs ORE to build four FX volatility structures for all FX pairs with target
currency EUR, see curve configuration file for the definition of the volatility structure.

7.2.7 Swaption Volatilities

The following is an excerpt of the Swaption Volatilities block with ID ’default’ from
the same example file:

Listing 20: Swaption volatility block with ID ’default’

<SwaptionVolatilities id="default">
<SwaptionVolatility currency="EUR">SwaptionVolatility/EUR/EUR_SW_N</SwaptionVolatility>
<SwaptionVolatility currency="USD">SwaptionVolatility/USD/USD_SW_N</SwaptionVolatility>
<SwaptionVolatility currency="GBP">SwaptionVolatility/GBP/GBP_SW_N</SwaptionVolatility>
<SwaptionVolatility currency="CHF">SwaptionVolatility/CHF/CHF_SW_N</SwaptionVolatility>
<SwaptionVolatility currency="JPY">SwaptionVolatility/CHF/JPY_SW_N</SwaptionVolatility>

</SwaptionVolatilities>

This instructs ORE to build five Swaption volatility structures, see the curve
configuration file for the definition of the volatility structure. The latter token (e.g.
EUR_SW_N) is user defined and will be found in the curve configuration’s CurveId
tag.

7.2.8 Cap/Floor Volatilities

The following is an excerpt of the Cap/Floor Volatilities block with ID ’default’ from
the same example file:

Listing 21: Cap/Floor volatility block with ID ’default’

<CapFloorVolatilities id="default">
<CapFloorVolatility currency="EUR">CapFloorVolatility/EUR/EUR_CF_N</CapFloorVolatility>
<CapFloorVolatility currency="USD">CapFloorVolatility/USD/USD_CF_N</CapFloorVolatility>
<CapFloorVolatility currency="GBP">CapFloorVolatility/GBP/GBP_CF_N</CapFloorVolatility>

</CapFloorVolatilities>

This instructs ORE to build three Cap/Floor volatility structures, see the curve
configuration file for the definition of the volatility structure. The latter token (e.g.
EUR_CF_N) is user defined and will be found in the curve configuration’s CurveId
tag.

95

7.2.9 Default Curves

The following is an excerpt of the Default Curves block with ID ’default’ from the
same example file:

Listing 22: Default curves block with ID ’default’

<DefaultCurves id="default">
<DefaultCurve name="BANK">Default/USD/BANK_SR_USD</DefaultCurve>
<DefaultCurve name="CPTY_A">Default/USD/CUST_A_SR_USD</DefaultCurve>
<DefaultCurve name="CPTY_B">Default/USD/CUST_A_SR_USD</DefaultCurve>
<!-- ... -->

</DefaultCurves>

This instructs ORE to build a set of default probability curves, again defined in the
curve configuration file. Each curve is then associated with a name (BANK,
CUST_A) for subsequent lookup. As before, the last token (e.g. BANK_SR_USD) is
user defined and will be found in the curve configuration’s CurveId tag.

7.2.10 Securities

The following is an excerpt of the Security block with ID ’default’ from the same
example file:

Listing 23: Securities block with ID ’default’

<Securities id="default">
<Security name="SECURITY_1">Security/SECURITY_1</Security>

</Securities>

The pricing of bonds includes (among other components) a security specific spread and
rate. This block links a security name to a spread and rate pair defined in the curve
configuration file. This name may then be referenced as the security id in the bond
trade definition.

7.2.11 Equity Curves

The following is an excerpt of the Equity curves block with ID ’default’ from the same
example file:

Listing 24: Equity curves block with ID ’default’

<EquityCurves id="default">
<EquityCurve name="SP5">Equity/USD/SP5</EquityCurve>
<EquityCurve name="Lufthansa">Equity/EUR/Lufthansa</EquityCurve>

</EquityCurves>

This instructs ORE to build a set of equity curves, again defined in the curve
configuration file. Each equity curve after construction will consist of a spot equity
price, as well as a term structure of dividend yields, which can be used to determine

96

forward prices. This object is then associated with a name (e.g. SP5) for subsequent
lookup.

7.2.12 Equity Volatilities

The following is an excerpt of the equity volatilities block with ID ’default’ from the
same example file:

Listing 25: EQ volatility block with ID ’default’

<EquityVolatilities id="default">
<EquityVolatility name="SP5">EquityVolatility/USD/SP5</EquityVolatility>
<EquityVolatility name="Lufthansa">EquityVolatility/EUR/Lufthansa</EquityVolatility>

</EquityVolatilities>

This instructs ORE to build two equity volatility structures for SP5 and Lufthansa,
respectively. See the curve configuration file for the definition of the equity volatility
structure.

7.2.13 Inflation Index Curves

The following is an excerpt of the Zero Inflation Index Curves block with ID ’default’
from the sample example file:

Listing 26: Zero Inflation Index Curves block with ID ’default’

<ZeroInflationIndexCurves id="default">
<ZeroInflationIndexCurve name="EUHICPXT">

Inflation/EUHICPXT/EUHICPXT_ZC_Swaps
</ZeroInflationIndexCurve>
<ZeroInflationIndexCurve name="FRHICP">

Inflation/FRHICP/FRHICP_ZC_Swaps
</ZeroInflationIndexCurve>
<ZeroInflationIndexCurve name="UKRPI">

Inflation/UKRPI/UKRPI_ZC_Swaps
</ZeroInflationIndexCurve>
<ZeroInflationIndexCurve name="USCPI">

Inflation/USCPI/USCPI_ZC_Swaps
</ZeroInflationIndexCurve>
...

</ZeroInflationIndexCurves>

This instructs ORE to build a set of zero inflation index curves, which are defined in
the curve configuration file. Each curve is then associated with an index name (like
e.g. EUHICPXT or UKRPI). The last token (e.g. EUHICPXT_ZC_Swap) is user
defined and will be found in the curve configuration’s CurveId tag.

In a similar way, Year on Year index curves are specified:

97

Listing 27: YoY Inflation Index Curves block with ID ’default’

<YYInflationIndexCurves id="default">
<YYInflationIndexCurve name="EUHICPXT">

Inflation/EUHICPXT/EUHICPXT_YY_Swaps
</YYInflationIndexCurve>
...

</YYInflationIndexCurves>

Note that the index name is the same as in the corresponding zero index curve
definition, but the token corresponding to the CurveId tag is different. This is because
the actual underlying index (and in particular its fixings) are shared between the two
index types, while different projection curves are used to forecast future index
realisations.

7.2.14 Inflation Cap/Floor Volatility Surfaces

The following is an excerpt of the Inflation Cap/Floor Volatility Surfaces blocks with
ID ’default’ from the sample example file:

Listing 28: Inflation Cap/Floor Volatility Surfaces block with ID ’default’

<YYInflationCapFloorVolatilities id="default">
<YYInflationCapFloorVolatility name="EUHICPXT">

InflationCapFloorVolatility/EUHICPXT/EUHICPXT_YY_CF
</InflationCapFloorVolatility>

</YYInflationCapFloorVolatilities>

<ZeroInflationCapFloorVolatilities id="default">
<ZeroInflationCapFloorVolatility name="UKRPI">

InflationCapFloorVolatility/UKRPI/UKRPI_ZC_CF
</ZeroInflationCapFloorVolatility>
<ZeroInflationCapFloorVolatility name="EUHICPXT">

InflationCapFloorVolatility/EUHICPXT/EUHICPXT_ZC_CF
</ZeroInflationCapFloorVolatility>
<ZeroInflationCapFloorVolatility name="USCPI">

InflationCapFloorVolatility/USCPI/USCPI_ZC_CF
</ZeroInflationCapFloorVolatility>

</ZeroInflationCapFloorVolatilities>

This instructs ORE to build a set of year-on-year and zero inflation cap floor volatility
surfaces, which are defined in the curve configuration file. Each surface is associated
with an index name. The last token (e.g. EUHICPXT_ZC_CF) is user defined and
will be found in the curve configuration’s CurveId tag.

7.2.15 CDS Volatility Structures

CDS volatility structures are configured as follows

98

Listing 29: CDS volatility structure block with ID ’default’

<CDSVolatilities id="default">
<CDSVolatility name="CDSVOL_A">CDSVolatility/CDXIG</CDSVolatility>
<CDSVolatility name="CDSVOL_B">CDSVolatility/CDXHY</CDSVolatility>
</CDSVolatilities>

The composition of the CDS volatility structures is defined in the curve configuration.

7.2.16 Base Correlation Structures

Base correlation structures are configured as follows

Listing 30: Base Correlations block with ID ’default’

<BaseCorrelations id="default">
<BaseCorrelation name="CDXIG">BaseCorrelation/CDXIG</BaseCorrelation>
</BaseCorrelations>

The composition of the base correlation structure is defined in the curve configuration.

7.2.17 Correlation Structures

Correlation structures are configured as follows

Listing 31: Correlations block with ID ’default’

<Correlations id="default">
<Correlation name="EUR-CMS-10Y:EUR-CMS-1Y">Correlation/EUR-CORR</Correlation>
<Correlation name="USD-CMS-10Y:USD-CMS-1Y">Correlation/USD-CORR</Correlation>

</Correlations>

The composition of the correlation structure is defined in the curve configuration.

7.2.18 Market Configurations

Finally, representatives of each type of block (Discount Curves, Index Curves, Volatility
structures, etc, up to Inflation Cap/Floor Price Surfaces) can be bundled into a market
configuration. This is done by adding the following to the todaysmarket.xml file:

99

Listing 32: Market configurations

<Configuration id="default">
<DiscountingCurvesId>xois_eur</DiscountingCurvesId>

</Configuration>
<Configuration id="collateral_inccy">
<DiscountingCurvesId>ois</DiscountingCurvesId>

</Configuration>
<Configuration id="collateral_eur">
<DiscountingCurvesId>xois_eur</DiscountingCurvesId>

</Configuration>
<Configuration id="libor">
<DiscountingCurvesId>inccy_swap</DiscountingCurvesId>

</Configuration>

When ORE constructs the market object, all market configurations will be build and
labelled using the ’Configuration Id’. This allows configuring a market setup for
different alternative purposes side by side in the same todaysmarket.xml file. Typical
use cases are

• different discount curves needed for model calibration and risk factor evolution,
respectively

• different discount curves needed for collateralised and uncollateralised derivatives
pricing.

The former is actually used throughout the Examples section. Each master input file
ore.xml has a Markets section (see 7.1) where four market configuration IDs have to
be provided - the ones used for ’lgmcalibration’, ’fxcalibration’, ’pricing’ and
’simulation’ (i.e. risk factor evolution).

The configuration ID concept extends across all curve and volatility objects though
currently used only to distinguish discounting.

7.3 Pricing Engines: pricingengine.xml

The pricing engine configuration file is provided to select pricing models and pricing
engines by product type. The following is an overview over the Example section’s
pricingengine.xml. Further below we discuss the Bermudan Swaption engine
parametrisation in more detail.

<PricingEngines>
<Product type="Swap">
<Model>DiscountedCashflows</Model>
<ModelParameters/>
<Engine>DiscountingSwapEngine</Engine>
<EngineParameters/>

</Product>
<Product type="CrossCurrencySwap">
<Model>DiscountedCashflows</Model>
<ModelParameters/>
<Engine>DiscountingCrossCurrencySwapEngine</Engine>
<EngineParameters/>

</Product>

100

<Product type="FxForward">
<Model>DiscountedCashflows</Model>
<ModelParameters/>
<Engine>DiscountingFxForwardEngine</Engine>
<EngineParameters/>

</Product>
<Product type="FxOption">
<Model>GarmanKohlhagen</Model>
<ModelParameters/>
<Engine>AnalyticEuropeanEngine</Engine>
<EngineParameters/>

</Product>
<Product type="FxOptionAmerican">
<Model>GarmanKohlhagen</Model>
<ModelParameters/>
<Engine>FdBlackScholesVanillaEngine</Engine>
<EngineParameters>
<Parameter name="Scheme">Douglas</Parameter>
<Parameter name="TimeGridPerYear">100</Parameter>
<Parameter name="XGrid">100</Parameter>
<Parameter name="DampingSteps">0</Parameter>
<!-- optional, prevents too small time grids for increased

Greek precision when expiry is near, set to 1 if omitted -->
<Parameter name="TimeGridMinimumSize">1</Parameter>

</EngineParameters>
</Product>
<Product type="EuropeanSwaption">
<Model>BlackBachelier</Model> <!-- depends on input vol -->
<ModelParameters/>
<Engine>BlackBachelierSwaptionEngine</Engine>
<EngineParameters/>

</Product>
<Product type="Bond">
<Model>DiscountedCashflows</Model>
<ModelParameters/>
<Engine>DiscountingRiskyBondEngine</Engine>
<EngineParameters>
<Parameter name="TimestepPeriod">6M</Parameter>

</EngineParameters>
</Product>
<Product type="BermudanSwaption">
<Model>LGM</Model>
<ModelParameters>
<Parameter name="Calibration">Bootstrap</Parameter>
<Parameter name="BermudanStrategy">CoterminalATM</Parameter>
<!-- ccy specific reversions -->
<Parameter name="Reversion_EUR">0.03</Parameter>
<Parameter name="Reversion_USD">0.04</Parameter>
<!-- reversion to use if no ccy specific value is given -->
<Parameter name="Reversion">0.02</Parameter>
<Parameter name="ReversionType">HullWhite</Parameter>
<Parameter name="Volatility">0.01</Parameter>
<Parameter name="VolatilityType">Hagan</Parameter>
<Parameter name="ShiftHorizon">0.5</Parameter>
<Parameter name="Tolerance">0.0001</Parameter>

</ModelParameters>
<Engine>Grid</Engine>
<EngineParameters>

101

<Parameter name="sy">3.0</Parameter>
<Parameter name="ny">10</Parameter>
<Parameter name="sx">3.0</Parameter>
<Parameter name="nx">10</Parameter>

</EngineParameters>
</Product>
<Product type="CapFloor">
<Model>IborCapModel</Model>
<ModelParameters/>
<Engine>IborCapEngine</Engine>
<EngineParameters/>

</Product>
<Product type="CapFlooredIborLeg">
<Model>BlackOrBachelier</Model>
<ModelParameters/>
<Engine>BlackIborCouponPricer</Engine>
<EngineParameters>

<!-- Black76 or BivariateLognormal -->
<TimingAdjustment>Black76</TimingAdjustment>
<!-- Correlation Parameter for BivariateLognormal -->
<Correlation>1.0</Correlation>

</EngineParameters>
</Product>
<Product type="EquityForward">
<Model>DiscountedCashflows</Model>
<ModelParameters/>
<Engine>DiscountingEquityForwardEngine</Engine>
<EngineParameters/>

</Product>
<Product type="EquityOption">
<Model>BlackScholesMerton</Model>
<ModelParameters/>
<Engine>AnalyticEuropeanEngine</Engine>
<EngineParameters/>

</Product>
<Product type="Bond">
<Model>DiscountedCashflows</Model>
<ModelParameters/>
<Engine>DiscountingRiskyBondEngine</Engine>
<EngineParameters>
<Parameter name="TimestepPeriod">6M</Parameter>

</EngineParameters>
</Product>
<Product type="CreditDefaultSwap">
<Model>DiscountedCashflows</Model>
<ModelParameters/>
<Engine>MidPointCdsEngine</Engine>
<EngineParameters/>

</Product>
<Product type="CMS">
<Model>Hagan</Model><!-- or LinearTSR -->
<ModelParameters/>
<Engine>Analytic</Engine> <!-- or Numerical -->
<EngineParameters>

<!-- Alternative Yield Curve Models: ExactYield, ParallelShifts, NonParallelShifts -->
<Parameter name="YieldCurveModel">Standard</Parameter>
<Parameter name="MeanReversion_EUR">0.01</Parameter>
<Parameter name="MeanReversion_USD">0.02</Parameter>

102

<Parameter name="MeanReversion">0.0</Parameter>
</EngineParameters>

</Product>
<Product type="CMSSpread">
<Model>BrigoMercurio</Model>
<ModelParameters/>
<Engine>Analytic</Engine>
<EngineParameters>
<Parameter name="IntegrationPoints">16</Parameter>

</EngineParameters>
</Product>
<GlobalParameters>
<Parameter name="ContinueOnCalibrationError">true</Parameter>
<!-- typically not present in a user configuration, but used internally -->
<Parameter name="Calibrate">true</Parameter>
<Parameter name="GenerateAdditionalResults">true</Parameter>
<Parameter name="RunType">NPV</Parameter>

</GlobalParameters>

Listing 33: Pricing engine configuration

These settings will be taken into account when the engine factory is asked to build the
respective pricing engines and required models, and to calibrate the required model.

For example, in case of the Bermudan Swaption, the parameters are interpreted as
follows:

• The only model currently supported for Bermudan Swaption pricing is the LGM
selected here.

• The first block of model parameters then provides initial values for the model
(Reversion, Volatility) and chooses the parametrisation of the LGM model with
ReversionType and VolatilityType choices HullWhite and Hagan. Notice the
possibility to specify a currency-specific reversion. Calibration and
BermudanStrategy can be set to None in order to skip model calibration.
Alternatively, Calibration is set to Bootstrap and BermudanStrategy to
CoterminalATM in order to calibrate to instrument-specific co-terminal ATM
Swaptions, i.e. chosen to match the instruments first expiry and final maturity.
If CoterminalDealStrike is chosen, the co-terminal swaptions will match the fixed
rate of the deal (if the deal has changing fixed rates, the first rate is matched).
Finally if the ShiftHorizon parameter is given, its value times the remaining
maturity time of the deal is chosen as the horizon shift parameter for the LGM
model. If not given, this parameter defaults to 0.5.

• The second block of engine parameters specifies the Numerical Swaption engine
parameters which determine the number of standard deviations covered in the
probability density integrals (sy and sx), and the number of grid points used per
standard deviation (ny and nx).

To see the configuration options for the alternative CMS engines (Hagan Numerical,
LinearTSR) or the Black Ibor coupon pricer (CapFlooredIborLeg), please refer to the
commented parts in Examples/Input/pricingengine.xml.

This file is relevant in particular for structured products which are on the roadmap of

103

future ORE releases. But it is also intended to allow the selection of optimised pricing
engines for vanilla products such as Interest Rate Swaps.

In addition to product specific settings there is also a block with global parameters
with the following meaning:

• ContinueOnCalibrationError: If set to true an exceedence of a prescribed model
calibration tolerance (for e.g. the LGM model) will not cause the trade building
to fail, instead a warning is logged and the trade is processed anyway. Optional,
defaults to false.

• Calibrate: If false, model calibration is disabled. This flag is usually not present
in a user configuration, but only used internally for certain workflows within
ORE which do not require a model calibration. Optional, defaults to true.

• GenerateAdditionalResults: If false, the generation of additional results within
pricing engines will be suppressed (for those pricing engines which support this).
This flag is usually not present in a user configuration, but only used internally
to improve the performance for processes which only rely on the NPV as a result
from pricing engines, e.g. when repricing trades under sensitivity or stress
scenarios. Option, defaults to false.

• RunType: Set automatically. One of NPV, SensitivityDelta,
SensitivityDeltaGamma, Stress, Exposure, Capital, TradeDetails,
PortfolioAnalyser, HistoricalPnL, BondSpreadImply, AbsMaturityUpdate
depending on the context for which a portfolio was built. Might also be left
empty. This is used by some pricing engines to adapt to certain run types. E.g. a
first order sensitivity pnl expansion might be used for a SensitivityDelta run by
an engine which is able to compute analytical or AAD first order sensitivities.

7.4 Simulation: simulation.xml

This file determines the behaviour of the risk factor simulation (scenario generation)
module. It is structured in three blocks of data.

Listing 34: Simulation configuration

<Simulation>
<Parameters> ... </Parameters>
<CrossAssetModel> ... </CrossAssetModel>
<Market> ... </Market>

</Simulation>

Each of the three blocks is sketched in the following.

7.4.1 Parameters

Let us discuss this section using the following example

104

Listing 35: Simulation configuration

<Parameters>
<Grid>80,3M</Grid>
<Calendar>EUR,USD,GBP,CHF</Calendar>
<DayCounter>ACT/ACT</DayCounter>
<Sequence>SobolBrownianBridge</Sequence>
<Seed>42</Seed>
<Samples>1000</Samples>
<Ordering>Steps</Ordering>
<DirectionIntegers>JoeKuoD7</DirectionIntegers>
<!-- The following two nodes are optional -->
<CloseOutLag>2W</CloseOutLag>
<MporMode>StickyDate</MporMode>

</Parameters>

• Grid: Specifies the simulation time grid, here 80 quarterly steps.8

• Calendar: Calendar or combination of calendars used to adjust the dates of the
grid. Date adjustment is required because the simulation must step over ’good’
dates on which index fixings can be stored.

• DayCounter: Day count convention used to translate dates to times. Optional,
defaults to ActualActual ISDA.

• Sequence: Choose random sequence generator (MersenneTwister,
MersenneTwisterAntithetic, Sobol, SobolBrownianBridge).

• Seed: Random number generator seed

• Samples: Number of Monte Carlo paths to be produced use (Backward,
Forward, BestOfForwardBackward, InterpolatedForwardBackward), which number
of forward horizon days to use if one of the Forward related methods is chosen.

• Ordering: If the sequence type SobolBrownianBridge is used, ordering of
variates (Factors, Steps, Diagonal)

• DirectionIntegers: If the sequence type SobolBrownianBridge or Sobol is used,
type of direction integers in Sobol generator (Unit, Jaeckel, SobolLevitan,
SobolLevitanLemieux, JoeKuoD5, JoeKuoD6, JoeKuoD7, Kuo, Kuo2, Kuo3)

• CloseOutLag: If this tag is present, this specifies the close-out period length (e.g.
2W) used; otherwise no close-out grid is built. The close-out grid is an auxiliary
time grid that is offset from the main default date grid by the close-out period,
typically set to the applicable margin period of risk. If present, it is used to
evolve the portfolio value and determine close-out values associated with the
preceding default date valuation.

• MporMode: This tag is expected if the previous one is present, permissible values
are then StickyDate and ActualDate. StickyDate means that only market
data is evolved from the default date to close-out date for close-out date
valuation, the valuation as of date remains unchanged and trades do not “age”

8For exposure calculation under DIM, the second parameter has to match the Margin Period of
Risk, i.e. if MarginPeriodOfRisk is set to for instance 2W in a netting set definition in netting.xml,
then one has to set Grid to for instance 80,2W.

105

over the period. As a consequence, exposure evolutions will not show spikes
caused by cash flows within the close-out period. ActualDate means that trades
will also age over the close-out period so that one can experience exposure
evolution spikes due to cash flows.

7.4.2 Model

The CrossAssetModel section determines the cross asset model’s number of currencies
covered, composition, and each component’s calibration. It is currently made of

• a sequence of LGM models for each currency (say nc currencies),

• nc − 1 FX models for each exchange rate to the base currency,

• ne equity models,

• ni inflation models,

• ncr credit models,

• ncom commodity models,

• a specification of the correlation structure between all components.

The simulated currencies are specified as follows, with clearly identifying the domestic
currency which is also the target currency for all FX models listed subsequently. If the
portfolio requires more currencies to be simulated, this will lead to an exception at run
time, so that it is the user’s responsibility to make sure that the list of currencies here
is sufficient. The list can be larger than actually required by the portfolio. This will
not lead to any exceptions, but add to the run time of ORE.

106

Listing 36: Simulation model currencies configuration

<CrossAssetModel>
<DomesticCcy>EUR</DomesticCcy>
<Currencies>
<Currency>EUR</Currency>
<Currency>USD</Currency>
<Currency>GBP</Currency>
<Currency>CHF</Currency>
<Currency>JPY</Currency>

</Currencies>
<Equities>

<!-- ... -->
</Equities>
<InflationIndices>

<!-- ... -->
</InflationIndices>
<CreditNames>

<!-- ... -->
</CreditNames>
<Commodities>

<!-- ... -->
</Commodities>
<BootstrapTolerance>0.0001</BootstrapTolerance>
<Measure>LGM</Measure><!-- Choices: LGM, BA -->
<Discretization>Exact</Discretization>
<!-- ... -->

</CrossAssetModel>

Bootstrap tolerance is a global parameter that applies to the calibration of all model
components. If the calibration error of any component exceeds this tolerance, this will
trigger an exception at runtime, early in the ORE process.

The Measure tag allows switching between the LGM and the Bank Account (BA)
measure for the risk-neutral market simulations using the Cross Asset Model. Note
that within LGM one can shift the horizon (see ParameterTransformation below) to
effectively switch to a T-Forward measure.

The Discretization tag chooses between time discretization schemes for the risk factor
evolution. Exact means exploiting the analytical tractability of the model to avoid any
time discretization error. Euler uses a naive time discretization scheme which has
numerical error and requires small time steps for accurate results (useful for testing
purposes or if more sophisticated component models are used.)

Each interest rate model is specified by a block as follows

107

Listing 37: Simulation model IR configuration

<CrossAssetModel>
<!-- ... -->
<InterestRateModels>
<LGM ccy="default">
<CalibrationType>Bootstrap</CalibrationType>
<Volatility>
<Calibrate>Y</Calibrate>
<VolatilityType>Hagan</VolatilityType>
<ParamType>Piecewise</ParamType>
<TimeGrid>1.0,2.0,3.0,4.0,5.0,7.0,10.0</TimeGrid>
<InitialValue>0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01<InitialValue>

</Volatility>
<Reversion>
<Calibrate>N</Calibrate>
<ReversionType>HullWhite</ReversionType>
<ParamType>Constant</ParamType>
<TimeGrid/>
<InitialValue>0.03</InitialValue>

</Reversion>
<CalibrationSwaptions>
<Expiries>1Y,2Y,4Y,6Y,8Y,10Y,12Y,14Y,16Y,18Y,19Y</Expiries>
<Terms>19Y,18Y,16Y,14Y,12Y,10Y,8Y,6Y,4Y,2Y,1Y</Terms>
<Strikes/>

</CalibrationSwaptions>
<ParameterTransformation>
<ShiftHorizon>0.0</ShiftHorizon>
<Scaling>1.0</Scaling>

</ParameterTransformation>
</LGM>
<LGM ccy="EUR">

<!-- ... -->
</LGM>
<LGM ccy="USD">

<!-- ... -->
</LGM>

</InterestRateModels>
<!-- ... -->

</CrossAssetModel>

We have LGM sections by currency, but starting with a section for currency ’default’.
As the name implies, this is used as default configuration for any currency in the
currency list for which we do not provide an explicit parametrisation. Within each
LGM section, the interpretation of elements is as follows:

• CalibrationType: Choose between Bootstrap and BestFit, where Bootstrap is
chosen when we expect to be able to achieve a perfect fit (as with calibration of
piecewise volatility to a series of co-terminal Swaptions)

• Volatility/Calibrate: Flag to enable/disable calibration of this particular
parameter

• Volatility/VolatilityType: Choose volatility parametrisation a la
HullWhite or Hagan

108

• Volatility/ParamType: Choose between Constant and Piecewise

• Volatility/TimeGrid: Initial time grid for this parameter, can be left empty
if ParamType is Constant

• Volatility/InitialValue: Vector of initial values, matching number of
entries in time (for CalibrationType BestFit this should be one more entry than
the Volatility/TimeGrid entries, for Bootstrap this is ignored), or single value
if the time grid is empty

• Reversion/Calibrate: Flag to enable/disable calibration of this particular
parameter

• Reversion/VolatilityType: Choose reversion parametrisation a la
HullWhite or Hagan

• Reversion/ParamType: Choose between Constant and Piecewise

• Reversion/TimeGrid: Initial time grid for this parameter, can be left empty
if ParamType is Constant

• Reversion/InitialValue: Vector of initial values, matching number of
entries in time, or single value if the time grid is empty

• CalibrationSwaptions: Choice of calibration instruments by expiry,
underlying Swap term and strike. There have to be at least one more calibration
options configured than Volatility/TimeGrid entries were given.

• ParameterTransformation: LGM model prices are invariant under scaling
and shift transformations [21] with advantages for numerical convergence of
results in long term simulations. These transformations can be chosen here.
Default settings are shiftHorizon 0 (time in years) and scaling factor 1.

The reason for having to specify one more Volatility/InitialValue entries than
Volatility/TimeGrid entries (and at least one more calibration option than
Volatility/TimeGrid entries) is the fact that the intervals defined by the
Volatility/TimeGrid entries are spanning from [0, t1], [t1, t2] . . . [tn,∞], which results
in n+ 1 intervals.

Each FX model is specified by a block as follows

109

Listing 38: Simulation model FX configuration

<CrossAssetModel>
<!-- ... -->
<ForeignExchangeModels>
<CrossCcyLGM foreignCcy="default">
<DomesticCcy>EUR</DomesticCcy>
<CalibrationType>Bootstrap</CalibrationType>
<Sigma>
<Calibrate>Y</Calibrate>
<ParamType>Piecewise</ParamType>
<TimeGrid>1.0,2.0,3.0,4.0,5.0,7.0,10.0</TimeGrid>
<InitialValue>0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1</InitialValue>

</Sigma>
<CalibrationOptions>
<Expiries>1Y,2Y,3Y,4Y,5Y,10Y</Expiries>
<Strikes/>

</CalibrationOptions>
</CrossCcyLGM>
<CrossCcyLGM foreignCcy="USD">

<!-- ... -->
</CrossCcyLGM>
<CrossCcyLGM foreignCcy="GBP">

<!-- ... -->
</CrossCcyLGM>
<!-- ... -->

</ForeignExchangeModels>
<!-- ... -->

<CrossAssetModel>

CrossCcyLGM sections are defined by foreign currency, but we also support a default
configuration as above for the IR model parametrisations. Within each CrossCcyLGM
section, the interpretation of elements is as follows:

• DomesticCcy: Domestic currency completing the FX pair

• CalibrationType: Choose between Bootstrap and BestFit as in the IR section

• Sigma/Calibrate: Flag to enable/disable calibration of this particular
parameter

• Sigma/ParamType: Choose between Constant and Piecewise

• Sigma/TimeGrid: Initial time grid for this parameter, can be left empty if
ParamType is Constant

• Sigma/InitialValue: Vector of initial values, matching number of entries in
time (for CalibrationType BestFit this should be one more entry than the
Sigma/TimeGrid entries, for Bootstrap this is ignored), or single value if the time
grid is empty

• CalibrationOptions: Choice of calibration instruments by expiry and strike,
strikes can be empty (implying the default, ATMF options), or explicitly
specified (in terms of FX rates as absolute strike values, in delta notation such as
±25D, ATMF for at the money). There have to be at least one more calibration
options configured than Sigma/TimeGrid entries were given

110

Each equity model is specified by a block as follows

Listing 39: Simulation model equity configuration

<CrossAssetModel>
<!-- ... -->
<EquityModels>
<CrossAssetLGM name="default">
<Currency>EUR</Currency>
<CalibrationType>Bootstrap</CalibrationType>
<Sigma>
<Calibrate>Y</Calibrate>
<ParamType>Piecewise</ParamType>
<TimeGrid>1.0,2.0,3.0,4.0,5.0,7.0,10.0</TimeGrid>
<InitialValue>0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1</InitialValue>

</Sigma>
<CalibrationOptions>
<Expiries>1Y,2Y,3Y,4Y,5Y,10Y</Expiries>
<Strikes/>

</CalibrationOptions>
</CrossAssetLGM>
<CrossAssetLGM name="SP5">

<!-- ... -->
</CrossAssetLGM>
<CrossAssetLGM name="Lufthansa">

<!-- ... -->
</CrossAssetLGM>

<!-- ... -->
</EquityModels>
<!-- ... -->

<CrossAssetModel>

CrossAssetLGM sections are defined by equity name, but we also support a default
configuration as above for the IR and FX model parameterisations. Within each
CrossAssetLGM section, the interpretation of elements is as follows:

• Currency: Currency of denomination

• CalibrationType: Choose between Bootstrap and BestFit as in the IR section

• Sigma/Calibrate: Flag to enable/disable calibration of this particular
parameter

• Sigma/ParamType: Choose between Constant and Piecewise

• Sigma/TimeGrid: Initial time grid for this parameter, can be left empty if
ParamType is Constant

• Sigma/InitialValue: Vector of initial values, matching number of entries in
time (for CalibrationType BestFit this should be one more entry than the
Sigma/TimeGrid entries, for Bootstrap this is ignored), or single value if the time
grid is empty

• CalibrationOptions: Choice of calibration instruments by expiry and strike,
strikes can be empty (implying the default, ATMF options), or explicitly specified

111

(in terms of equity prices as absolute strike values). There have to be at least one
more calibration options configured than Sigma/TimeGrid entries were given

For the inflation model component, there is a choice between a Dodgson Kainth model
and a Jarrow Yildrim model. The Dodgson Kainth model is specified in a LGM or
DodgsonKainth node as outlined in Listing 40. The inflation model parameterisation
inherits from the LGM parameterisation for interest rate components, in particular the
CalibrationType, Volatility and Reversion elements. The CalibrationCapFloors
element specify the model’s calibration to a selection of either CPI caps or CPI floors
with specified strike.

Listing 40: Simulation model DK inflation component configuration

<CrossAssetModel>
...
<InflationIndexModels>
<LGM index="EUHICPXT">
<Currency>EUR</Currency>
<!-- As in the LGM parameterisation for any IR components -->
<CalibrationType> ... </CalibrationType>
<Volatility> ... </Volatility>
<Reversion> ... </Reversion>
<ParameterTransformation> ... </ParameterTransformation>
<!-- Inflation model specific -->
<CalibrationCapFloors>

<!-- not used yet, as there is only one strategy so far -->
<CalibrationStrategy> ... </CalibrationStrategy>
<CapFloor> Floor </CapFloor> <!-- Cap, Floor -->
<Expiries> 2Y, 4Y, 6Y, 8Y, 10Y </Expiries>
<!-- can be empty, this will yield calibration to ATM -->
<Strikes> 0.03, 0.03, 0.03, 0.03, 0.03 </Strikes>

</CalibrationCapFloors>
</LGM>
<LGM index="USCPI">
...

</LGM>
...

</InflationIndexModels>
...

<CrossAssetModel>

The calibration instruments may be specified in an alternative way via a
CalibrationBaskets node. In general, a CalibrationBaskets node can contain
multiple CalibrationBasket nodes each containing a list of calibration instruments of
the same type. For Dodgson Kainth, only a single calibration basket is allowed and the
instruments must be of type CpiCapFloor. So, for example, the
CalibrationCapFloors node in Listing 40 could be replaced with the
CalibrationBaskets node in 41.

112

Listing 41: Calibration basket for DK inflation model component

<CalibrationBaskets>
<CalibrationBasket>
<CpiCapFloor>
<Type>Floor</Type>
<Maturity>2Y</Maturity>
<Strike>0.03</Strike>

</CpiCapFloor>
<CpiCapFloor>
<Type>Floor</Type>
<Maturity>4Y</Maturity>
<Strike>0.03</Strike>

</CpiCapFloor>
<CpiCapFloor>
<Type>Floor</Type>
<Maturity>6Y</Maturity>
<Strike>0.03</Strike>

</CpiCapFloor>
<CpiCapFloor>
<Type>Floor</Type>
<Maturity>8Y</Maturity>
<Strike>0.03</Strike>

</CpiCapFloor>
<CpiCapFloor>
<Type>Floor</Type>
<Maturity>10Y</Maturity>
<Strike>0.03</Strike>

</CpiCapFloor>
</CalibrationBasket>

</CalibrationBaskets>

The Jarrow Yildrim model is specified in a JarrowYildirim node as outlined in
Listing 42. The RealRate node describes the JY real rate process and has Volatility
and Reversion nodes that follow those outlined in the interest rate LGM section
above. The Index node describes the JY index process and has a Volatility
component that follows the Sigma component of the FX model above. The
CalibrationBaskets node is as outlined above for Dodgson Kainth but up to two
baskets may be used and extra inflation instruments are supported in the calibration.
More information is provided below.

The CalibrationType determines the calibration approach, if any, that is used to
calibrate the various parameters of the model i.e. the real rate reversion, the real rate
volatility and the index volatility. If the CalibrationType is None, no calibration is
attempted and all parameter values must be explicitly specified. If the
CalibrationType is BestFit, the parameters that have Calibrate set to Y will be
calibrated to the instruments specified in the CalibrationBaskets node. If the
CalibrationType is Bootstrap, there are a number of options:

1. The index volatility parameter may be calibrated, indicated by setting
Calibrate to Y for that parameter, with both of the real rate parameters not
calibrated and set explicitly in the RealRate node. There should be exactly one
CalibrationBasket in the CalibrationBaskets node and its parameter
attribute may be set to Index or omitted.

113

2. One of the real rate parameters may be calibrated, indicated by setting
Calibrate to Y for that parameter, with the index volatility not calibrated and
set explicitly in the Volatility node. There should be exactly one
CalibrationBasket in the CalibrationBaskets node and its parameter
attribute may be set to RealRate or omitted.

3. One of the real rate parameters and the index volatility parameter may be
calibrated together. There should be exactly two CalibrationBasket nodes in
the CalibrationBaskets node. The parameter attribute should be set to
RealRate on the CalibrationBasket node that should be used for the real rate
parameter calibration. Similarly, the parameter attribute should be set to Index
on the CalibrationBasket node that should be used for the index volatility
parameter calibration. The parameters are calibrated iteratively in turn until the
root mean squared error over all calibration instruments in the two baskets is
below the tolerance specified by the RmseTolerance in the
CalibrationConfiguration node or until the maximum number of iterations as
specified by the MaxIterations in the CalibrationConfiguration node has
been reached. The CalibrationConfiguration node is optional. If it is omitted,
the RmseTolerance defaults to 0.0001 and the MaxIterations defaults to 50.

Note that it is an error to attempt to calibrate both of the real rate parameters
together when CalibrationType is Bootstrap. If a parameter is being calibrated with
CalibrationType set to Bootstrap, the ParamType should be Piecewise. The
TimeGrid will be overridden for that parameter by the relevant calibration instrument
times and the parameter’s initial values are set to the first element of the
InitialValue list. So, leaving the TimeGrid node empty and giving a single value in
the InitialValue node is the clearest XML setup in this case.

114

Listing 42: Simulation model JY inflation component configuration

<JarrowYildirim index="EUHICPXT">
<Currency>EUR</Currency>
<CalibrationType>Bootstrap</CalibrationType>
<RealRate>
<Volatility>
<Calibrate>Y</Calibrate>
<VolatilityType>Hagan</VolatilityType>
<ParamType>Piecewise</ParamType>
<TimeGrid/>
<InitialValue>0.0001</InitialValue>

</Volatility>
<Reversion>
<Calibrate>N</Calibrate>
<ReversionType>HullWhite</ReversionType>
<ParamType>Constant</ParamType>
<TimeGrid/>
<InitialValue>0.5</InitialValue>

</Reversion>
<ParameterTransformation>
<ShiftHorizon>0.0</ShiftHorizon>
<Scaling>1.0</Scaling>

</ParameterTransformation>
</RealRate>
<Index>
<Volatility>
<Calibrate>Y</Calibrate>
<ParamType>Piecewise</ParamType>
<TimeGrid/>
<InitialValue>0.0001</InitialValue>

</Volatility>
</Index>
<CalibrationBaskets>
<CalibrationBasket parameter="Index">
<CpiCapFloor>
<Type>Floor</Type>
<Maturity>2Y</Maturity>
<Strike>0.0</Strike>

</CpiCapFloor>
...

</CalibrationBasket>
<CalibrationBasket parameter="RealRate">
<YoYSwap>
<Tenor>2Y</Tenor>

</YoYSwap>
...

</CalibrationBasket>
</CalibrationBaskets>
<CalibrationConfiguration>
<RmseTolerance>0.00000001</RmseTolerance>
<MaxIterations>40</MaxIterations>

</CalibrationConfiguration>
</JarrowYildirim>

The CpiCapFloor and YoYSwap calibration instruments can be seen in Listing 42. A
YoYCapFloor is also allowed and it has the structure shown in Listing 43. The Type

115

may be Cap or Floor. The Tenor should be a maturity period e.g. 5Y. The Strike
should be an absolute strike level for the year on year cap or floor e.g. 0.01 for 1%.

Listing 43: Layout for YoYCapFloor calibration instrument.

<YoYCapFloor>
<Type>...</Type>
<Tenor>...</Tenor>
<Strike>...</Strike>

</YoYCapFloor>

For commodity simulation we currently provide one model, as described in the
methodology appendix. Commodity model components are specified by commodity
name, by a block as follows

Listing 44: Simulation model commodity configuration

<CrossAssetModel>
<!-- ... -->
<CommodityModels>
<CommoditySchwartz name="default">
<Currency>EUR</Currency>
<CalibrationType>None</CalibrationType>
<Sigma>
<Calibrate>Y</Calibrate>
<InitialValue>0.1</InitialValue>

</Sigma>
<Kappa>
<Calibrate>Y</Calibrate>
<InitialValue>0.1</InitialValue>

</Kappa>
<CalibrationOptions>

...
</CalibrationOptions>
<DriftFreeState>false</DriftFreeState>

</CommoditySchwartz>
<CommoditySchwartz name="WTI">

<!-- ... -->
</CommoditySchwartz>
<CommoditySchwartz name="NG">

<!-- ... -->
</CommoditySchwartz>

<!-- ... -->
</CommodityModels>
<!-- ... -->

<CrossAssetModel>

CommoditySchwartz sections are defined by commodity name, but we also support a
default configuration as above for the IR and FX model parameterisations. Each
component is parameterised in terms of two constant, non time-dependent parameters
σ and κ so far (see appendix). Within each CommoditySchwartz section, the
interpretation of elements is as follows:

• Currency: Currency of denomination

116

• CalibrationType: Choose between BestFit and None. The choice None will
deactivate calibration as usual. BestFit will attempt to set the model
parameter(s) such that the error in matching calibration instrument prices is
minimised. The option Bootstrap is not available here because the model
parameters are not time-dependent and the model’s degrees of freedom in general
do not suffice to perfectly match the calibration instrument prices.

• Sigma/Calibrate: Flag to enable/disable calibration of this particular
parameter

• Sigma/InitialValue: Initial value of the constant parameter

• Kappa/Calibrate: Flag to enable/disable calibration of this particular
parameter

• Kappa/InitialValue: Initial value of the constant parameter

• CalibrationOptions: Choice of calibration instruments by expiry and strike,
strikes can be empty (implying the default, ATMF options), or explicitly
specified (in terms of commodity prices as absolute strike values).

• DriftFreeState[Optional]: Boolean to switch between the two
implementations of the state variable, see appendix. By default this is set to
false.

Finally, the instantaneous correlation structure is specified as follows.

Listing 45: Simulation model correlation configuration

<CrossAssetModel>
<!-- ... -->
<InstantaneousCorrelations>
<Correlation factor1="IR:EUR" factor2="IR:USD">0.3</Correlation>
<Correlation factor1="IR:EUR" factor2="IR:GBP">0.3</Correlation>
<Correlation factor1="IR:USD" factor2="IR:GBP">0.3</Correlation>
<Correlation factor1="IR:EUR" factor2="FX:USDEUR">0</Correlation>
<Correlation factor1="IR:EUR" factor2="FX:GBPEUR">0</Correlation>
<Correlation factor1="IR:GBP" factor2="FX:USDEUR">0</Correlation>
<Correlation factor1="IR:GBP" factor2="FX:GBPEUR">0</Correlation>
<Correlation factor1="IR:USD" factor2="FX:USDEUR">0</Correlation>
<Correlation factor1="IR:USD" factor2="FX:GBPEUR">0</Correlation>
<Correlation factor1="FX:USDEUR" factor2="FX:GBPEUR">0</Correlation>
<!-- ... -->

</InstantaneousCorrelations>
</CrossAssetModel>

Any risk factor pair not specified explicitly here will be assumed to have zero
correlation. Note that the commodity components can have non-zero correlations
among each other, but correlations to all other CAM components must remain set to
zero for the time being.

7.4.3 Market

The last part of the simulation configuration file covers the specification of the
simulated market. Note that the simulation model will yield the evolution of risk

117

factors such as short rates which need to be translated into entire yield curves that can
be ’understood’ by the instruments which we want to price under scenarios.

Moreover we need to specify how volatility structures evolve even if we do not
explicitly simulate volatility. This translation happens based on the information in the
simulation market object, which is configured in the section within the enclosing tags
<Market> and </Market>, as shown in the following small example.

It should be noted that equity volatilities are taken to be a curve by default. To
simulate an equity volatility surface with smile the xml node <Surface> must be
supplied. There are two methods in ORE for equity volatility simulation:

• Simulating ATM volatilities only (and shifting other strikes relative to this using
the T0 smile). In this case set <SimulateATMOnly> to true.

• Simulating the full volatility surface. The node <SimulateATMOnly> should be
omitted or set to false, and explicit moneyness levels for simulation should be
provided.

Swaption volatilities are taken to be a surface by default. To simulate a swaption
volatility cube with smile the xml node <Cube> must be supplied. There are two
methods in ORE for swaption volatility cube simulation:

• Simulating ATM volatilities only (and shifting other strikes relative to this using
the T0 smile). In this case set <SimulateATMOnly> to true.

• Simulating the full volatility cube. The node <SimulateATMOnly> should be
omitted or set to false, and explicit strike spreads for simulation should be
provided.

FX volatilities are taken to be a curve by default. To simulate an FX volatility cube
with smile the xml node <Surface> must be supplied. The surface node contains the
moneyness levels to be simulated.

For Yield Curves, Swaption Volatilities, CapFloor Volatilities, Default Curves, Base
Correlations and Inflation Curves, a DayCounter may be specified for each risk factor
using the node <DayCounter name="EXAMPLE_CURVE">. If no day counter is specified
for a given risk factor then the default Actual365 is used. To specify a new default for
a risk factor type then use the daycounter node without any attribute, <DayCounter>.

For Yield Curves, there are several choices for the interpolation and extrapolation:

• Interpolation: This can be LogLinear or LinearZero. If not given, the value
defaults to LogLinear.

• Extrapolation: This can be FlatFwd or FlatZero. If not given, the value defaults
to FlatFwd.

For Default Curve, there is a similar choice for the extrapolation:

• Extrapolation: This can be FlatFwd or FlatZero. If not given, the value defaults
to FlatFwd.

For swap, yield, interest cap-floor, yoy inflation cap-floor, zc inflation cap-floor, cds, fx,
equity, commodity volatilities the smile dynamics can be specified as shown in listing
46 for swap vols. The empty key serves as a default configuration for all keys for which

118

Listing 46: Smile Configuration Node

<SmileDynamics key="">StickyStrike</SmileDynamics>
<SmileDynamics key="EUR-ESTER">StickyMoneyness</SmileDynamics>

no own smile dynamics node is present. The allowed smile dynamics values are
StickyStrike and StickyMoneyness. If not given, the smile dynamics defaults to
StickyStrike.

<Market>
<BaseCurrency>EUR</BaseCurrency>
<Currencies>
<Currency>EUR</Currency>
<Currency>USD</Currency>

</Currencies>
<YieldCurves>
<Configuration>
<Tenors>3M,6M,1Y,2Y,3Y,4Y,5Y,7Y,10Y,12Y,15Y,20Y</Tenors>
<Interpolation>LogLinear</Interpolation>
<Extrapolation>FlatFwd</Extrapolation>
<DayCounter>ACT/ACT</DayCounter> <!-- Sets a new default for all yieldCurves -->

</Configuration>
</YieldCurves>
<Indices>
<Index>EUR-EURIBOR-6M</Index>
<Index>EUR-EURIBOR-3M</Index>
<Index>EUR-EONIA</Index>
<Index>USD-LIBOR-3M</Index>

</Indices>
<SwapIndices>
<SwapIndex>
<Name>EUR-CMS-1Y</Name>
<ForwardingIndex>EUR-EURIBOR-6M</ForwardingIndex>
<DiscountingIndex>EUR-EONIA</DiscountingIndex>

</SwapIndex>
</SwapIndices>
<DefaultCurves>

<Names>
<Name>CPTY1</Name>
<Name>CPTY2</Name>

</Names>
<Tenors>6M,1Y,2Y</Tenors>
<SimulateSurvivalProbabilities>true</SimulateSurvivalProbabilities>
<DayCounter name="CPTY1">ACT/ACT</DayCounter>
<Extrapolation>FlatFwd</Extrapolation>

</DefaultCurves>
<SwaptionVolatilities>
<ReactionToTimeDecay>ForwardVariance</ReactionToTimeDecay>
<Currencies>
<Currency>EUR</Currency>
<Currency>USD</Currency>

</Currencies>
<Expiries>6M,1Y,2Y,3Y,5Y,10Y,12Y,15Y,20Y</Expiries>
<Terms>1Y,2Y,3Y,4Y,5Y,7Y,10Y,15Y,20Y,30Y</Terms>
<Cube>
<SimulateATMOnly>false</SimulateATMOnly>
<StrikeSpreads>-0.02,-0.01,0.0,0.01,0.02</StrikeSpreads>

119

</Cube>
<!-- Sets a new daycounter for just the EUR swaptionVolatility surface -->
<DayCounter ccy="EUR">ACT/ACT</DayCounter>

</SwaptionVolatilities>
<CapFloorVolatilities>
<ReactionToTimeDecay>ConstantVariance</ReactionToTimeDecay>
<Currencies>
<Currency>EUR</Currency>
<Currency>USD</Currency>

</Currencies>
<DayCounter ccy="EUR">ACT/ACT</DayCounter>

</CapFloorVolatilities>
<FxVolatilities>
<ReactionToTimeDecay>ForwardVariance</ReactionToTimeDecay>
<CurrencyPairs>
<CurrencyPair>EURUSD</CurrencyPair>

</CurrencyPairs>
<Expiries>6M,1Y,2Y,3Y,4Y,5Y,7Y,10Y</Expiries>
<Surface>
<Moneyness>0.5,0.6,0.7,0.8,0.9</Moneyness>
</Surface>

</FxVolatilities>
<EquityVolatilities>

<Simulate>true</Simulate>
<ReactionToTimeDecay>ForwardVariance</ReactionToTimeDecay>
<!-- Alternative: ConstantVariance -->
<Names>
<Name>SP5</Name>
<Name>Lufthansa</Name>

</Names>
<Expiries>6M,1Y,2Y,3Y,4Y,5Y,7Y,10Y</Expiries>
<Surface>
<SimulateATMOnly>false</SimulateATMOnly><!-- false -->
<Moneyness>0.1,0.5,1.0,1.5,2.0,3.0</Moneyness><!-- omitted if SimulateATMOnly true -->

</Surface>
<TimeExtrapolation>Flat</TimeExtrapolation>
<StrikeExtrapolation>Flat</StrikeExtrapolation>

</EquityVolatilities>
...
<BenchmarkCurves>
<BenchmarkCurve>
<Currency>EUR</Currency>
<Name>BENCHMARK_EUR</Name>

</BenchmarkCurve>
...
</BenchmarkCurves>
<Securities>
<Simulate>true</Simulate>
<Names>
<Name>SECURITY_1</Name>
...

</Names>
</Securities>
<ZeroInflationIndexCurves>
<Names>
<Name>EUHICP</Name>
<Name>UKRPI</Name>

120

<Name>USCPI</Name>
...

</Names>
<Tenors>6M,1Y,2Y,3Y,5Y,7Y,10Y,15Y,20Y</Tenors>

</ZeroInflationIndexCurves>
<YYInflationIndexCurves>
<Names>
<Name>EUHICPXT</Name>
...

</Names>
<Tenors>1Y,2Y,3Y,5Y,7Y,10Y,15Y,20Y</Tenors>

</YYInflationIndexCurves>
<DefaultCurves>
<Names>
<Name>ItraxxEuropeCrossoverS26V1</Name>
...

</Names>
<Tenors>1Y,2Y,3Y,5Y,10Y</Tenors>
<SimulateSurvivalProbabilities>true</SimulateSurvivalProbabilities>

</DefaultCurves>
<BaseCorrelations/>
<CDSVolatilities/>
<Correlations>
<Simulate>true</Simulate>
<Pairs>
<Pair>EUR-CMS-10Y,EUR-CMS-2Y</Pair>

</Pairs>
<Expiries>1Y,2Y</Expiries>

</Correlations>
<AdditionalScenarioDataCurrencies>
<Currency>EUR</Currency>
<Currency>USD</Currency>

</AdditionalScenarioDataCurrencies>
<AdditionalScenarioDataIndices>
<Index>EUR-EURIBOR-3M</Index>
<Index>EUR-EONIA</Index>
<Index>USD-LIBOR-3M</Index>

</AdditionalScenarioDataIndices>
</Market>

Listing 47: Simulation market configuration

7.5 Sensitivity Analysis: sensitivity.xml

ORE currently supports sensitivity analysis with respect to

• Discount curves (in the zero rate domain)

• Index curves (in the zero rate domain)

• Yield curves including e.g. equity forecast yield curves (in the zero rate domain)

• FX Spots

• FX volatilities

• Swaption volatilities, ATM matrix or cube

• Cap/Floor volatility matrices (in the caplet/floorlet domain)

121

• Default probability curves (in the “zero rate” domain, expressing survival
probabilities S(t) in term of zero rates z(t) via S(t) = exp(−z(t)× t) with
Actual/365 day counter)

• Equity spot prices

• Equity volatilities, ATM or including strike dimension

• Zero inflation curves

• Year-on-Year inflation curves

• CDS volatilities

• Bond credit spreads

• Base correlation curves

• Correlation termstructures

The sensitivity.xml file specifies how sensitivities are computed for each market
component. The general structure is shown in listing 48, for a more comprehensive
case see Examples/Example_15. A subset of the following parameters is used in each
market component to specify the sensitivity analysis:

• ShiftType: Both absolute or relative shifts can be used to compute a sensitivity,
specified by the key words Absolute resp. Relative.

• ShiftSize: The size of the shift to apply.

• ShiftTenors: For curves, the tenor buckets to apply shifts to, given as a comma
separated list of periods.

• ShiftExpiries: For volatility surfaces, the option expiry buckets to apply shifts
to, given as a comma separated list of periods.

• ShiftStrikes: For cap/floor, FX option and equity option volatility surfaces,
the strikes to apply shifts to, given as a comma separated list of absolute strikes

• ShiftTerms: For swaption volatility surfaces, the underlying terms to apply
shifts to, given as a comma separated list of periods.

• Index: For cap / floor volatility surfaces, the index which together with the
currency defines the surface. list of absolute strikes

• CurveType: In the context of Yield Curves used to identify an equity “risk free”
rate forecasting curve; set to EquityForecast in this case

The cross gamma filter section contains a list of pairs of sensitivity keys. For each
possible pair of sensitivity keys matching the given strings, a cross gamma sensitivity is
computed. The given pair of keys can be (and usually are) shorter than the actual
sensitivity keys. In this case only the prefix of the actual key is matched. For example,
the pair DiscountCurve/EUR,DiscountCurve/EUR matches all actual sensitivity pairs
belonging to a cross sensitivity by one pillar of the EUR discount curve and another
(different) pillar of the same curve. We list the possible keys by giving an example in
each category:

122

• DiscountCurve/EUR/5/7Y: 7y pillar of discounting curve in EUR, the pillar is at
position 5 in the list of all pillars (counting starts with zero)

• YieldCurve/BENCHMARK_EUR/0/6M: 6M pillar of yield curve
“BENCHMARK_EUR”, the index of the 6M pillar is zero (i.e. it is the first
pillar)

• IndexCurve/EUR-EURIBOR-6M/2/2Y: 2Y pillar of index forwarding curve for the
Ibor index “EUR-EURIBOR-6M”, the pillar index is 2 in this case

• OptionletVolatility/EUR/18/5Y/0.04: EUR caplet volatility surface, at 5Y
option expiry and 4% strike, the running index for this expiry - strike pair is 18;
the index counts the points in the surface in lexical order w.r.t. the dimensions
option expiry, strike

• FXSpot/USDEUR/0/spot: FX spot USD vs EUR (with EUR as base ccy), the
index is always zero for FX spots, the pillar is labelled as “spot” always

• SwaptionVolatility/EUR/11/10Y/10Y/ATM: EUR Swaption volatility surface at
10Y option expiry and 10Y underlying term, ATM level, the running index for
this expiry, term, strike triple has running index 11; the index counts the points
in the surface in lexical order w.r.t. the dimensions option expiry, underlying
term and strike

Additional flags:

• ComputeGamma: If set to false, second order sensitivity computation is
suppressed

• UseSpreadedTermStructures: If set to true, spreaded termstructures over t0 will
be used for sensitivity calculation (where supported), to improve the alignment
of the scenario sim market and t0 curves

<SensitivityAnalysis>
<DiscountCurves>

<DiscountCurve ccy="EUR">
<ShiftType>Absolute</ShiftType>
<ShiftSize>0.0001</ShiftSize>
<ShiftTenors>6M,1Y,2Y,3Y,5Y,7Y,10Y,15Y,20Y</ShiftTenors>

</DiscountCurve>
...

</DiscountCurves>
...
<IndexCurves>

<IndexCurve index="EUR-EURIBOR-6M">
<ShiftType>Absolute</ShiftType>
<ShiftSize>0.0001</ShiftSize>
<ShiftTenors>6M,1Y,2Y,3Y,5Y,7Y,10Y,15Y,20Y</ShiftTenors>

</IndexCurve>
</IndexCurves>
...
<YieldCurves>

<YieldCurve name="BENCHMARK_EUR">
<ShiftType>Absolute</ShiftType>
<ShiftSize>0.0001</ShiftSize>
<ShiftTenors>6M,1Y,2Y,3Y,5Y,7Y,10Y,15Y,20Y</ShiftTenors>

</YieldCurve>
</YieldCurves>
...
<FxSpots>

<FxSpot ccypair="USDEUR">
<ShiftType>Relative</ShiftType>
<ShiftSize>0.01</ShiftSize>

123

</FxSpot>
</FxSpots>
...
<FxVolatilities>

<FxVolatility ccypair="USDEUR">
<ShiftType>Relative</ShiftType>
<ShiftSize>0.01</ShiftSize>
<ShiftExpiries>1Y,2Y,3Y,5Y</ShiftExpiries>
<ShiftStrikes/>

</FxVolatility>
</FxVolatilities>
...
<SwaptionVolatilities>

<SwaptionVolatility ccy="EUR">
<ShiftType>Relative</ShiftType>
<ShiftSize>0.01</ShiftSize>
<ShiftExpiries>1Y,5Y,7Y,10Y</ShiftExpiries>
<ShiftStrikes/>
<ShiftTerms>1Y,5Y,10Y</ShiftTerms>

</SwaptionVolatility>
</SwaptionVolatilities>
...
<CapFloorVolatilities>

<CapFloorVolatility ccy="EUR">
<ShiftType>Absolute</ShiftType>
<ShiftSize>0.0001</ShiftSize>
<ShiftExpiries>1Y,2Y,3Y,5Y,7Y,10Y</ShiftExpiries>
<ShiftStrikes>0.01,0.02,0.03,0.04,0.05</ShiftStrikes>
<Index>EUR-EURIBOR-6M</Index>

</CapFloorVolatility>
</CapFloorVolatilities>
...
<SecuritySpreads>

<SecuritySpread security="SECURITY_1">
<ShiftType>Absolute</ShiftType>
<ShiftSize>0.0001</ShiftSize>

</SecuritySpread>
</SecuritySpreads>
...
<Correlations>

<Correlation index1="EUR-CMS-10Y" index2="EUR-CMS-2Y">
<ShiftType>Absolute</ShiftType>
<ShiftSize>0.01</ShiftSize>
<ShiftExpiries>1Y,2Y</ShiftExpiries>
<ShiftStrikes>0</ShiftStrikes>

</Correlation>
</Correlations>
...
<CrossGammaFilter>

<Pair>DiscountCurve/EUR,DiscountCurve/EUR</Pair>
<Pair>IndexCurve/EUR,IndexCurve/EUR</Pair>
<Pair>DiscountCurve/EUR,IndexCurve/EUR</Pair>

</CrossGammaFilter>
...
<ComputeGamma>true</ComputeGamma>
<UseSpreadedTermStructures>false</UseSpreadedTermStructures>

</SensitivityAnalysis>

Listing 48: Sensitivity configuration

Par Sensitivity Analysis

To perform a par sensitivity analysis, additional sensitivity configuration is required
that describes the assumed par instruments and related conventions. This additional
data is required for:

• DiscountCurves

• IndexCurves

124

• CapFloorVolatilities

• CreditCurves

• ZeroInflationIndexCurves

• YYInflationIndexCurves

• YYCapFloorVolatilities

Using DiscountCurves as an example, the full sensitivity specification including par
conversion data is as follows:

<DiscountCurve ccy="EUR">
<ShiftType>Absolute</ShiftType>
<ShiftSize>0.0001</ShiftSize>
<ShiftTenors>2W,1M,3M,6M,9M,1Y,2Y,3Y,4Y,5Y,7Y,10Y,15Y,20Y,25Y,30Y</ShiftTenors>
<ParConversion>

<!--DEP, FRA, IRS, OIS, FXF, XBS -->
<Instruments>OIS,OIS,OIS,OIS,OIS,OIS,OIS,OIS,OIS,OIS,OIS,OIS,OIS,OIS,OIS,OIS</Instruments>
<SingleCurve>true</SingleCurve>
<Conventions>
<Convention id="DEP">EUR-EURIBOR-CONVENTIONS</Convention>
<Convention id="IRS">EUR-6M-SWAP-CONVENTIONS</Convention>
<Convention id="OIS">EUR-OIS-CONVENTIONS</Convention>

</Conventions>
</ParConversion>

</DiscountCurve>

Listing 49: Par sensitivity configuration

Note

• The list of shift tenors needs to match the list of tenors matches the
corresponding grid in the simulation (market) configuration

• The length of list of (par) instruments needs to match the length of the list of
shift tenors

• Permissible codes for the assumed par instruments:

– DEP, FRA, IRS, OIS, TBS, FXF, XBS in the case of DiscountCurves

– DEP, FRA, IRS, OIS, TBS in the case of IndexCurves

– DEP, FRA, IRS, OIS, TBS, XBS in the case of YieldCurves

– ZIS, YYS for YYInflationIndexCurves, interpreted as Year-on-Year Inflation
Swaps linked to Zero Inflation resp. YoY Inflation curves

– ZIS, YYS for YYCapFloorVolatilities, interpreted as Year-on-Year Inflation
Cap Floor linked to Zero Inflation resp. YoY Inflation curves

– Any code for CreditCurves, interpreted as CDS

– Any code for ZeroInflationIndexCurves, interpreted as CPI Swaps linked to
Zero Inflation curves

– Any code for CapFloorVolatilities, interpreted as flat Cap/Floor

125

• One convention needs to be referenced for each of the instrument codes

7.6 Stress Scenario Analysis: stressconfig.xml

Stress tests can be applied in ORE to the same market segments and with same
granularity as described in the sensitivity section 7.5.

This file stressconfig.xml specifies how stress tests can be configured. The general
structure is shown in listing 50.

In this example, two stress scenarios “parallel_rates” and “twist” are defined. Each
scenario definition contains the market components to be shifted in this scenario in a
similar syntax that is also used for the sensitivity configuration, see 7.5. Components
that should not be shifted, can just be omitted in the definition of the scenario.

However, instead of specifying one shift size per market component, here a whole
vector of shifts can be given, with different shift sizes applied to each point of the curve
(or surface / cube).

In case of the swaption volatility shifts, the single value given as Shift (without the
attributes expiry and term) represents a default value that is used whenever no
explicit value is given for a expiry / term pair.

<StressTesting>
<StressTest id="parallel_rates">

<DiscountCurves>
<DiscountCurve ccy="EUR">

<ShiftType>Absolute</ShiftType>
<ShiftTenors>6M,1Y,2Y,3Y,5Y,7Y,10Y,15Y,20Y</ShiftTenors>
<Shifts>0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01</Shifts>

</DiscountCurve>
...

</DiscountCurves>
<IndexCurves>

...
</IndexCurves>
<YieldCurves>

...
</YieldCurves>
<FxSpots>

<FxSpot ccypair="USDEUR">
<ShiftType>Relative</ShiftType>
<ShiftSize>0.01</ShiftSize>

</FxSpot>
</FxSpots>
<FxVolatilities>

...
</FxVolatilities>
<SwaptionVolatilities>

<SwaptionVolatility ccy="EUR">
<ShiftType>Absolute</ShiftType>
<ShiftExpiries>1Y,10Y</ShiftExpiries>
<ShiftTerms>5Y</ShiftTerms>
<Shifts>

<Shift>0.0010</Shift>
<Shift expiry="1Y" term="5Y">0.0010</Shift>
<Shift expiry="1Y" term="5Y">0.0010</Shift>
<Shift expiry="1Y" term="5Y">0.0010</Shift>
<Shift expiry="10Y" term="5Y">0.0010</Shift>
<Shift expiry="10Y" term="5Y">0.0010</Shift>
<Shift expiry="10Y" term="5Y">0.0010</Shift>

</Shifts>
</SwaptionVolatility>

</SwaptionVolatilities>
<CapFloorVolatilities>

126

<CapFloorVolatility ccy="EUR">
<ShiftType>Absolute</ShiftType>
<ShiftExpiries>6M,1Y,2Y,3Y,5Y,10Y</ShiftExpiries>
<Shifts>0.001,0.001,0.001,0.001,0.001,0.001</Shifts>

</CapFloorVolatility>
</CapFloorVolatilities>

</StressTest>
<StressTest id="twist">

...
</StressTest>

</StressTesting>

Listing 50: Stress configuration

7.7 Calendar Adjustment: calendaradjustment.xml

This file calendaradjustment.xml list out all additional holidays and business days
that are added to a specified calendar in ORE. These dates would originally be missing
from the calendar and has to be added.The general structure is shown in listing 51. In
this example, two additional dates had been added to the calendar "Japan", one
additional holiday and one additional business day. If the user is not certain wether
the date is already included or not, adding it to the calendaradjustment.xml to be
safe won’t raise any errors. A sample calendaradjustment.xml file can be found in
the global example input directory. However, it is only used in Example_1.

<CalendarAdjustments>
<Calendar name="Japan">

<AdditionalHolidays>
<Date>2020-01-01</Date>

</AdditionalHolidays>
<AdditionalBusinessDays>

<Date>2020-01-02</Date>
</AdditionalBusinessDays>

</CalendarAdjustments>

Listing 51: Calendar Adjustment

If the parameter BaseCalendar is provided then a new calendar will be created using
the specified calendar as a base, and adding any AdditionalHolidays or
AdditionalBusinessDays. In the example below a new calendar CUSTOM_Japan is
being created, it will include any additional holidays or business days specified in the
original Japan calendar plus one additional date.

If a new calendar is added in this way and the schema is being used to validate XML
input, the corresponding calendar name must be prefixed with ‘CUSTOM_’.

<CalendarAdjustments>
<Calendar name="CUSTOM_Japan">

<BaseCalendar>Japan</BaseCalendar>
<AdditionalHolidays>

<Date>2020-04-06</Date>
</AdditionalHolidays>

</CalendarAdjustments>

Listing 52: Calendar Adjustment creating a new calendar

127

7.8 Curves: curveconfig.xml

The configuration of various term structures required to price a portfolio is covered in
a single configuration file which we will label curveconfig.xml in the following though
the file name can be chosen by the user. This configuration determines the
composition of

• Yield curves

• Default curves

• Inflation curves

• Equity forward price curves

• Swaption volatility structures

• Cap/Floor volatility structures

• FX Option volatility structures

• CDS volatility structures

• Inflation Cap/Floor price surfaces

• Equity volatility structures

• Security spreads and recovery rates

• Base correlation curves

• Correlation termstructures

This file also contains other market objects such as FXSpots, Security Spreads and
Security Rates which are necessary for the construction of a market.

7.8.1 Yield Curves

The top level XML elements for each YieldCurve node are shown in Listing 53.

Listing 53: Top level yield curve node

<YieldCurve>
<CurveId> </CurveId>
<CurveDescription> </CurveDescription>
<Currency> </Currency>
<DiscountCurve> </DiscountCurve>
<Segments> </Segments>
<InterpolationVariable> </InterpolationVariable>
<InterpolationMethod> </InterpolationMethod>
<YieldCurveDayCounter> </YieldCurveDayCounter>
<Tolerance> </Tolerance>
<Extrapolation> </Extrapolation>
<BootstrapConfig>
...

</BootstrapConfig>
</YieldCurve>

128

The meaning of each of the top level elements in Listing 53 is given below. If an
element is labelled as ’Optional’, then it may be excluded or included and left blank.

• CurveId: Unique identifier for the yield curve.

• CurveDescription: A description of the yield curve. This field may be left blank.

• Currency: The yield curve currency.

• DiscountCurve: If the yield curve is being bootstrapped from market
instruments, this gives the CurveId of the yield curve used to discount cash flows
during the bootstrap procedure. If this field is left blank or set equal to the
current CurveId, then this yield curve itself is used to discount cash flows during
the bootstrap procedure.

• Segments: This element contains child elements and is described in the following
subsection.

• InterpolationVariable [Optional]: The variable on which the interpolation is
performed. The allowable values are given in Table 15. If the element is omitted
or left blank, then it defaults to Discount.

• InterpolationMethod [Optional]: The interpolation method to use. The allowable
values are given in Table 16. If the element is omitted or left blank, then it
defaults to LogLinear.

• YieldCurveDayCounter [Optional]: The day count basis used internally by the
yield curve to calculate the time between dates. In particular, if the curve is
queried for a zero rate without specifying the day count basis, the zero rate that
is returned has this basis. If the element is omitted or left blank, then it defaults
to A365.

• Tolerance [Optional]: The tolerance used by the root finding procedure in the
bootstrapping algorithm. If the element is omitted or left blank, then it defaults
to 1.0× 10−12. It is preferable to use the Accuracy node in the
BootstrapConfig node below for specifying this value. However, if this node is
explicitly supplied, it takes precedence for backwards compatibility purposes.

• Extrapolation [Optional]: Set to True or False to enable or disable extrapolation
respectively. If the element is omitted or left blank, then it defaults to True.

• BootstrapConfig [Optional]: this node holds configuration details for the
iterative bootstrap that are described in section 7.8.19. If omitted, this node’s
default values described in section 7.8.19 are used.

Variable Description
Zero The continuously compounded zero rate
Discount The discount factor
Forward The instantaneous forward rate

Table 15: Allowable interpolation variables.

129

Method Description
Linear Linear interpolation
LogLinear Linear interpolation on the natural log of the interpolation

variable
NaturalCubic Monotonic Kruger cubic interpolation with second derivative

at left and right
FinancialCubic Monotonic Kruger cubic interpolation with second derivative

at left and first derivative at right
ConvexMonotone Convex Monotone Interpolation (Hagan, West)
Quadratic Quadratic interpolation
LogQuadratic Quadratic interpolation on the natural log of the interpolation

variable
Hermite Hermite cubic spline interpolation
CubicSpline Non-monotonic cubic spline interpolation with second deriva-

tive at left and right
ExponentialSplines Exponential Spline curve fitting, for Fitted Bond Curves only
NelsonSiegel Nelson-Siegel curve fitting, for Fitted Bond Curves only
Svensson Svensson curve fitting, for Fitted Bond Curves only

Table 16: Allowable interpolation methods.

Segments Node

The Segments node gives the zero rates, discount factors and instruments that
comprise the yield curve. This node consists of a number of child nodes where the
node name depends on the segment being described. Each node has a Type that
determines its structure. The following sections describe the type of child nodes that
are available. Note that for all segment types below, with the exception of
DiscountRatio and AverageOIS, the Quote elements within the Quotes node may
have an optional attribute indicating whether or not the quote is optional. Example:

<Quotes>
<Quote optional="true"></Quote>

</Quotes>

Direct Segment

When the node name is Direct, the Type node has the value Zero or Discount and the
node has the structure shown in Listing 54. We refer to this segment here as a direct
segment because the discount factors, or equivalently the zero rates, are given explicitly
and do not need to be bootstrapped. The Quotes node contains a list of Quote
elements. Each Quote element contains an ID pointing to a line in the market.txt file,
i.e. in this case, pointing to a particular zero rate or discount factor. The Conventions
node contains the ID of a node in the conventions.xml file described in section 7.11.
The Conventions node associates conventions with the quotes.

130

Listing 54: Direct yield curve segment

<Direct>
<Type> </Type>
<Quotes>
<Quote> </Quote>
<Quote> </Quote>
<!--...-->

</Quotes>
<Conventions> </Conventions>

</Direct>

Simple Segment

When the node name is Simple, the Type node has the value Deposit, FRA, Future,
OIS, Swap or BMA Basis Swap and the node has the structure shown in Listing 55.
This segment holds quotes for a set of deposit, FRA, Future, OIS or swap instruments
corresponding to the value in the Type node. These quotes will be used by the
bootstrap algorithm to imply a discount factor, or equivalently a zero rate, curve. The
only difference between this segment and the direct segment is that there is a
ProjectionCurve node. This node allows us to specify the CurveId of another curve
to project floating rates on the instruments underlying the quotes listed in the Quote
nodes during the bootstrap procedure. This is an optional node. If it is left blank or
omitted, then the projection curve is assumed to equal the curve being bootstrapped
i.e. the current CurveId. The PillarChoice node determines the bootstrap pillars
that are used (MaturityDate, LastRelevantDate).

Listing 55: Simple yield curve segment

<Simple>
<Type> </Type>
<Quotes>
<Quote> </Quote>
<Quote> </Quote>
<!--...-->

</Quotes>
<Conventions> </Conventions>
<PillarChoice> </PillarChoice>
<ProjectionCurve> </ProjectionCurve>

</Simple>

Average OIS Segment

When the node name is AverageOIS, the Type node has the value Average OIS and
the node has the structure shown in Listing 56. This segment is used to hold quotes for
Average OIS swap instruments. The Quotes node has the structure shown in Listing
57. Each quote for an Average OIS instrument (a typical example in a USD Overnight
Index Swap) consists of two quotes, a vanilla IRS quote and an OIS-LIBOR basis swap
spread quote. The IDs of these two quotes are stored in the CompositeQuote node.
The RateQuote node holds the ID of the vanilla IRS quote and the SpreadQuote node
holds the ID of the OIS-LIBOR basis swap spread quote. The PillarChoice node
determines the bootstrap pillars that are used (MaturityDate, LastRelevantDate).

131

Listing 56: Average OIS yield curve segment

<AverageOIS>
<Type> </Type>
<Quotes>
<CompositeQuote> </CompositeQuote>
<CompositeQuote> </CompositeQuote>
<!--...-->

</Quotes>
<Conventions> </Conventions>
<PillarChoice> </PillarChoice>
<ProjectionCurve> </ProjectionCurve>

</AverageOIS>

Listing 57: Average OIS segment’s quotes section

<Quotes>
<CompositeQuote>
<SpreadQuote> </SpreadQuote>
<RateQuote> </RateQuote>

</CompositeQuote>
<!--...-->

</Quotes>

Tenor Basis Segment

When the node name is TenorBasis, the Type node has the value Tenor Basis Swap
or Tenor Basis Two Swaps and the node has the structure shown in Listing 58. This
segment is used to hold quotes for tenor basis swap instruments. The quotes may be
for a conventional tenor basis swap where Ibor of one tenor is swapped for Ibor of
another tenor plus a spread. In this case, the Type node has the value Tenor Basis
Swap. The quotes may also be for the difference in fixed rates on two fair swaps where
one swap is against Ibor of one tenor and the other swap is against Ibor of another
tenor. In this case, the Type node has the value Tenor Basis Two Swaps. Again, the
structure is similar to the simple segment in Listing 55 except that there are two
projection curve nodes. There is a ProjectionCurveShort node for the index with the
shorter tenor. This node holds the CurveId of a curve for projecting the floating rates
on the short tenor index. Similarly, there is a ProjectionCurveLong node for the
index with the longer tenor. This node holds the CurveId of a curve for projecting the
floating rates on the long tenor index. These are optional nodes. If they are left blank
or omitted, then the projection curve is assumed to equal the curve being
bootstrapped i.e. the current CurveId. However, at least one of the nodes needs to be
populated to allow the bootstrap to proceed. The PillarChoice node determines the
bootstrap pillars that are used (MaturityDate, LastRelevantDate).

132

Listing 58: Tenor basis yield curve segment

<TenorBasis>
<Type> </Type>
<Quotes>
<Quote> </Quote>
<Quote> </Quote>
<!--...-->

</Quotes>
<Conventions> </Conventions>
<PillarChoice> </PillarChoice>
<ProjectionCurveLong> </ProjectionCurveLong>
<ProjectionCurveShort> </ProjectionCurveShort>

</TenorBasis>

Cross Currency Segment

When the node name is CrossCurrency, the Type node has the value FX Forward,
Cross Currency Basis Swap or Cross Currency Fix Float Swap. When the Type node
has the value FX Forward, the node has the structure shown in Listing 59. This
segment is used to hold quotes for FX forward instruments. The DiscountCurve node
holds the CurveId of a curve used to discount cash flows in the other currency i.e. the
currency in the currency pair that is not equal to the currency in Listing 53. The
SpotRate node holds the ID of a spot FX quote for the currency pair that is looked up
in the market.txt file. The PillarChoice node determines the bootstrap pillars that
are used (MaturityDate, LastRelevantDate).

Listing 59: FX forward yield curve segment

<CrossCurrency>
<Type> </Type>
<Quotes>
<Quote> </Quote>
<Quote> </Quote>

...
</Quotes>
<Conventions> </Conventions>
<PillarChoice> </PillarChoice>
<DiscountCurve> </DiscountCurve>
<SpotRate> </SpotRate>

</CrossCurrency>

When the Type node has the value Cross Currency Basis Swap then the node has the
structure shown in Listing 60. This segment is used to hold quotes for cross currency
basis swap instruments. The DiscountCurve node holds the CurveId of a curve used
to discount cash flows in the other currency i.e. the currency in the currency pair that
is not equal to the currency in Listing 53. The SpotRate node holds the ID of a spot
FX quote for the currency pair that is looked up in the market.txt file. The
ProjectionCurveDomestic node holds the CurveId of a curve for projecting the
floating rates on the index in this currency i.e. the currency in the currency pair that is
equal to the currency in Listing 53. It is an optional node and if it is left blank or
omitted, then the projection curve is assumed to equal the curve being bootstrapped

133

i.e. the current CurveId. Similarly, the ProjectionCurveForeign node holds the
CurveId of a curve for projecting the floating rates on the index in the other currency.
If it is left blank or omitted, then it is assumed to equal the CurveId provided in the
DiscountCurve node in this segment.

Listing 60: Cross currency basis yield curve segment

<CrossCurrency>
<Type> </Type>
<Quotes>
<Quote> </Quote>
<Quote> </Quote>

...
</Quotes>
<Conventions> </Conventions>
<PillarChoice> </PillarChoice>
<DiscountCurve> </DiscountCurve>
<SpotRate> </SpotRate>
<ProjectionCurveDomestic> </ProjectionCurveDomestic>
<ProjectionCurveForeign> </ProjectionCurveForeign>

</CrossCurrency>

Zero Spread Segment

When the node name is ZeroSpread, the Type node has the only allowable value Zero
Spread, and the node has the structure shown in Listing 61. This segment is used to
build yield curves which are expressed as a spread over some reference yield curve.

Listing 61: Zero spread yield curve segment

<ZeroSpread>
<Type>Zero Spread</Type>
<Quotes>
<Quote>ZERO/YIELD_SPREAD/EUR/BANK_EUR_LEND/A365/2Y</Quote>
<Quote>ZERO/YIELD_SPREAD/EUR/BANK_EUR_LEND/A365/5Y</Quote>
<Quote>ZERO/YIELD_SPREAD/EUR/BANK_EUR_LEND/A365/10Y</Quote>
<Quote>ZERO/YIELD_SPREAD/EUR/BANK_EUR_LEND/A365/20Y</Quote>

</Quotes>
<Conventions>EUR-ZERO-CONVENTIONS-TENOR-BASED</Conventions>
<ReferenceCurve>EUR1D</ReferenceCurve>

</ZeroSpread>

Fitted Bond Segment

When the node name is FittedBond, the Type node has the only allowable value
FittedBond, and the node has the structure shown in Listing 62. This segment is used
to build yield curves which are fitted to liquid bond prices. The segment has the
following elements:

• Quotes: a list of bond price quotes, for each security in the list, reference data
must be available

134

• IborIndexCurves: for each Ibor index that is required by one of the bonds to
which the curve is fitted, a mapping to an estimation curve for that index must
be provided

• ExtrapolateFlat: if true, the parametric curve is extrapolated flat in the
instantaneous forward rate before the first and after the last maturity of the
bonds in the calibration basket. This avoids unrealistic rates at the short end or
for long maturities in the resulting curve.

The BootstrapConfig has the following interpretation for a fitted bond curve:

• Accuracy [Optional, defaults to 1E-12]: the desired accuracy expressed as a
weighted rmse in the implied quote, where 0.01 = 1 bp. Once this accuracy is
reached in a calibration trial, the fit is accepted, no further calibration trials re
run. In general, this parameter should be set to a higher than the default value
for fitted bond curves.

• GlobalAccuracy [Optional]: the acceptable accuracy. If the Accuracy is not
reached in any calibration trial, but the GlobalAccuracy is met, the best fit
among the calibration trials is selected as a result of the calibration. If not given,
the best calibration trial is compared to the Accuracy parameter instead.

• DontThrow [Optional, defaults to false]: If true, the best calibration is always
accepted as a result, i.e. no error is thrown even if the GlobalAccuracy is
breached.

• MaxAttempts [Optional, defaults to 5]: The maximum number of calibration
trials. Each calibration trial is run with a random calibration seed. Random
calibration seeds are currently only supported for the NelsonSiegel interpolation
method.

135

Listing 62: Fitted bond yield curve segment

<YieldCurve>
...
<Segments>
<FittedBond>
<Type>FittedBond</Type>
<Quotes>
<Quote>BOND/PRICE/SECURITY_1</Quote>
<Quote>BOND/PRICE/SECURITY_2</Quote>
<Quote>BOND/PRICE/SECURITY_3</Quote>
<Quote>BOND/PRICE/SECURITY_4</Quote>
<Quote>BOND/PRICE/SECURITY_5</Quote>

</Quotes>
<!-- mapping of Ibor curves used in the bonds from which the curve is built -->
<IborIndexCurves>
<IborIndexCurve iborIndex="EUR-EURIBOR-6M">EUR-EURIBOR-6M</IborIndexCurve>

</IborIndexCurves>
<!-- flat extrapolation before first and after last bond maturity -->
<ExtrapolateFlat>true</ExtrapolateFlat>

</FittedBond>
</Segments>
<!-- NelsonSiegel, Svensson, ExponentialSplines -->
<InterpolationMethod>NelsonSiegel</InterpolationMethod>
<YieldCurveDayCounter>A365</YieldCurveDayCounter>
<Extrapolation>true</Extrapolation>
<BootstrapConfig>

<!-- desired accuracy (in implied quote) -->
<Accuracy>0.1</Accuracy>
<!-- tolerable accuracy -->
<GlobalAccuracy>0.5</GlobalAccuracy>
<!-- do not throw even if tolerable accuracy is breached -->
<DontThrow>false</DontThrow>
<!-- max calibration trials to reach desired accuracy -->
<MaxAttempts>20</MaxAttempts>

</BootstrapConfig>
</YieldCurve>

Bond Yield Shifted

When the node name is BondYieldShifted, the Type node has the only allowable value
Bond Yield Shifted, and the node has the structure shown in Listing 63. This segment
is used to build yield curves which are adjusted by liquid bond yields. The adjustment
is derived as an average of the spreads between the bond’s yields-to-maturity and the
reference curve level at the tenor points corresponding the bond durations.

Compared to the fitted bond segment the shifted curve can be built with only one
liquid bond. This approach is useful in cases of limited number of liquid comparable
bonds and hence unstable fitting of Nelson Siegel. The average spread at the average
duration point may be considered as a sensitivity point of a corresponding zero coupon
bond.

The segment has the following elements:

• Quotes: a list of bond price quotes, for each security in the list, reference data
must be available

136

• ReferenceCurve: the curve which will be used to calculate the bond spread. This
curve will also be shifted by the resulting spread

• IborIndexCurves: for each Ibor index that is required by one of the bonds to
which the curve is fitted, a mapping to an estimation curve for that index must
be provided

• ExtrapolateFlat: if true, the parametric curve is extrapolated flat in the
instantaneous forward rate before the first and after the last maturity of the
bonds in the calibration basket. This avoids unrealistic rates at the short end or
for long maturities in the resulting curve.

Listing 63: Bond Yield Shifted curve segment

<YieldCurve>
<CurveId>USD.Benchmark.Curve_Shifted</CurveId>
<CurveDescription>Curve shifted with a bond's spreads at the bond duration tenors</CurveDescription>
<Currency>USD</Currency>
<DiscountCurve/>
<Segments>
<BondYieldShifted>
<Type>Bond Yield Shifted</Type>
<ReferenceCurve>USD1D</ReferenceCurve>
<Quotes>
<Quote>BOND/PRICE/EJ7706660</Quote>
<Quote>BOND/PRICE/ZR5330686</Quote>
<Quote>BOND/PRICE/AS0644417</Quote>

</Quotes>
<Conventions>BOND_CONVENTIONS</Conventions>
<ExtrapolateFlat>true</ExtrapolateFlat>
<IborIndexCurves>
<IborIndexCurve iborIndex="USD-LIBOR-3M">USD3M</IborIndexCurve>

</IborIndexCurves>
</BondYieldShifted>

</Segments>
<InterpolationVariable>Discount</InterpolationVariable>
<InterpolationMethod>Linear</InterpolationMethod>
<YieldCurveDayCounter>A365</YieldCurveDayCounter>
<Tolerance> </Tolerance>
<Extrapolation>true</Extrapolation>
<BootstrapConfig> </BootstrapConfig>

</YieldCurve>

Yield plus Default Segment

When the node name is YieldPlusDefault, the Type node has the only allowable
value Yield Plus Default, and the node has the structure shown in Listing 64. This
segment is used to build all-in discounting yield curves from a benchmark curve and (a
weighted sum of) default curves. The construction is in some sense inverse to the
benchmark default curve construction, see 7.8.3.

• ReferenceCurve: the benchmark yield curve serving as the basis of the resulting
yield curve

• DefaultCurves: a list of default curves whose weighted sum is added to the

137

benchmark yield curve

• Weights: a list of weights for the default curves, the number of weights must
match the number of default curves

Notice that it is explicitly allowed to use default curves in different currencies than the
benchmark yield curve. In the construction, the hazard rate is reinterpreted as an
instantaneous forward rate, and the sum of the curves is being built in the
instantaneous forward rate.

The definition takes into account the recovery rates associated to each default curve.
The resulting discount factor is computed as

P (0, t) =
∏
i

Si(t)
(1−R)wi (1)

where Si and Ri are the survival probabilities and recovery rates of the source default
curves, and wi are the weights.

Listing 64: Yield plus default curve segment

<YieldCurve>
<CurveId>BenchmarkPlusDefault</CurveId>
<CurveDescription>USD Libor 3M + 0.5 x CDX.NA.HY + 0.5 x EUR.10BP</CurveDescription>
<Currency>USD</Currency>
<DiscountCurve/>
<Segments>
<YieldPlusDefault>
<Type>Yield Plus Default</Type>
<ReferenceCurve>USD3M</ReferenceCurve>
<DefaultCurves>
<DefaultCurve>Default/USD/CDX.NA.HY</DefaultCurve>
<DefaultCurve>Default/EUR/EUR.10BP</DefaultCurve>

</DefaultCurves>
<Weights>
<Weight>0.5</Weight>
<Weight>0.5</Weight>

</Weights>
</YieldPlusDefault>

</Segments>
</YieldCurve>

</YieldCurves>

Weighted Average Segment

When the node name is WeightedAverage, the Type node has the only allowable value
Weighted Average, and the node has the structure shown in Listing 65. This segment is
used to build a curve with instantaneous forward rates that are the weighted sum of
instantaneous forward rates of reference curves. This way a projection curve for
non-standard Ibor curves can be build, e.g. to project a Euribor2M index using the
curves for 1M and 3M.

• ReferenceCurve1: the first source curve

• ReferenceCurve2: the second source curve

138

• Weight1: the weight of the first curve

• Weights: the weight of the second curve

If P1(0, t) and P2(0, t) denote the discount factors of the two reference curves, the
discount factor P (0, t) of the resulting curve is defined as

P (0, t) = P1(0, t)w1P2(0, t)w2 (2)

Listing 65: Weighted Average yield curve segment

<YieldCurve>
<CurveId>EUR2M</CurveId>
<CurveDescription>Euribor2M forwarding curve, interpolated from 1M and 3M</CurveDescription>
<Currency>EUR</Currency>
<DiscountCurve>EUR1D</DiscountCurve>
<Segments>
<WeightedAverage>
<Type>Weighted Average</Type>
<ReferenceCurve1>EUR1M</ReferenceCurve1>
<ReferenceCurve2>EUR3M</ReferenceCurve2>
<Weight1>0.5</Weight1>
<Weight2>0.5</Weight2>

</WeightedAverage>
</Segments>

</YieldCurve>

Ibor Fallback Segment

When the node name is IborFallback, the Type node has the only allowable value
Ibor Fallback, and the node has the structure shown in Listing 66. This segment is used
to build a projection curve for an Ibor index based on a risk free rate and a spread.

Listing 66: Ibor fallback segment

<YieldCurve>
<CurveId>USD-LIBOR-3M</CurveId>
<CurveDescription>USD-Libor-3M built from USD-SOFR plus spread</CurveDescription>
<Currency>USD</Currency>
<DiscountCurve/>
<Segments>
<IborFallback>
<Type>Ibor Fallback</Type>
<IborIndex>USD-LIBOR-3M</IborIndex>
<RfrCurve>Yield/USD/USD-SOFR</RfrCurve>
<!-- optional, if not given the rfr index and spread are read from the ibor

fallback configuration -->
<RfrIndex>USD-SOFR</RfrIndex>
<Spread>0.0026161</Spread>

</IborFallback>
</Segments>

</YieldCurve>

139

Discount Ratio Segment

When the node name is DiscountRatio, the Type node has the only allowable value
Dicount Ratio and the node has the structure shown in Listing 67. This segment is
used to build a curve with discount factors P (0, t) from three input curves with
discount factors Pb(0, t), Pn(0, t) and Pd(0, t) (“base”, “numerator”, “denominator”
curves) following the equation

P (0, t) = Pb(0, t)
Pn(0, t)

Pd(0, t)
(3)

The main use case of this segment is to build a discount curve “CCY1-IN-CCY2” for
cashflows in CCY1 collateralized in CCY2 when curves “CCY1-IN-BASE” and
“CCY2-IN-BASE” are known for a common base currency BASE:

For a maturity t denote the zero rate on a curve “X” by rX(t) and the correpsonding
discount factor by PX(0, t). Furthermore, write “CCY” as shorthand for
“CCY-IN-CCY”, i.e. for the discount curve for cashflows in the same currency as the
collateral currency “CCY”. We write the desired zero rate as

rCCY1-IN-CCY2 = rCCY2+(rBASE-IN-CCY2 − rCCY2)+
(rCCY1-IN-CCY2 − rBASE-IN-CCY2)

(4)

We now assume that these two rate differentials stay the same when we switch from
collateral currency “CCY2” to “BASE”, i.e.

rBASE-IN-CCY2 − rCCY2 ≈ rBASE − rCCY2-IN-BASE (5)
rCCY1-IN-CCY2 − rBASE-IN-CCY2 ≈ rCCY1-IN-BASE − rBASE (6)

In less technical terms we assume that FX Forward Quotes CCY2 / BASE and CCY1
/ BASE stay constant when the collateral currency changes, which seems reasonable, if
no further market information is available.

The discount factors associated to the RHS of 5 and 6 can be written

PBASE(0, t)/PCCY2-IN-BASE(0, t) (7)
PCCY1-IN-BASE(0, t)/PBASE(0, t) (8)

and so 3 can be written

PCCY1-IN-CCY2(0, t) =
PCCY2(0, t)PCCY1-IN-BASE(0, t)

PCCY2-IN-BASE(0, t)
(9)

so the following choice of curves will result in the desired “CCY1-IN-CCY2” curve:

• base curve = “CCY2-IN-CCY2”

140

• numerator curve = “CCY1-IN-BASE”

• denominator curve = “CCY2-IN-BASE”

Listing 67: Discount Ratio segment

<YieldCurve>
<CurveId>GBP-IN-EUR</CurveId>
<CurveDescription>GBP collateralized in EUR discount curve</CurveDescription>
<Currency>GBP</Currency>
<DiscountCurve/>
<Segments>
<DiscountRatio>
<Type>Discount Ratio</Type>
<BaseCurve currency="EUR">EUR1D</BaseCurve>
<NumeratorCurve currency="GBP">GBP-IN-USD</NumeratorCurve>
<DenominatorCurve currency="EUR">EUR-IN-USD</DenominatorCurve>

</DiscountRatio>
</Segments>

</YieldCurve>

7.8.2 Default Curves from CDS

Default curves can be bootstrapped from credit default swap (CDS) market
instruments. The CDS market quotes may be given as a par spread or as an upfront
price. These market quotes are documented in Sections 10.12 and 10.13 respectively.
The bootstrap also requires a market recovery rate quote and this is documented in
Section 10.14.

Listing 68 outlines the configuration required to build a default curve from CDS
quotes. The meaning of each of the nodes is as follows:

• CurveId: Unique identifier for the bootstrapped default curve. For index term
curves a suffix _5Y should be appended to the name indicating the index term,
since this is the prefered name looked up by index cds and index cds option
pricers. If such a curve is not found, the pricers will fall back to the specified
credit curve id without suffix, i.e. following this naming convention is not
mandatory, but recommended.

• CurveDescription [Optional]: A description of the default curve. It is for
information only and may be left blank.

• Currency: The default curve’s currency.

• Type: For a default curve built from CDS, the Type should be set to SpreadCDS
if the Quotes reference CDS spread quotes or Price if the Quotes reference
upfront price quotes.

• DiscountCurve: A reference to a valid discount curve specification that will be
used to discount cashflows during the bootstrap process. It should be of the form
Yield/Currency/curve_name where curve_name is the name of a yield curve
defined in the yield curve configurations.

• DayCounter: The day counter used to convert from dates to times in the
underlying structure. Allowable values are given in the Table 31.

141

• RecoveryRate: A valid recovery rate quote name as documented in Section 10.14.

• StartDate [Optional]: The StartDate is optional and is used for index CDS to
specify the start date of the index CDS. This is then used to determine the
maturity associated with the index CDS spread quotes which are quoted with a
tenor. For single name CDS, this should be omitted.

• RunningSpread [Optional]: The RunningSpread is optional and is used for

– stripping cds curves from upfront quotes. Alternatively the upfront quote
labels can contain the running spread.

– the calculation of the ATM level in cds and index cds volatility surfaces that
are strike dependent

The value should be set whenever one of these use cases applies.

• IndexTerm [Optional]: The IndexTerm is optional and is used to set up index cds
curves for a specific term. If several quotes are specified explicitly or via
wildcards, the quote matching the specified term is used to build a flat curve. If
no quote is available for the specified term, an interpolated term quote will be
built using the adjacent terms of the provided quotes.

• Quotes: The Quotes element should be populated with a list of valid Quote
elements. If the Type is SpreadCDS, the quotes should be CDS spread quote
strings as documented in Section 10.12 and if Type is Price, the quotes should
be CDS upfront price quote strings as documented in Section 10.13. The
attribute optional in the Quote element should be set to true if the associated
quote is optional and set to false if the associated quote is mandatory. If a
quote is mandatory and not found in the market, the default curve building will
fail. The attribute optional may be omitted from the quote element. In this
case, it defaults to false and the quote is mandatory. Note also that instead of a
list of explicit quotes, a single quote may be provided with the wildcard character
*. In this case, the market is searched for quotes matching the pattern. For
example, CDS/CREDIT_SPREAD/JPM/SNRFOR/USD/XR14/* would return all quotes
in the market that start with CDS/CREDIT_SPREAD/JPM/SNRFOR/USD/XR14.

• Conventions: The name of a valid set of CDS conventions, as documented in
Section 7.11.21, to use in the bootstrap.

• Extrapolation [Optional]: A boolean value indicating if the bootstrapped
default curve allows for extrapolation past the last pillar date. Allowable boolean
values are given in the Table 42. If omitted, it defaults to true.

• ImplyDefaultFromMarket [Optional]: A boolean value indicating if a reference
entity’s default should be implied from the market data. Allowable boolean
values are given in the Table 42. If omitted, it defaults to false. When a default
credit event has been determined for an entity, certain market data providers
continue to supply a recovery rate from the credit event determination date up to
the credit event auction settlement date. In this period, no CDS spreads or
upfront prices are provided. When this flag is true, we assume an entity is in
default and awaiting a credit event auction if we find a recovery rate in the
market but no CDS spreads or upfront prices. In this case, we build a survival

142

probability curve with a value of close to but greater than 0.0 for one day after
the valuation date. This will give an approximation to the correct price for CDS
and index CDS in these cases. When this flag is false, we make no such
assumption and the default curve building will fail.

• BootstrapConfig [Optional]: This node holds configuration details for the
iterative bootstrap that are described in section 7.8.19. If omitted, this node’s
default values described in section 7.8.19 are used.

• AllowNegativeRates [Optional]: If set to false (default) negative instantaneous
hazard rates implied by the CDS quotes lead to an exception or - if the
DontThrow flag in the BootstrapConfig is set to true - to a zero instantaneous
hazard rate in the relevant segment of the curve. In the latter case the market
CDS instrument associated to the critical curve segment will not match the
market quote exactly. If set to true, negative instantaneous hazard rates will be
allowed during the bootstrap (in a range that is technically defined by the
MaxFactor and MaxAttempts parameters for the survival probability in the
bootstrap config).

<DefaultCurve>
<CurveId>...</CurveId>
<CurveDescription>...</CurveDescription>
<Currency>USD</Currency>
<Type>...</Type>
<DiscountCurve>...</DiscountCurve>
<DayCounter>...</DayCounter>
<RecoveryRate>...</RecoveryRate>
<StartDate>...</StartDate>
<RunningSpread>...</RunningSpread>
<IndexTerm>...</IndexTerm>
<Quotes>
<Quote optional="true">...</Quote>
...

</Quotes>
<Conventions>...</Conventions>
<Extrapolation>...</Extrapolation>
<ImplyDefaultFromMarket>...</ImplyDefaultFromMarket>
<BootstrapConfig>
...

</BootstrapConfig>
<AllowNegativeRates>...</AllowNegativeRates>

</DefaultCurve>

Listing 68: Default curve configuration based on CDS quotes

7.8.3 Benchmark Default Curve

Default curves can be set up as a difference curve of two yield curves as shown in
listing 69. A typical use case is to back out a default curve from an all-in discounting
curve fitted to a series of liquid bond prices (the “source curve”) and a benchmark
curve representing a benchmark funding level. The default curve can then be used in
models consuming a benchmark curve and a default curve.

If PB(0, t) and PS(0, t) denote the discount factors of the given benchmark and source
curve respectively the resulting default term structures has survival probabilities

143

S(t) = (PS(0, t)/PB(0, t))1/(1−R) (10)

on the given pillar times. Her, R is the specified recovery rate. If the recovery rate is
zero, which is the usual case, the formula simplifies to

S(0, t) = PS(0, t)/PB(0, t) (11)

The interpolation is backward flat in the hazard rate. The meaning of each node is as
follows:

• CurveId: The curve id.

• CurveDescription: The curve description.

• Currency: The currency of the curve.

• Type: Must be set to Benchmark.

• DayCounter: The day counter used to convert dates to times.

• RecoveryRate [optional]: The recovery rate for the resulting default curve.
Defaults to zero. The recovery rate can be a market quote as usual or also a fixed
numeric value for this curve type.

• BenchmarkCurve: The benchmark yield curve, typically this is the standard Ibor
curve in the currence (e.g. EUR-EURIBOR-6M, USD-Libor-3M, ...)

• SourceCurve: The all-in discounting curve.

• Pillars: The pillars on which to match the source curve

• SpotLag: The pillar dates are derived using the spot lag and the tenors as
specified in the Pillars node using the specified calendar.

• Calendar: The calendar used to derive the pillar dates.

• Extrapolation [Optional]: If set to true, the curve is extrapoalted beyond the last
pillar. Defaults to true.

• AllowNegativeRates [Optional]: If set to true, the check for non-negative
instantaneous hazard rate in the result curve is disabled, i.e. the relation
PS(0, t) ≤ PB(0, t) is not enforced. This flag should be enabled with care, i.e. a
model consuming the resulting default curve must be able to handle negative
hazard rates appropriately. On the other hand in some situations it is natural
that the source curve rates are below the benchmark rates. Defaults to false.

<DefaultCurve>
<CurveId>BOND_YIELD_EUR_OVER_OIS</CurveId>
<CurveDescription>Default curve derived as bond yield curve over Eonia</CurveDescription>
<Currency>EUR</Currency>
<Type>Benchmark</Type>
<DayCounter>A365</DayCounter>
<RecoveryRate>RECOVERY_RATE/RATE//SNR/USD</RecoveryRate>
<BenchmarkCurve>Yield/EUR/EUR6M</BenchmarkCurve>
<SourceCurve>Yield/EUR/BOND_YIELD_EUR</SourceCurve>
<Pillars>1Y,2Y,3Y,4Y,5Y,7Y,10Y</Pillars>

144

<SpotLag>0</SpotLag>
<Calendar>TARGET</Calendar>
<Extrapolation>true</Extrapolation>
<AllowNegativeRates>false</AllowNegativeRates>

</DefaultCurve>
</DefaultCurves>

Listing 69: Benchmark default curve

7.8.4 Multi-Section Default Curve

Default curves can be build by stitching together instantaneous hazard rates from
multiple source curves for multiple date ranges as shown in listing 70.

The hazard rate of the resulting curve is taken from the ith input curve (i = 0, 1, 2, . . .)
for dates before the ith switch date and (if i > 0) on or after the i− 1th switch date.
The day counter of all input curves should be equal to the day counter of the result
curve. The interpolation is hardcoded as backward flat in the hazard rate.

If not given, the recovery rate R is assumed to be zero. The result default curve’s
survival probabiltiies are computed as

S(t) =

[(
PS,n(t)

PS,n(tn)

)(1−Rn)

Πn−1
i=0

(
PS,i(ti+1)

PS,i(ti)

)(1−Ri)
] 1

1−R

(12)

where PS,i is the survival probability of the ith source curve, Ri is the associated
recovery rate for the ith source curve, n is chosen such that PS,n is the relevant source
curve for time t according to the given switch dates and curve i is relevant for times in
[ti, ti+1].

The meaning of each node is as follows:

• CurveId: The curve id.

• CurveDescription: The curve description.

• Currency: The currency of the curve.

• Type: Must be set to MutliSection.

• SourceCurves: The list of input default curves.

• SwitchDates: The list of dates where we switch from one input curve to the next.
The number of switch dates must be one less than the number of source curves.

• DayCounter: The day counter used to convert dates to times.

• RecoveryRate [optional]: The recovery rate for the resulting default curve.
Defaults to zero. The recovery rate can be a market quote as usual or also a fixed
numeric value for this curve type.

• Extrapolation [Optional]: If set to true, the curve is extrapoalted beyond the last
pillar. Defaults to true.

145

<DefaultCurve>
<CurveId>MyMultiSectionDefaultCurve</CurveId>
<CurveDescription>Default curve with multiple sections</CurveDescription>
<Currency>USD</Currency>
<Type>MultiSection</Type>
<SourceCurves>

<SourceCurve>Default/USD/Generic_AA_Curve</SourceCurve>
<SourceCurve>Default/USD/Generic_B_Curve</SourceCurve>
<SourceCurve>Default/USD/Generic_C_Curve</SourceCurve>

</SourceCurves>
<SwitchDates>

<SwitchDate>2020-10-01</SwitchDate>
<SwitchDate>2021-12-01</SwitchDate>

<SwitchDates>
<Extrapolation>true</Extrapolation>
<DayCounter>A365</DayCounter>
<RecoveryRate>RECOVERY_RATE/RATE/NAME/SR/USD</RecoveryRate>

</DefaultCurve>

Listing 70: Multi-Section default curve

7.8.5 Swaption Volatility Structures

Listing 71 shows an example of a Swaption volatility structure configuration.

<SwaptionVolatilities>
<SwaptionVolatility>
<CurveId>EUR_SW_N</CurveId>
<CurveDescription>EUR normal swaption volatilities</CurveDescription>
<Dimension>ATM</Dimension>
<VolatilityType>Normal</VolatilityType>
<Extrapolation>Flat</Extrapolation>
<DayCounter>Actual/365 (Fixed)</DayCounter>
<Calendar>TARGET</Calendar>
<BusinessDayConvention>Following</BusinessDayConvention>
<!-- ATM matrix specification -->
<OptionTenors>1M,3M,6M,1Y,2Y,3Y,4Y,5Y,7Y,10Y,15Y,20Y,25Y,30Y</OptionTenors>
<SwapTenors>1Y,2Y,3Y,4Y,5Y,7Y,10Y,15Y,20Y,25Y,30Y</SwapTenors>
<ShortSwapIndexBase>EUR-CMS-1Y</ShortSwapIndexBase>
<SwapIndexBase>EUR-CMS-30Y</SwapIndexBase>
<!-- Smile section specification -->
<SmileOptionTenors>6M,1Y,10Y</SmileOptionTenors>
<SmileSwapTenors>2Y,5Y</SmileSwapTenors>
<SmileSpreads>-0.02,-0.01,0.01,0.02</SmileSpreads>
<QuoteTag/>

</SwaptionVolatility>
...

</SwaptionVolatilities>

Listing 71: Swaption volatility configuration

The meaning of each of the elements in Listing 71 is given below.

• CurveId: Unique identifier of the swaption volatility structure

146

• CurveDescription [Optional]: A description of the volatility structure, may be
left blank.

• Dimension: Distinguishes at-the-money matrices and full volatility cubes.
Allowable values: ATM, Smile

• VolatilityType: Specifies the type of market volatility inputs.
Allowable values: Normal, Lognormal, ShiftedLognormal
In the case of ShiftedLognormal, a matrix of shifts (by option and swap tenor)
has to be provided in the market data input.

• Extrapolation: Specifies the extrapolation behaviour in all dimensions.
Allowable values: Linear, Flat, None

• DayCounter: The term structure’s day counter used in date to time conversions

• Calendar: The term structure’s calendar used in option tenor to date conversions

• BusinessDayConvention: The term structure’s business day convention used in
option tenor to date conversion

• ATM Matrix specification, required for both Dimension choices:

– OptionTenors: Option expiry in period form

– SwapTenors: Underlying Swap term in period form

– ShortSwapIndexBase: Swap index (ORE naming convention, e.g.
EUR-CMS-1Y) used to compute ATM strikes for tenors up to and including
the tenor given in the index (1Y in this example)

– SwapIndexBase: Swap index used to compute ATM strikes for tenors longer
than the one defined by the short index

• Smile section specification, this part is required when Dimension is set to Smile,
otherwise it can be omitted:

– SmileOptionTenors: Option expiries, in period form, where smile section
data is to be taken into account

– SmileSwapTenors: Underlying Swap term, in period form, where smile
section data is to be taken into account

– SmileSpreads: Strikes in smile direction expressed as strike spreads, relative
to the ATM strike at the expiry/term point of the ATM matrix. Note that
trailing 0s are not ignored.

• QuoteTag [Optional]: If non-empty, a tag will be included in the market datum
labels. This can be used to set up underlying specific volatility date. For
example, if the quote tag is set to EUR-EURIBOR-3M, the market datum labels
will be SWAPTION/RATE_LNVOL/EUR/EUR-EURIBOR-3M/5Y/10Y/ATM instead of
SWAPTION/RATE_LNVOL/EUR/5Y/10Y/ATM. See section 10.20.

7.8.6 Cap Floor Volatility Structures

The cap volatility structure parameterisation allows the user to pick out term cap
volatilities or optionlet volatilities in the market data.

147

If term cap volatilities are given, users can define how they should be stripped to
create an optionlet volatility structure. The parameterisation allows for three separate
types of input term cap volatility structures:

1. A strip of at-the-money (ATM) cap volatilities.

2. A cap maturity tenor by absolute cap strike grid of cap volatilities.

3. A combined structure containing both the ATM cap volatilities and the maturity
by strike grid of cap volatilities.

If optionlet volatilities are given, no bootstrapping will be performed on the input
market data. The curve or surface will be constructed using the interpolation method
defined by user. The parameterisation allows for three separate types of input
optionlet volatilities structures:

1. A strip of at-the-money (ATM) optionlet volatilities.

2. A optionlet maturity tenor by absolute optionlet strike grid of optionlet
volatilities.

3. A combined structure containing both the ATM optionlet volatilities and the
maturity by strike grid of optionlet volatilities.

The input volatilities may be normal, lognormal or shifted lognormal. The structure of
the market quotes is provided in Table 64.

Whether the input market data are term cap volatilities or optionlet volatilities
depends on the value of the InputType node. This node may be set to
TermVolatilities for term cap volatilites or OptionletVolatilities for optionlet
volatilities.

For term cap volatilities, the structure of the XML, i.e. the nodes that are necessary,
used and ignored, and the way that the optionlet volatilities are stripped hinges on the
value of the InterpolateOn node. This node may be set to TermVolatilities or
OptionletVolatilities. This node will be ignored if the inputs are optionlet
volatilities.

When set to TermVolatilities, a column of sequential caps or floors, are created for
each strike level out to the maximum cap maturity configured. In other words, if the
index tenor is 6M, the first cap created would have a maturity of 1Y, the second cap
18M, the third cap 2Y and so on until we have a cap with maturity equal to the
maximum maturity tenor in the configuration. The volatility for each of these caps or
floors is then interpolated from the term cap volatility surface using the configured
interpolation. Finally, the optionlet volatility at each cap or floor maturity, starting
from the first, is derived in turn such that the column of cap or floor volatilities are
matched.

When set to OptionletVolatilities, the optionlet volatility structure pillar dates
are set to the fixing dates on the last caplet on each of the configured caps or floors i.e.
caps or floors with the maturities in the configured Tenors or AtmTenors. The
optionlet volatilities on these pillar dates are then solved for such that the configured
cap or floor volatilities are matched.

In the following sections, we describe six XML configurations separately for clarity:

148

1. Term volatility ATM curve with interpolation on term volatilities.

2. Term volatility ATM curve with interpolation on optionlet volatilities.

3. Term volatility surface, possibly including an ATM column, with interpolation on
term volatilities.

4. Term volatility surface, possibly including an ATM column, with interpolation on
optionlet volatilities.

5. Optionlet volatility ATM curve.

6. Optionlet volatility surface.

Listing 72 shows the layout for parameterising an ATM cap volatility curve with
interpolation on term volatilities. Nodes that have no effect for this parameterisation
but that are allowed by the schema are not referenced. The meaning of each of the
nodes is as follows:

• CurveId: Unique identifier for the cap floor volatility structure.

• CurveDescription [Optional]: A description of the volatility structure. It is for
information only and may be left blank.

• VolatilityType: Indicates the cap floor volatility type. It may be Normal,
Lognormal or ShiftedLognormal. Note that this then determines which market
data points are looked up in the market when creating the ATM cap floor curve
and how they are interpreted when stripping the optionlets. In particular, the
market will be searched for market data points of the form
CAPFLOOR/RATE_NVOL/Currency/Tenor/IndexTenor/1/1/0,
CAPFLOOR/RATE_LNVOL/Currency/Tenor/IndexTenor/1/1/0 or
CAPFLOOR/RATE_SLNVOL/Currency/Tenor/IndexTenor/1/1/0 respectively.

• Extrapolation: Indicates the extrapolation in the time direction before the first
optionlet volatility and after the last optionlet volatility. The extrapolation
occurs on the stripped optionlet volatilities. The allowable values are None, Flat
and Linear. If set to None, extrapolation is turned off and an exception is
thrown if the optionlet surface is queried outside the allowable times. If set to
Flat, the first optionlet volatility is used before the first time and the last
optionlet volatility is used after the last time. If set to Linear, the interpolation
method configured in InterpolationMethod is used to extrapolate.

• InterpolationMethod [Optional]: Indicates the interpolation in the time
direction. As InterpolateOn is set to TermVolatilities here, the interpolation
is used in the stripping process to interpolate the term cap floor volatility curve
as explained above. It is also used to interpolate the optionlet volatilities when
an optionlet volatility is queried from the stripped optionlet structure. The
allowable values are Bilinear and BicubicSpline. If not set, BicubicSpline is
assumed. Obviously, as we are describing an ATM curve here, there is no
interpolation in the strike direction so when Bilinear is set the time
interpolation is linear and when BicubicSpline is set the time interpolation is
cubic spline.

• IncludeAtm: A boolean value indicating if an ATM curve should be used.

149

Allowable boolean values are given in the Table 42. As we are describing an
ATM curve here, this node should be set to true as shown in 72.

• DayCounter: The day counter used to convert from dates to times in the
underlying structure. Allowable values are given in the Table 31.

• Calendar: The calendar used to advance dates by periods in the underlying
structure. In particular, it is used in deriving the cap maturity dates from the
configured cap tenors. Allowable values are given in the Table 30.

• BusinessDayConvention: The business day convention used to advance dates by
periods in the underlying structure. In particular, it is used in deriving the cap
maturity dates from the configured cap tenors. Allowable values are given in the
Table 26 under Roll Convention.

• Tenors [Optional]: A comma separated list of valid tenor strings giving the cap
floor maturity tenors to be used in the ATM curve. If omitted, the tenors for the
ATM curve must be provided in the AtmTenors node instead. If the tenors are
provided here, the AtmTenors node may be omitted.

• OptionalQuotes [Optional]: A boolean flag to indicate whether market data
quotes for all tenors are required. If true, we attempt to build the curve from
whatever quotes are provided. If false, the curve will fail to build if any quotes
are missing. This also applies to quotes for the AtmTenors. Default value is false.

• IborIndex: A valid interest rate index name giving the index underlying the cap
floor quotes. Allowable values are given in the Table 32.

• DiscountCurve: A reference to a valid discount curve specification that will be
used to discount cashflows during the stripping process. It should be of the form
Yield/Currency/curve_name where curve_name is the name of a yield curve
defined in the yield curve configurations.

• AtmTenors [Optional]: A comma separated list of valid tenor strings giving the
cap floor maturities to be used in the ATM curve. If omitted, the tenors for the
ATM curve must be provided in the Tenors node instead. If the tenors are
provided here, the Tenors node may be omitted.

• SettlementDays [Optional]: Any non-negative integer is allowed here. If omitted,
it is assumed to be 0. If provided the reference date of the term volatility curve
and the stripped optionlet volatility structure will be calculated by advancing the
valuation date by this number of days using the configured calendar and business
day convention. In general, this should be omitted or set to 0.

• InterpolateOn: As referenced above, the allowable values are
TermVolatilities or OptionletVolatilities. As we are describing here an
ATM curve with interpolation on term volatilities, this should be set to
TermVolatilities as shown in Listing 72.

• BootstrapConfig [Optional]: This node holds configuration details for the
iterative bootstrap that are described in section 7.8.19. If omitted, this node’s
default values described in section 7.8.19 are used.

• InputType [Optional]: The type of the marketdata input. Allowable values are

150

TermVolatilities or OptionletVolatilities. As we are describing term cap
volatilities input, this should be set to TermVolatilities or omitted as shown in
Listing 72. If omitted, the default value is TermVolatilities.

<CapFloorVolatility>
<CurveId>...</CurveId>
<CurveDescription>...</CurveDescription>
<VolatilityType>...</VolatilityType>
<Extrapolation>...</Extrapolation>
<InterpolationMethod>...</InterpolationMethod>
<IncludeAtm>true</IncludeAtm>
<DayCounter>...</DayCounter>
<Calendar>...</Calendar>
<BusinessDayConvention>...</BusinessDayConvention>
<Tenors>...</Tenors>
<OptionalQuotes>...</OptionalQuotes>
<IborIndex>...</IborIndex>
<DiscountCurve>...</DiscountCurve>
<AtmTenors>...</AtmTenors>
<SettlementDays>...</SettlementDays>
<InterpolateOn>TermVolatilities</InterpolateOn>
<BootstrapConfig>...</BootstrapConfig>
<InputType>TermVolatilities</InputType>

</CapFloorVolatility>

Listing 72: ATM cap floor configuration with interpolation on term volatilities.

Listing 73 shows the layout for parameterising an ATM cap volatility curve with
interpolation on optionlet volatilities. Nodes that have no effect for this
parameterisation but that are allowed by the schema are not referenced. The meaning
of each of the nodes is as follows:

• CurveId: Unique identifier for the cap floor volatility structure.

• CurveDescription [Optional]: A description of the volatility structure. It is for
information only and may be left blank.

• VolatilityType: Indicates the cap floor volatility type. It may be Normal,
Lognormal or ShiftedLognormal. Note that this then determines which market
data points are looked up in the market when creating the ATM cap floor curve
and how they are interpreted when stripping the optionlets. In particular, the
market will be searched for market data points of the form
CAPFLOOR/RATE_NVOL/Currency/Tenor/IndexTenor/1/1/0,
CAPFLOOR/RATE_LNVOL/Currency/Tenor/IndexTenor/1/1/0 or
CAPFLOOR/RATE_SLNVOL/Currency/Tenor/IndexTenor/1/1/0 respectively.

• Extrapolation: The allowable values are None, Flat and Linear. If set to None,
extrapolation is turned off and an exception is thrown if the optionlet surface is
queried outside the allowable times. Otherwise, extrapolation is allowed and the
type of extrapolation is determined by the TimeInterpolation node value
described below.

• IncludeAtm: A boolean value indicating if an ATM curve should be used.
Allowable boolean values are given in the Table 42. As we are describing an
ATM curve here, this node should be set to true as shown in 73.

151

• DayCounter: The day counter used to convert from dates to times in the
underlying structure. Allowable values are given in the Table 31.

• Calendar: The calendar used to advance dates by periods in the underlying
structure. In particular, it is used in deriving the cap maturity dates from the
configured cap tenors. Allowable values are given in the Table 30.

• BusinessDayConvention: The business day convention used to advance dates by
periods in the underlying structure. In particular, it is used in deriving the cap
maturity dates from the configured cap tenors. Allowable values are given in the
Table 26 under Roll Convention.

• Tenors [Optional]: A comma separated list of valid tenor strings giving the cap
floor maturity tenors to be used in the ATM curve. If omitted, the tenors for the
ATM curve must be provided in the AtmTenors node instead. If the tenors are
provided here, the AtmTenors node may be omitted.

• OptionalQuotes [Optional]: A boolean flag to indicate whether market data
quotes for all tenors are required. If true, we attempt to build the curve from
whatever quotes are provided. If false, the curve will fail to build if any quotes
are missing. This also applies to quotes for the AtmTenors. Default value is false.

• IborIndex: A valid interest rate index name giving the index underlying the cap
floor quotes. Allowable values are given in the Table 32.

• DiscountCurve: A reference to a valid discount curve specification that will be
used to discount cashflows during the stripping process. It should be of the form
Yield/Currency/curve_name where curve_name is the name of a yield curve
defined in the yield curve configurations.

• AtmTenors [Optional]: A comma separated list of valid tenor strings giving the
cap floor maturities to be used in the ATM curve. If omitted, the tenors for the
ATM curve must be provided in the Tenors node instead. If the tenors are
provided here, the Tenors node may be omitted.

• SettlementDays [Optional]: Any non-negative integer is allowed here. If omitted,
it is assumed to be 0. If provided the reference date of the term volatility curve
and the stripped optionlet volatility structure will be calculated by advancing the
valuation date by this number of days using the configured calendar and business
day convention. In general, this should be omitted or set to 0.

• InterpolateOn: As referenced above, the allowable values are
TermVolatilities or OptionletVolatilities. As we are describing here an
ATM curve with interpolation on optionlet volatilities, this should be set to
OptionletVolatilities as shown in Listing 73.

• TimeInterpolation [Optional]: Indicates the interpolation and extrapolation, if
allowed by the Extrapolation node, in the time direction. As InterpolateOn is
set to OptionletVolatilities here, the interpolation is used to interpolate the
optionlet volatilities only i.e. there is no interpolation on the term cap floor
volatility curve. The allowable values are Linear, LinearFlat, BackwardFlat,
Cubic and CubicFlat. If not set, LinearFlat is assumed. Note that Linear
indicates linear interpolation and linear extrapolation. LinearFlat indicates

152

linear interpolation and flat extrapolation. Analogous meanings apply for Cubic
and CubicFlat.

• BootstrapConfig [Optional]: This node holds configuration details for the
iterative bootstrap that are described in section 7.8.19. If omitted, this node’s
default values described in section 7.8.19 are used.

• InputType [Optional]: The type of the marketdata input. Allowable values are
TermVolatilities or OptionletVolatilities. As we are describing term cap
volatilities input, this should be set to TermVolatilities or omitted as shown in
Listing 73. If omitted, the default value is TermVolatilities.

<CapFloorVolatility>
<CurveId>...</CurveId>
<CurveDescription>...</CurveDescription>
<VolatilityType>...</VolatilityType>
<Extrapolation>...</Extrapolation>
<IncludeAtm>true</IncludeAtm>
<DayCounter>...</DayCounter>
<Calendar>...</Calendar>
<BusinessDayConvention>...</BusinessDayConvention>
<Tenors>...</Tenors>
<OptionalQuotes>...</OptionalQuotes>
<IborIndex>...</IborIndex>
<DiscountCurve>...</DiscountCurve>
<AtmTenors>...</AtmTenors>
<SettlementDays>...</SettlementDays>
<InterpolateOn>OptionletVolatilities</InterpolateOn>
<TimeInterpolation>...</TimeInterpolation>
<BootstrapConfig>...</BootstrapConfig>
<InputType>TermVolatilities</InputType>

</CapFloorVolatility>

Listing 73: ATM cap floor configuration with interpolation on optionlet volatilities.

Listing 74 shows the layout for parameterising a cap tenor by absolute cap strike
volatility surface with interpolation on term volatilities. This parameterisation also
allows for the inclusion of a cap floor ATM curve in combination with the surface.
Nodes that have no effect for this parameterisation but that are allowed by the schema
are not referenced. The meaning of each of the nodes is as follows:

• CurveId: Unique identifier for the cap floor volatility structure.

• CurveDescription [Optional]: A description of the volatility structure. It is for
information only and may be left blank.

• VolatilityType: Indicates the cap floor volatility type. It may be Normal,
Lognormal or ShiftedLognormal. Note that this then determines which market
data points are looked up in the market when creating the cap floor surface and
how they are interpreted when stripping the optionlets. In particular, the market
will be searched for market data points of the form
CAPFLOOR/RATE_NVOL/Currency/Tenor/IndexTenor/0/0/Strike,
CAPFLOOR/RATE_LNVOL/Currency/Tenor/IndexTenor/0/0/Strike or
CAPFLOOR/RATE_SLNVOL/Currency/Tenor/IndexTenor/0/0/Strike respectively.

• Extrapolation: Indicates the extrapolation in the time and strike direction.

153

The extrapolation occurs on the stripped optionlet volatilities. The allowable
values are None, Flat and Linear. If set to None, extrapolation is turned off and
an exception is thrown if the optionlet surface is queried outside the allowable
times or strikes. If set to Flat, the optionlet volatility on the time strike
boundary is used if the optionlet surface is queried outside the allowable times or
strikes. If set to Linear, the interpolation method configured in
InterpolationMethod is used to extrapolate either time or strike direction.

• InterpolationMethod [Optional]: Indicates the interpolation in the time and
strike direction. As InterpolateOn is set to TermVolatilities here, the
interpolation is used in the stripping process to interpolate the term cap floor
volatility surface as explained above. It is also used to interpolate the optionlet
volatilities when an optionlet volatility is queried from the stripped optionlet
structure. The allowable values are Bilinear and BicubicSpline. If not set,
BicubicSpline is assumed.

• IncludeAtm: A boolean value indicating if an ATM curve should be used in
combination with the surface. Allowable boolean values are given in the Table
42. If set to true, the AtmTenors node needs to be populated with the ATM
tenors to use. The ATM quotes that are searched for are as outlined in the
previous two ATM sections above. The original stripped optionlet surface is
amended by inserting the optionlet volatilities at the successive ATM strikes that
reproduce the sequence of ATM cap volatilities.

• DayCounter: The day counter used to convert from dates to times in the
underlying structure. Allowable values are given in the Table 31.

• Calendar: The calendar used to advance dates by periods in the underlying
structure. In particular, it is used in deriving the cap maturity dates from the
configured cap tenors. Allowable values are given in the Table 30.

• BusinessDayConvention: The business day convention used to advance dates by
periods in the underlying structure. In particular, it is used in deriving the cap
maturity dates from the configured cap tenors. Allowable values are given in the
Table 26 under Roll Convention.

• Tenors: A comma separated list of valid tenor strings giving the cap floor
maturity tenors to be used in the tenor by strike surface. In this case, i.e.
configuring a surface, they must be provided.

• OptionalQuotes [Optional]: A boolean flag to indicate whether market data
quotes for all tenors are required. If true, we attempt to build the curve from
whatever quotes are provided. If false, the curve will fail to build if any quotes
are missing. This also applies to quotes for the AtmTenors. Default value is false.

• IborIndex: A valid interest rate index name giving the index underlying the cap
floor quotes. Allowable values are given in the Table 32.

• DiscountCurve: A reference to a valid discount curve specification that will be
used to discount cashflows during the stripping process. It should be of the form
Yield/Currency/curve_name where curve_name is the name of a yield curve
defined in the yield curve configurations.

154

• AtmTenors [Optional]: A comma separated list of valid tenor strings giving the
cap floor maturity tenors to be used in the ATM curve. It must be provided
when IncludeAtm is true and omitted when IncludeAtm is false.

• SettlementDays [Optional]: Any non-negative integer is allowed here. If omitted,
it is assumed to be 0. If provided the reference date of the term volatility curve
and the stripped optionlet volatility structure will be calculated by advancing the
valuation date by this number of days using the configured calendar and business
day convention. In general, this should be omitted or set to 0.

• InterpolateOn: As referenced above, the allowable values are
TermVolatilities or OptionletVolatilities. As we are describing here a
surface with interpolation on term volatilities, this should be set to
TermVolatilities as shown in Listing 74.

• BootstrapConfig [Optional]: This node holds configuration details for the
iterative bootstrap that are described in section 7.8.19. If omitted, this node’s
default values described in section 7.8.19 are used.

• InputType [Optional]: The type of the marketdata input. Allowable values are
TermVolatilities or OptionletVolatilities. As we are describing term cap
volatilities input, this should be set to TermVolatilities or omitted as shown in
Listing 74. If omitted, the default value is TermVolatilities.

<CapFloorVolatility>
<CurveId>...</CurveId>
<CurveDescription>...</CurveDescription>
<VolatilityType>...</VolatilityType>
<Extrapolation>...</Extrapolation>
<InterpolationMethod>...</InterpolationMethod>
<IncludeAtm>...</IncludeAtm>
<DayCounter>...</DayCounter>
<Calendar>...</Calendar>
<BusinessDayConvention>...</BusinessDayConvention>
<Tenors>...</Tenors>
<OptionalQuotes>...</OptionalQuotes>
<IborIndex>...</IborIndex>
<DiscountCurve>...</DiscountCurve>
<AtmTenors>...</AtmTenors>
<SettlementDays>...</SettlementDays>
<InterpolateOn>TermVolatilities</InterpolateOn>
<BootstrapConfig>...</BootstrapConfig>
<InputType>TermVolatilities</InputType>

</CapFloorVolatility>

Listing 74: Cap floor surface with interpolation on term volatilities.

Listing 75 shows the layout for parameterising a cap tenor by absolute cap strike
volatility surface with interpolation on optionlet volatilities. This parameterisation also
allows for the inclusion of a cap floor ATM curve in combination with the surface.
Nodes that have no effect for this parameterisation but that are allowed by the schema
are not referenced. The meaning of each of the nodes is as follows:

• CurveId: Unique identifier for the cap floor volatility structure.

• CurveDescription [Optional]: A description of the volatility structure. It is for

155

information only and may be left blank.

• VolatilityType: Indicates the cap floor volatility type. It may be Normal,
Lognormal or ShiftedLognormal. Note that this then determines which market
data points are looked up in the market when creating the cap floor surface and
how they are interpreted when stripping the optionlets. In particular, the market
will be searched for market data points of the form
CAPFLOOR/RATE_NVOL/Currency/Tenor/IndexTenor/0/0/Strike,
CAPFLOOR/RATE_LNVOL/Currency/Tenor/IndexTenor/0/0/Strike or
CAPFLOOR/RATE_SLNVOL/Currency/Tenor/IndexTenor/0/0/Strike respectively.

• Extrapolation: The allowable values are None, Flat and Linear. If set to None,
extrapolation is turned off and an exception is thrown if the optionlet surface is
queried outside the allowable times or strikes. Otherwise, extrapolation is
allowed and the type of extrapolation is determined by the TimeInterpolation
and StrikeInterpolation node values described below.

• IncludeAtm: A boolean value indicating if an ATM curve should be used in
combination with the surface. Allowable boolean values are given in the Table
42. If set to true, the AtmTenors node needs to be populated with the ATM
tenors to use. The ATM quotes that are searched for are as outlined in the
previous two ATM sections above. The original stripped optionlet surface is
amended by inserting the optionlet volatilities at the configured ATM strikes
that reproduce the configured ATM cap volatilities.

• DayCounter: The day counter used to convert from dates to times in the
underlying structure. Allowable values are given in the Table 31.

• Calendar: The calendar used to advance dates by periods in the underlying
structure. In particular, it is used in deriving the cap maturity dates from the
configured cap tenors. Allowable values are given in the Table 30.

• BusinessDayConvention: The business day convention used to advance dates by
periods in the underlying structure. In particular, it is used in deriving the cap
maturity dates from the configured cap tenors. Allowable values are given in the
Table 26 under Roll Convention.

• Tenors: A comma separated list of valid tenor strings giving the cap floor
maturity tenors to be used in the tenor by strike surface. In this case, i.e.
configuring a surface, they must be provided.

• OptionalQuotes [Optional]: A boolean flag to indicate whether market data
quotes for all tenors and strikes are required. If true, we attempt to build the
curve from whatever quotes are provided. If false, the curve will fail to build if
any quotes are missing. This also applies to quotes for the AtmTenors. Default
value is false.

• IborIndex: A valid interest rate index name giving the index underlying the cap
floor quotes. Allowable values are given in the Table 32.

• DiscountCurve: A reference to a valid discount curve specification that will be
used to discount cashflows during the stripping process. It should be of the form
Yield/Currency/curve_name where curve_name is the name of a yield curve

156

defined in the yield curve configurations.

• AtmTenors [Optional]: A comma separated list of valid tenor strings giving the
cap floor maturity tenors to be used in the ATM curve. It must be provided
when IncludeAtm is true and omitted when IncludeAtm is false.

• SettlementDays [Optional]: Any non-negative integer is allowed here. If omitted,
it is assumed to be 0. If provided the reference date of the term volatility curve
and the stripped optionlet volatility structure will be calculated by advancing the
valuation date by this number of days using the configured calendar and business
day convention. In general, this should be omitted or set to 0.

• InterpolateOn: As referenced above, the allowable values are
TermVolatilities or OptionletVolatilities. As we are describing here a
surface with interpolation on optionlet volatilities, this should be set to
OptionletVolatilities as shown in Listing 75.

• TimeInterpolation: Indicates the interpolation and extrapolation, if allowed by
the Extrapolation node, in the time direction. As InterpolateOn is set to
OptionletVolatilities here, the interpolation is used to interpolate the
optionlet volatilities only i.e. there is no interpolation on the term cap floor
volatility curve. The allowable values are Linear, LinearFlat, BackwardFlat,
Cubic and CubicFlat. If not set, LinearFlat is assumed. Note that Linear
indicates linear interpolation and linear extrapolation. LinearFlat indicates
linear interpolation and flat extrapolation. Analogous meanings apply for Cubic
and CubicFlat.

• StrikeInterpolation: Indicates the interpolation and extrapolation, if allowed
by the Extrapolation node, in the strike direction. Again, as InterpolateOn is
set to OptionletVolatilities here, the interpolation is used to interpolate the
optionlet volatilities in the strike direction. The allowable values are Linear,
LinearFlat, Cubic and CubicFlat. If not set, LinearFlat is assumed.

• QuoteIncludesIndexName [Optional]: If true, the quote labels that are looked up
in the market data to build the surface include the index name as e.g. in
CAPFLOOR/RATE_NVOL/USD/USD-LIBOR-3M/1Y/3M/0/0/0.01. If false, the index
name is not include as in CAPFLOOR/RATE_NVOL/USD/1Y/3M/0/0/0.01. If the flag
is not given, it defaults to false. Including the index name in the market quotes
allows to build cap surfaces on different underlying indices with the same tenor.
The flag also affects shift quotes as e.g. CAPFLOOR/SHIFT/USD/USD-LIBOR-3M/5Y
(index included in quote) vs. CAPFLOOR/SHIFT/USD/5Y (index not included in
quote).

• BootstrapConfig [Optional]: This node holds configuration details for the
iterative bootstrap that are described in section 7.8.19. If omitted, this node’s
default values described in section 7.8.19 are used.

• InputType [Optional]: The type of the marketdata input. Allowable values are
TermVolatilities or OptionletVolatilities. As we are describing term cap
volatilities input, this should be set to TermVolatilities or omitted as shown in
Listing 75. If omitted, the default value is TermVolatilities.

<CapFloorVolatility>

157

<CurveId>...</CurveId>
<CurveDescription>...</CurveDescription>
<VolatilityType>...</VolatilityType>
<Extrapolation>...</Extrapolation>
<InterpolationMethod>...</InterpolationMethod>
<IncludeAtm>...</IncludeAtm>
<DayCounter>...</DayCounter>
<Calendar>...</Calendar>
<BusinessDayConvention>...</BusinessDayConvention>
<Tenors>...</Tenors>
<OptionalQuotes>...</OptionalQuotes>
<IborIndex>...</IborIndex>
<DiscountCurve>...</DiscountCurve>
<AtmTenors>...</AtmTenors>
<SettlementDays>...</SettlementDays>
<InterpolateOn>OptionletVolatilities</InterpolateOn>
<TimeInterpolation>...</TimeInterpolation>
<StrikeInterpolation>...</StrikeInterpolation>
<QuoteIncludesIndexName>...</QuoteIncludesIndexName>
<BootstrapConfig>...</BootstrapConfig>
<InputType>TermVolatilities</InputType>

</CapFloorVolatility>

Listing 75: Cap floor surface with interpolation on optionlet volatilities.

Listing 76 shows the layout for parameterising an ATM optionlet volatility curve.
Nodes that have no effect for this parameterisation but that are allowed by the schema
are not referenced. The meaning of each of the nodes is as follows:

• CurveId: Unique identifier for the cap floor volatility structure.

• CurveDescription [Optional]: A description of the volatility structure. It is for
information only and may be left blank.

• VolatilityType: Indicates the cap floor volatility type. It may be Normal,
Lognormal or ShiftedLognormal. Note that this then determines which market
data points are looked up in the market when creating the ATM optionlet curve.
In particular, the market will be searched for market data points of the form
CAPFLOOR/RATE_NVOL/Currency/Tenor/IndexTenor/1/1/0,
CAPFLOOR/RATE_LNVOL/Currency/Tenor/IndexTenor/1/1/0 or
CAPFLOOR/RATE_SLNVOL/Currency/Tenor/IndexTenor/1/1/0 respectively.

• Extrapolation: The allowable values are None, Flat and Linear. If set to None,
extrapolation is turned off and an exception is thrown if the optionlet surface is
queried outside the allowable times. Otherwise, extrapolation is allowed and the
type of extrapolation is determined by the TimeInterpolation node value
described below.

• IncludeAtm: A boolean value indicating if an ATM curve should be used.
Allowable boolean values are given in the Table 42. As we are describing an
ATM curve here, this node should be set to true as shown in 76.

• DayCounter: The day counter used to convert from dates to times in the
underlying structure. Allowable values are given in the Table 31.

• Calendar: The calendar used to advance dates by periods in the underlying

158

structure. In particular, it is used in deriving the cap maturity dates from the
configured cap tenors. Allowable values are given in the Table 30.

• BusinessDayConvention: The business day convention used to advance dates by
periods in the underlying structure. In particular, it is used in deriving the cap
maturity dates from the configured cap tenors. Allowable values are given in the
Table 26 under Roll Convention.

• Tenors [Optional]: A comma separated list of valid tenor strings giving the cap
floor maturity tenors to be used in the tenor by strike surface. A single wildcard
character, *, can also be used for wildcard tenor. In this case, i.e. configuring a
surface, they must be provided.

• OptionalQuotes [Optional]: A boolean flag to indicate whether market data
quotes for all tenors are required. Optionlet volatilities do not support optional
quotes, so this node should be false or omitted. Default value is false.

• IborIndex: A valid interest rate index name giving the index underlying the cap
floor quotes. Allowable values are given in the Table 32.

• DiscountCurve: A reference to a valid discount curve specification that will be
used to discount cashflows. It should be of the form
Yield/Currency/curve_name where curve_name is the name of a yield curve
defined in the yield curve configurations.

• AtmTenors [Optional]: A comma separated list of valid tenor strings giving the
cap floor maturities to be used in the ATM curve. A single wildcard character, *,
can also be used for wildcard tenor. In this case, all the tenors found in the
market data input will be used to construct the ATM curve. If omitted, the
tenors for the ATM curve must be provided in the Tenors node instead. If the
tenors are provided here, the Tenors node may be omitted.

• SettlementDays [Optional]: Any non-negative integer is allowed here. If omitted,
it is assumed to be 0. If provided the reference date of the term volatility curve
and the stripped optionlet volatility structure will be calculated by advancing the
valuation date by this number of days using the configured calendar and business
day convention. In general, this should be omitted or set to 0.

• TimeInterpolation [Optional]: Indicates the interpolation and extrapolation, if
allowed by the Extrapolation node, in the time direction. The allowable values
are Linear, LinearFlat, BackwardFlat, Cubic and CubicFlat. If not set,
LinearFlat is assumed. Note that Linear indicates linear interpolation and
linear extrapolation. LinearFlat indicates linear interpolation and flat
extrapolation. Analogous meanings apply for Cubic and CubicFlat.

• InputType: The type of the marketdata input. Allowable values are
TermVolatilities or OptionletVolatilities. As we are describing ATM
curve on optionlet volatilities, this should be set to OptionletVolatilities as
shown in Listing 76.

<CapFloorVolatility>
<CurveId>...</CurveId>
<CurveDescription>...</CurveDescription>
<VolatilityType>...</VolatilityType>

159

<Extrapolation>...</Extrapolation>
<IncludeAtm>true</IncludeAtm>
<DayCounter>...</DayCounter>
<Calendar>...</Calendar>
<BusinessDayConvention>...</BusinessDayConvention>
<Tenors>...</Tenors>
<OptionalQuotes>false</OptionalQuotes>
<IborIndex>...</IborIndex>
<DiscountCurve>...</DiscountCurve>
<AtmTenors>...</AtmTenors>
<SettlementDays>...</SettlementDays>
<TimeInterpolation>...</TimeInterpolation>
<BootstrapConfig>...</BootstrapConfig>
<InputType>OptionletVolatilities</InputType>

</CapFloorVolatility>

Listing 76: ATM cap floor configuration with optionlet volatilities input.

Listing 77 shows the layout for parameterising an optionlet tenor by absolute optionlet
strike volatility surface. This parameterisation also allows for the inclusion of an
optionlet ATM curve in combination with the surface. Nodes that have no effect for
this parameterisation but that are allowed by the schema are not referenced. The
meaning of each of the nodes is as follows:

• CurveId: Unique identifier for the cap floor volatility structure.

• CurveDescription [Optional]: A description of the volatility structure. It is for
information only and may be left blank.

• VolatilityType: Indicates the cap floor volatility type. It may be Normal,
Lognormal or ShiftedLognormal. Note that this then determines which market
data points are looked up in the market when creating the ATM optionlet curve.
In particular, the market will be searched for market data points of the form
CAPFLOOR/RATE_NVOL/Currency/Tenor/IndexTenor/1/1/0,
CAPFLOOR/RATE_LNVOL/Currency/Tenor/IndexTenor/1/1/0 or
CAPFLOOR/RATE_SLNVOL/Currency/Tenor/IndexTenor/1/1/0 respectively.

• Extrapolation: The allowable values are None, Flat and Linear. If set to None,
extrapolation is turned off and an exception is thrown if the optionlet surface is
queried outside the allowable times. Otherwise, extrapolation is allowed and the
type of extrapolation is determined by the TimeInterpolation node value
described below.

• IncludeAtm: A boolean value indicating if an ATM curve should be used in
combination with the surface. Allowable boolean values are given in the Table
42. If set to true, the AtmTenors node needs to be populated with the ATM
tenors to use. The ATM quotes that are searched for are as outlined in the
previous sections above. The optionlet surface is amended by inserting the
optionlet volatilities at the forecast fixings.

• DayCounter: The day counter used to convert from dates to times in the
underlying structure. Allowable values are given in the Table 31.

• Calendar: The calendar used to advance dates by periods in the underlying
structure. In particular, it is used in deriving the cap maturity dates from the

160

configured cap tenors. Allowable values are given in the Table 30.

• BusinessDayConvention: The business day convention used to advance dates by
periods in the underlying structure. In particular, it is used in deriving the cap
maturity dates from the configured cap tenors. Allowable values are given in the
Table 26 under Roll Convention.

• Tenors [Optional]: A comma separated list of valid tenor strings giving the cap
floor maturity tenors to be used in the surface. A single wildcard character, *,
can also be used for wildcard tenor. In this case, all the tenors found in the
market data input will be used to construct the ATM curve. If omitted, the
tenors for the ATM curve must be provided in the AtmTenors node instead. If
the tenors are provided here, the AtmTenors node may be omitted.

• OptionalQuotes [Optional]: A boolean flag to indicate whether market data
quotes for all tenors are required. Optionlet volatilities do not support optional
quotes, so this node should be false or omitted. Default value is false.

• IborIndex: A valid interest rate index name giving the index underlying the cap
floor quotes. Allowable values are given in the Table 32.

• DiscountCurve: A reference to a valid discount curve specification that will be
used to discount cashflows. It should be of the form
Yield/Currency/curve_name where curve_name is the name of a yield curve
defined in the yield curve configurations.

• AtmTenors [Optional]: A comma separated list of valid tenor strings giving the
cap floor maturities to be used in the ATM curve. A single wildcard character, *,
can also be used for wildcard tenor. It must be provided when IncludeAtm is
true and omitted when IncludeAtm is false.

• SettlementDays [Optional]: Any non-negative integer is allowed here. If omitted,
it is assumed to be 0. If provided the reference date of the term volatility curve
and the stripped optionlet volatility structure will be calculated by advancing the
valuation date by this number of days using the configured calendar and business
day convention. In general, this should be omitted or set to 0.

• TimeInterpolation [Optional]: Indicates the interpolation and extrapolation, if
allowed by the Extrapolation node, in the time direction. The allowable values
are Linear, LinearFlat, BackwardFlat, Cubic and CubicFlat. If not set,
LinearFlat is assumed. Note that Linear indicates linear interpolation and
linear extrapolation. LinearFlat indicates linear interpolation and flat
extrapolation. Analogous meanings apply for Cubic and CubicFlat.

• StrikeInterpolation [Optional]: Indicates the interpolation and extrapolation,
if allowed by the Extrapolation node, in the strike direction. Again, as
InterpolateOn is set to OptionletVolatilities here, the interpolation is used
to interpolate the optionlet volatilities in the strike direction. The allowable
values are Linear, LinearFlat, Cubic and CubicFlat. If not set, LinearFlat is
assumed.

• QuoteIncludesIndexName [Optional]: If true, the quote labels that are looked up
in the market data to build the surface include the index name as e.g. in

161

CAPFLOOR/RATE_NVOL/USD/USD-LIBOR-3M/1Y/3M/0/0/0.01. If false, the index
name is not include as in CAPFLOOR/RATE_NVOL/USD/1Y/3M/0/0/0.01. If the flag
is not given, it defaults to false. Including the index name in the market quotes
allows to build cap surfaces on different underlying indices with the same tenor.
The flag also affects shift quotes as e.g. CAPFLOOR/SHIFT/USD/USD-LIBOR-3M/5Y
(index included in quote) vs. CAPFLOOR/SHIFT/USD/5Y (index not included in
quote).

• InputType: The type of the marketdata input. Allowable values are
TermVolatilities or OptionletVolatilities. As we are describing ATM
curve on optionlet volatilities, this should be set to OptionletVolatilities as
shown in Listing 77.

<CapFloorVolatility>
<CurveId>...</CurveId>
<CurveDescription>...</CurveDescription>
<VolatilityType>...</VolatilityType>
<Extrapolation>...</Extrapolation>
<IncludeAtm>...</IncludeAtm>
<DayCounter>...</DayCounter>
<Calendar>...</Calendar>
<BusinessDayConvention>...</BusinessDayConvention>
<Tenors>...</Tenors>
<OptionalQuotes>false</OptionalQuotes>
<IborIndex>...</IborIndex>
<DiscountCurve>...</DiscountCurve>
<AtmTenors>...</AtmTenors>
<SettlementDays>...</SettlementDays>
<TimeInterpolation>...</TimeInterpolation>
<StrikeInterpolation>...</StrikeInterpolation>
<QuoteIncludesIndexName>...</QuoteIncludesIndexName>
<InputType>OptionletVolatilities</InputType>

</CapFloorVolatility>

Listing 77: Cap floor surface with optionlet volatilities input.

7.8.7 FX Volatility Structures

Listings 78, 79, 80, 81, 82, 83 shows examples of FX volatility structure configurations.

<FXVolatility>
<CurveId>EURUSD</CurveId>
<CurveDescription />
<Dimension>ATM</Dimension>
<Expiries>1M,3M,6M,1Y,2Y,3Y,10Y</Expiries>
<FXSpotID>FX/EUR/USD</FXSpotID>
<FXForeignCurveID>Yield/EUR/EUR-IN-USD</FXForeignCurveID>
<FXDomesticCurveID>Yield/USD/USD1D</FXDomesticCurveID>
<DayCounter>A365</DayCounter>
<Calendar>US,TARGET</Calendar>
<Conventions>EUR-USD-FXOPTION</Conventions>

</FXVolatility>

Listing 78: FX option volatility configuration ATM

162

<FXVolatility>
<CurveId>USDJPY</CurveId>
<CurveDescription />
<Dimension>Smile</Dimension>
<SmileType>VannaVolga</SmileType>
<SmileInterpolation>VannaVolga2</SmileInterpolation>
<Expiries>1M,3M,6M,1Y,2Y,3Y,10Y</Expiries>
<SmileDelta>25</SmileDelta>
<FXSpotID>FX/USD/JPY</FXSpotID>
<FXForeignCurveID>Yield/USD/USD1D</FXForeignCurveID>
<FXDomesticCurveID>Yield/JPY/JPY-IN-USD</FXDomesticCurveID>
<DayCounter>A365</DayCounter>
<Calendar>US,JP</Calendar>
<Conventions>USD-JPY-FXOPTION</Conventions>

</FXVolatility>

Listing 79: FX option volatility configuration Smile / VannaVolga

<FXVolatility>
<CurveId>USDJPY</CurveId>
<CurveDescription />
<Dimension>Smile</Dimension>
<SmileType>Delta</SmileType>
<SmileInterpolation>Linear</SmileInterpolation>
<Expiries>1M,3M,6M,1Y,2Y,3Y,10Y</Expiries>
<Deltas>10P,20P,30P,40P,ATM,40C,30C,20C,10C</Deltas>
<FXSpotID>FX/USD/JPY</FXSpotID>
<FXForeignCurveID>Yield/USD/USD1D</FXForeignCurveID>
<FXDomesticCurveID>Yield/JPY/JPY-IN-USD</FXDomesticCurveID>
<DayCounter>A365</DayCounter>
<Calendar>US,JP</Calendar>
<Conventions>USD-JPY-FXOPTION</Conventions>

</FXVolatility>

Listing 80: FX option volatility configuration Smile / Delta

<FXVolatility>
<CurveId>USDJPY</CurveId>
<CurveDescription />
<Dimension>Smile</Dimension>
<SmileType>BFRR</SmileType>
<SmileInterpolation>Cubic</SmileInterpolation>
<Expiries>1M,3M,6M,1Y,2Y,3Y,10Y</Expiries>
<SmileDelta>10,25</SmileDelta>
<FXSpotID>FX/USD/JPY</FXSpotID>
<FXForeignCurveID>Yield/USD/USD1D</FXForeignCurveID>
<FXDomesticCurveID>Yield/JPY/JPY-IN-USD</FXDomesticCurveID>
<DayCounter>A365</DayCounter>
<Calendar>US,JP</Calendar>
<Conventions>USD-JPY-FXOPTION</Conventions>

</FXVolatility>

Listing 81: FX option volatility configuration Smile / BFRR with 10 and 25 BF and RR

<FXVolatility>
<CurveId>USDJPY</CurveId>

163

<CurveDescription />
<Dimension>Smile</Dimension>
<SmileType>Absolute</SmileType>
<SmileInterpolation>Cubic</SmileInterpolation>
<Expiries>1M,3M,6M,1Y,2Y,3Y,10Y</Expiries>
<FXSpotID>FX/USD/JPY</FXSpotID>
<FXForeignCurveID>Yield/USD/USD1D</FXForeignCurveID>
<FXDomesticCurveID>Yield/JPY/JPY-IN-USD</FXDomesticCurveID>
<DayCounter>A365</DayCounter>
<Calendar>US,JP</Calendar>
<Conventions>USD-JPY-FXOPTION</Conventions>

</FXVolatility>

Listing 82: FX option volatility configuration Smile / Absolute vols

<FXVolatility>
<CurveId>EURJPY</CurveId>
<CurveDescription />
<Dimension>ATMTriangulated</Dimension>
<FXSpotID>FX/EUR/JPY</FXSpotID>
<DayCounter>A365</DayCounter>
<Calendar>US,JP</Calendar>
<BaseVolatility1>EURUSD</BaseVolatility1>
<BaseVolatility2>USDJPY</BaseVolatility2>

</FXVolatility>

Listing 83: FX option volatility configuration ATM Triangulated

The meaning of each of the elements in Listings 78, 79, 80, 81, 82, 83 is given below.

• CurveId: Unique identifier of the FX volatility structure

• CurveDescription [Optional]: A description of the volatility structure, may be
left blank.

• Dimension: Distinguishes at-the-money volatility curves from volatility surfaces.
An ‘ATMTriangulated’ value denotes a curve triangulated from two other
surfaces.
Allowable values: ATM, Smile, ATMTriangulated

• SmileType [Optional]: Required field in case of Dimension Smile, otherwise it
can be omitted.
Allowable values: VannaVolga as per (Castagna & Mercurio - 2006), Delta,
BFRR, Absolute, with default value VannaVolga if left blank.

• SmileInterpolation [Optional]: Smile interpolation method applied, required field
in case of Dimension Smile, otherwise it can be omitted.
Allowable values:

– VannaVolga1 or VannaVolga2 in case of SmileType VannaVolga with
default VannaVolga2 if left blank. VannaVolga1/VannaVolga2 refer to the
first/second approximation in (eq. 13) and (eq. 14) of the reference above.

– Linear or Cubic in case of SmileType Delta or BFRR with default Linear
for SmileType Delta and Cubic for SmileType BFRR and Absolute if left
blank

164

• Expiries: Option expiries in period form. A wildcard may also be used. In the
wildcard case, it will look for any matching quotes provided in the loader, and
construct the curve from these. This is currently only supported for ATM or Delta
or BFRR or Absolute curves.

• Deltas [Optional]: Strike grid, required in case of SmileType Delta
Allowable values: ATM, *P, *C, see example in Listing 80

• SmileDelta [Optional]: Strike grid for SmileType VannaVolga and BFRR, defaults
to 25 for VannaVolga resp. 10,25 for BFRR
Allowable values: a list of integers, see example in Listing 81

• FXSpotID: ORE representation of the relevant FX spot quote in the form
FX/CCY1/CCY2

• FXForeignCurveID [Optional]: Yield curve, in ORE format Yield/CCY/ID, used
as foreign yield curve in smile curves, may be omitted for ATM curves.

• FXDomesticCurveID [Optional]: Yield curve, in ORE format Yield/CCY/ID,
used as domestic yield curve in smile curves, may be omitted for ATM curves.

• DayCounter: The term structure’s day counter used in date to time conversions.
Optional, defaults to A365.

• Calendar: The term structure’s calendar used in option tenor to date
conversions. Optional, defaults to source ccy + target ccy default calendars.

• Conventions [Optional]: FX conventions object ID that is used to determine the
at-the-money type and delta type of the volatility quotes, these default to
AtmDeltaNeutral and Spot for option tenors <= 2Y and AtmDeltaNeutral and
Fwd for option tenors > 2Y if the conventions ID is omitted or left blank.
Furthermore, the conventions hold information on the side of risk reversals
(RiskReversalInFavorOf, defaults to Call) and the quote style of butterflies
(ButterflyStyle, defaults to Broker), these latter two are relevant for BF, RR
market data input. See 7.11.18 for more details.

• BaseVolatility1: For ‘ATMTriangulated’ this denotes one of the surfaces we want
to triangulate from

• BaseVolatility2: For ‘ATMTriangulated’ this denotes one of the surfaces we want
to triangulate from

7.8.8 Equity Curve Structures

Listing 84 shows the configuration of equity forward price curves.

<EquityCurves>
<EquityCurve>
<CurveId>SP5</CurveId>
<CurveDescription>SP 500 equity price projection curve</CurveDescription>
<Currency>USD</Currency>
<ForecastingCurve>EUR1D</ForecastingCurve>
<!-- DividendYield, ForwardPrice, OptionPremium, NoDividends, ForwardDividendPrice -->
<Type>DividendYield</Type>
<!-- Optional node, only used when Type is OptionPremium -->
<ExerciseStyle>American</ExerciseStyle>

165

<!-- Spot quote from the market data file -->
<SpotQuote>EQUITY/PRICE/SP5/USD</SpotQuote>
<!-- Note: do not provide Quotes if Type is NoDividends -->
<Quotes>
<Quote>EQUITY_DIVIDEND/RATE/SP5/USD/3M</Quote>
<Quote>EQUITY_DIVIDEND/RATE/SP5/USD/20160915</Quote>
<Quote>EQUITY_DIVIDEND/RATE/SP5/USD/1Y</Quote>
<Quote>EQUITY_DIVIDEND/RATE/SP5/USD/20170915</Quote>

</Quotes>
<!-- Optional interpolation options, default Zero and Linear -->
<!-- Note: do not provide DividendInterpolation if Type is NoDividends -->
<DividendInterpolation>

<!-- Zero, Discount -->
<InterpolationVariable>Zero</InterpolationVariable>
<!-- See Table 16 for allowed interpolation methods -->
<InterpolationMethod>Linear</InterpolationMethod>

</DividendInterpolation>
<!-- Optional node, defaults to true -->
<Extrapolation>True</Extrapolation>
<DayCounter>A365</DayCounter>

</EquityCurve>
<EquityCurve>
...

</EquityCurve>
</EquityCurves>

Listing 84: Equity curve configuration

The meaning of each of the elements is given below.

• CurveId: Unique identifier of the equity curve structure.

• CurveDescription [Optional]: A description of the equity curve structure, may be
left blank.

• Currency: Currency of the equity.

• Calendar [Optional]: The term structure’s calendar used in tenor to date
conversions. Defaults to the calendar corresponding to Currency.

• ForecastingCurve: CurveId of the curve used for discounting equity fixing
forecasts.

• Type: The quote types in Quote (e.g. option premium, forward equity price) and
whether dividends are taken into account. Allowable values: DividendYield,
ForwardPrice, ForwardDividendPrice, OptionPremium, NoDividends

• ExerciseStyle [Optional]: Exercise type of the underlying option quotes. Only
required if Type is OptionPremium. Allowable values: American, European

• SpotQuote: Market datum ID/name of the current spot rate for the equity
underlying.

• Quotes [Optional]: Market datum IDs/names to be used in building the curve
structure.

• DayCounter [Optional]: The term structure’s day counter used in date to time
conversions. Defaults to A365F.

166

• DividendInterpolation [Optional]: This node contains an
InterpolationVariable and InterpolationMethod sub-node, which define the
variable on which the interpolation is performed and the interpolation method
for the dividend curve, respectively. The allowable values are found in Table 15
and Table 16, respectively. This should not be provided if Type is NoDividends.

• Extrapolation [Optional]: Boolean flag indicating whether extrapolation is
allowed. Defaults to True.

The equity curves here consists of a spot equity price, as well as a set of either forward
prices or else dividend yields. If the index is a dividend futures index then curve type
should be entered as ForwardDividendPrice. In this case the curve will be built from
forward prices as normal, but excluded from the SIMM calculations as required by the
SIMM methodology. Upon construction, ORE stores internally an equity spot price
quote, a forecasting curve and a dividend yield term structure, which are then used
together for projection of forward prices.

7.8.9 Equity Volatility Structures

When configuring volatility structures for equities, there are four options:

1. a constant volatility for all expiries and strikes.

2. a volatility curve with a dependency on expiry but no strike dimension.

3. a volatility surface with an expiry and strike dimension.

4. a proxy surface - point to another surface as a proxy.

There are a number of fields common to all configurations:

• CurveId: Unique identifier for the curve.

• CurveDescription [Optional]: A description of the curve. This field may be left
blank.

• Currency: Currency of the equity.

• Calendar [Optional]: allowable value is any valid calendar. Defaults to
NullCalendar.

• DayCounter [Optional]: allowable value is any valid day counter. Defaults to
A365.

• OneDimSolverConfig [Optional]: A configuration for the one dimensional solver
used in deriving volatilities from prices. This node is described in detail in
Section 7.8.20. If not provided, a default step based configuration is used. This is
only used when volatilities are stripped from prices.

• PreferOutOfTheMoney [Optional]: allowable value is any boolean value. Defaults
to false for backwards compatibility. It is used, when building the volatility
surface, to choose between a call and put option price or volatility when both are
provided. When set to true, the out of the money option is chosen by comparing
the quote’s strike with the forward price at the associated expiry. Conversely,
when set to false, the in the money option is chosen.

167

Listing 85 shows the configuration of equity volatility structures with constant
volatility. A node Constant takes one Quote, as described in Section 10.24, which is
held constant for all strikes and expiries.

<EquityVolatilities>
<EquityVolatility>
<CurveId>SP5</CurveId>
<CurveDescription>Lognormal option implied vols for SP 500</CurveDescription>
<Currency>USD</Currency>
<DayCounter>Actual/365 (Fixed)</DayCounter>
<Constant>
<Quote>EQUITY_OPTION/RATE_LNVOL/SP5/USD/5Y/ATMF</Quote>

</Constant>
</EquityVolatility>
<EquityVolatility>
...

</EquityVolatility>
</EquityVolatilities>

Listing 85: Equity option volatility configuration - constant

Secondly, the volatility curve configuration layout is given in Listing 86. With this
curve construction the volatility is held constant in the strike direction, and quotes of
varying expiry can be provided, for examlple if only ATM volatility quotes are
available. The volatility quote IDs in the Quotes node should be Equity option
volatility quotes as described in Section 10.24. An explicit list of quotes can be
provided, or a single quote with a wildcard replacing the expiry/strike. In the wildcard
case, it will look for any matching quotes provided in the loader, and construct the
curve from these. The Interpolation node supports Linear, Cubic and LogLinear
interpolation. The Extrapolation node supports either None for no extrapolation or
Flat for flat extrapolation in the volatility.

<EquityVolatilities>
<EquityVolatility>
<CurveId>SP5</CurveId>
<CurveDescription>Lognormal option implied vols for SP 500</CurveDescription>
<Currency>USD</Currency>
<DayCounter>Actual/365 (Fixed)</DayCounter>
<Curve>
<QuoteType>ImpliedVolatility</QuoteType>
<VolatilityType>Lognormal</VolatilityType>
<Quotes>
<Quote>EQUITY_OPTION/RATE_LNVOL/SP5/USD/*</Quote>

</Quotes>
<Interpolation>LinearFlat</Interpolation>
<Extrapolation>Flat</Extrapolation>

</Curve>
</EquityVolatility>
<EquityVolatility>
...

</EquityVolatility>
</EquityVolatilities>

Listing 86: Equity option volatility configuration - curve

The volatility strike surface configuration layout is given in Listing 87. This allows a

168

full surface of Strikes and Expiries to be defined. The following are the valid nodes:

• QuoteType: either ImpliedVolatility of Premium, indicating the type of quotes
provided in the market.

• ExerciseType [Optional]: only valid when QuoteType is Premium. Valid types
are European and American.

• VolatilityType [Optional]: only valid when QuoteType is ImpliedVolatility.
Valid types are Lognormal, ShiftedLognormal and Normal.

• Strikes: comma separated list of strikes, representing the absolute strike values
for the option. In other words, A single wildcard character, *, can be used here
also to indicate that all strikes found in the market data for this equity volatility
configuration should be used when building the equity volatility surface.

• Expiries: comma separated list of expiry tenors and or expiry dates. A single
wildcard character, *, can be used here also to indicate that all expiries found in
the market data for this equity volatility configuration should be used when
building the equity volatility surface.

• TimeInterpolation: interpolation in the option expiry direction. If either
Strikes or Expiries are configured with a wildcard character, Linear is used.
If both Strikes and Expiries are configured explicitly, Linear or Cubic is
allowed here but the value must agree with the value for StrikeInterpolation.

• StrikeInterpolation: interpolation in the strike direction. If either Strikes or
Expiries are configured with a wildcard character, Linear is used. If both
Strikes and Expiries are configured explicitly, Linear or Cubic is allowed here
but the value must agree with the value for TimeInterpolation.

• Extrapolation: boolean value. If true, extrapolation is allowed. If false,
extrapolation is not allowed.

• TimeExtrapolation: extrapolation in the option expiry direction. If both
Strikes and Expiries are configured explicitly, the extrapolation in the time
direction is flat in volatility regardless of the setting here. If either Strikes or
Expiries are configured with a wildcard character, Linear, UseInterpolator,
Flat or None are allowed. If Linear or UseInterpolator is specified, the
extrapolation is linear. If Flat is specified, the extrapolation is flat. If None is
specified, it is ignored and the extrapolation is flat since extrapolation in the
time direction cannot be turned off in isolation i.e. extrapolation can only be
turned off for the surface as a whole using the Extrapolation flag.

• StrikeExtrapolation: extrapolation in the strike direction. The allowable
values are Linear, UseInterpolator, Flat or None. If Linear or
UseInterpolator is specified, the extrapolation uses the strike interpolation
setting for extrapolation i.e. linear or cubic in this case. If Flat is specified, the
extrapolation is flat. If None is specified, it is ignored and the extrapolation is
flat since extrapolation in the strike direction cannot be turned off in isolation
i.e. extrapolation can only be turned off for the surface as a whole using the
Extrapolation flag.

When this configuration is used, the market is searched for quote strings of the form

169

EQUITY_OPTION/PRICE/[NAME]/[CURRENCY]/[EXPIRY]/[STRIKE] or
EQUITY_OPTION/RATE_LNVOL/[NAME]/[CURRENCY]/[EXPIRY]/[STRIKE], depending on
the QuoteType. When both the Strikes and Expiries are configured explicitly, it is
clear that the [EXPIRY] field is populated from the list of expiries in turn and the
[STRIKE] field is populated from the list of strikes in turn. If there are m expiries in
the Expiries list and n strikes in the Strikes list, there will be m× n quotes created
and searched for in the market data. If Expiries are configured via the wildcard
character, *, all quotes in the market data matching the pattern
EQUITY_OPTION/RATE_LNVOL/[NAME]/[CURRENCY]/*/[STRIKE]. Similarly for Strikes
configured via the wildcard character, *.

<EquityVolatilities>
<EquityVolatility>
<CurveId>SP5</CurveId>
<CurveDescription>Lognormal option implied vols for SP 500</CurveDescription>
<Currency>USD</Currency>
<DayCounter>Actual/365 (Fixed)</DayCounter>
<StrikeSurface>
<QuoteType>Premium</QuoteType>
<ExerciseType>European</ExerciseType>
<Strikes>*</Strikes>
<Expiries>*</Expiries>
<TimeInterpolation>Linear</TimeInterpolation>
<StrikeInterpolation>Linear</StrikeInterpolation>
<Extrapolation>true</Extrapolation>
<TimeExtrapolation>UseInterpolator</TimeExtrapolation>
<StrikeExtrapolation>Flat</StrikeExtrapolation>

</StrikeSurface>
</EquityVolatility>
<EquityVolatility>
...

</EquityVolatility>
</EquityVolatilities>

Listing 87: Equity option volatility configuration - strike surface

A volatility surface can also be given in terms of moneyness levels as shown in listing
88. The nodes have the same meaning as in the case of a strike surface with the
following exceptions:

• QuoteType: only ImpliedVolatility is allowed

• VolatilityType [Optional]: only Lognormal is allowed

• MoneynessType: Spot or Fwd, indicating the type of moneyness. See 10.24 for
the definition of moneyness types.

• MoneynessLevels: comma separated list of moneyness levels, no wild cards are
allowed.

• Expiries: comma separated list of expiry tenors and or expiry dates. A single
wildcard character, *, can be used here also to indicate that all expiries found in
the market data for this equity volatility configuration should be used when
building the equity volatility surface.

Notice that the market data for the moneyness level 1.0 must be given as a moneyness

170

quote, not an ATM or ATMF quote, see 10.24 for details of the market data.

<EquityVolatilities>
<EquityVolatility>
<CurveId>SP5</CurveId>
<CurveDescription>Lognormal option implied vols for SP 500</CurveDescription>
<Currency>USD</Currency>
<DayCounter>Actual/365 (Fixed)</DayCounter>
<MoneynessSurface>
<QuoteType>ImpliedVolatility</QuoteType>
<VolatilityType>Lognormal</VolatilityType>
<MoneynessType>Fwd</MoneynessType>
<MoneynessLevels>0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2,1.3,1.4,1.5</MoneynessLevels>
<Expiries>*</Expiries>
<TimeInterpolation>Linear</TimeInterpolation>
<StrikeInterpolation>Linear</StrikeInterpolation>
<Extrapolation>true</Extrapolation>
<TimeExtrapolation>UseInterpolator</TimeExtrapolation>
<StrikeExtrapolation>Flat</StrikeExtrapolation>

</MoneynessSurface>
</EquityVolatility>
<EquityVolatility>
...

</EquityVolatility>
</EquityVolatilities>

Listing 88: Equity option volatility configuration - moneyness surface

Finally, the volatility proxy surface configuration layout is given in Listing 89. This
allows us to use any other surface as a proxy, in cases where there is no option data for
a given equity. We provide a name in the EquityVolatilityCurve field, which must
match the CurveId of another configuration. FXVolatilityCurve and
CorrelationCurve must be provided if the currency of the proxy surface is different to
that of current surface, that can be omitted otherwise. The proxy surface looks up the
volatility in the reference surface based on moneyness.

<EquityVolatilities>
<EquityVolatility>
<CurveId>ABC</CurveId>
<CurveDescription>Lognormal option implied vols for APC - proxied from SP5</CurveDescription>
<Currency>USD</Currency>
<DayCounter>Actual/365 (Fixed)</DayCounter>
<ProxySurface>
<EquityVolatilityCurve>RIC:.SPX</EquityVolatilityCurve>
<FXVolatilityCurve>GBPUSD</FXVolatilityCurve>
<CorrelationCurve>FX-GENERIC-GBP-USD&EQ-RIC:VOD.L</CorrelationCurve>

</ProxySurface>
</EquityVolatility>
<EquityVolatility>
...

</EquityVolatility>
</EquityVolatilities>

Listing 89: Equity option volatility configuration - proxy surface

171

7.8.10 Inflation Curves

Listing 90 shows the configuration of an inflation curve. The inflation curve specific
elements are the following:

<InflationCurves>
<InflationCurve>

<CurveId>USCPI_ZC_Swaps</CurveId>
<CurveDescription>Estimation Curve for USCPI</CurveDescription>
<NominalTermStructure>Yield/USD/USD1D</NominalTermStructure>
<Type>ZC</Type>
<Quotes>

<Quote>ZC_INFLATIONSWAP/RATE/USCPI/1Y</Quote>
<Quote>ZC_INFLATIONSWAP/RATE/USCPI/2Y</Quote>
...
<Quote>ZC_INFLATIONSWAP/RATE/USCPI/30Y</Quote>
<Quote>ZC_INFLATIONSWAP/RATE/USCPI/40Y</Quote>

</Quotes>
<Conventions>USCPI_INFLATIONSWAP</Conventions>
<Extrapolation>true</Extrapolation>
<Calendar>US</Calendar>
<DayCounter>A365</DayCounter>
<Lag>3M</Lag>
<Frequency>Monthly</Frequency>
<BaseRate>0.01</BaseRate>
<Tolerance>0.000000000001</Tolerance>
<Seasonality>

<BaseDate>20160101</BaseDate>
<Frequency>Monthly</Frequency>
<Factors>

<Factor>SEASONALITY/RATE/MULT/USCPI/JAN</Factor>
<Factor>SEASONALITY/RATE/MULT/USCPI/FEB</Factor>
<Factor>SEASONALITY/RATE/MULT/USCPI/MAR</Factor>
<Factor>SEASONALITY/RATE/MULT/USCPI/APR</Factor>
<Factor>SEASONALITY/RATE/MULT/USCPI/MAY</Factor>
<Factor>SEASONALITY/RATE/MULT/USCPI/JUN</Factor>
<Factor>SEASONALITY/RATE/MULT/USCPI/JUL</Factor>
<Factor>SEASONALITY/RATE/MULT/USCPI/AUG</Factor>
<Factor>SEASONALITY/RATE/MULT/USCPI/SEP</Factor>
<Factor>SEASONALITY/RATE/MULT/USCPI/OCT</Factor>
<Factor>SEASONALITY/RATE/MULT/USCPI/NOV</Factor>
<Factor>SEASONALITY/RATE/MULT/USCPI/DEC</Factor>

</Factors>
<OverrideFactors>

1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00
</OverrideFactors>

</Seasonality>
</InflationCurve>

</InflationCurves>

Listing 90: Inflation Curve Configuration

• NominalTermStructure: The interest rate curve to be used to strip the inflation
curve.

• Type: The type of the curve, ZC for zero coupon, YY for year on year.

• Quotes: The instruments’ market quotes from which to bootstrap the curve.

172

• Conventions: The conventions applicable to the curve instruments.

• Lag: The observation lag used in the term structure.

• Frequency: The frequency of index fixings.

• BaseRate: The rate at t = 0, this introduces an additional degree of freedom to
get a smoother curve. If not given, it is defaulted to the first market rate.

The optional seasonality block defines a multiplicative seasonality and contains the
following elements:

• BaseDate: Defines the first inflation period to which to apply the seasonality
correction, only day and month matters, the year is ignored.

• Frequency: Defines the frequency of the factors (usually identical to the index’s
fixing frequency).

• Factors: Multiplicative seasonality correction factors, must be part of the
market data.

• OverrideFactors: A numeric list of seasonality correction factors, replacing the
Factors. This allows to specify a static seasonality correction that does not
require market data quotes. If both Factors and OverrideFactors are given, the
OverrideFactors are used. Otherwise only one of Factors, OverrideFactors is
required in a seasonality block.

We note that if zero coupon swap market quotes are given, but the type is set to YY,
the zero coupon swap quotes will be converted to year on year swap quotes on the fly,
using the plain forward rates, i.e. no convexity adjustment is applied.

7.8.11 Inflation Cap/Floor Volatility Surfaces

Listing 91 shows the configuration of an zero coupon inflation cap floor price surface.

<InflationCapFloorVolatility>
<CurveId>EUHICPXT_ZC_CF</CurveId>
<CurveDescription>

EUHICPXT CPI Cap/Floor vol surface derived from price quotes
</CurveDescription>
<Type>ZC</Type>
<QuoteType>Price</QuoteType>
<VolatilityType>Normal</VolatilityType>
<Extrapolation>Y</Extrapolation>
<DayCounter>ACT</DayCounter>
<Calendar>TARGET</Calendar>
<BusinessDayConvention>MF</BusinessDayConvention>
<Tenors>1Y,2Y,3Y,4Y,5Y,6Y,7Y,8Y,9Y,10Y,12Y,15Y,20Y,30Y</Tenors>
<!-- QuoteType 'Volatility' requires <Strikes>: -->
<!-- <Strikes>-0.02,-0.01,-0.005,0.00,0.01,0.015,0.02,0.025,0.03</Strikes> -->
<!-- QuoteType 'Price' requires <CapStrikes> and/or <FloorStrikes>: -->
<CapStrikes/>
<FloorStrikes>-0.02,-0.01,-0.005,0.00,0.01,0.015,0.02,0.025,0.03</FloorStrikes>
<Index>EUHICPXT</Index>
<IndexCurve>Inflation/EUHICPXT/EUHICPXT_ZC_Swaps</IndexCurve>
<IndexInterpolated>false</IndexInterpolated>
<ObservationLag>3M</ObservationLag>

173

<YieldTermStructure>Yield/EUR/EUR1D</YieldTermStructure>
<QuoteIndex>...</QuoteIndex>

</InflationCapFloorVolatility>

Listing 91: Inflation ZC cap floor volatility surface configuration

• Type: The type of the surface, ZC for zero coupon, YY for year on year.

• QuoteType: The type of the quotes used to build the surface, Volatility for
volatility quotes, Price for bootstrap from option premia.

• VolatilityType: If QuoteType is Volatility, this specifies whether the input
is Normal, Lognormal or ShiftedLognormal.

• Extrapolation: Boolean to indicate whether the surface should allow
extrapolation.

• DayCounter: The term structure’s day counter

• Calendar: The term structure’s calendar

• BusinessDayConvention: The term structure’s business day convention

• Tenors: The maturities for which cap and floor prices are quoted

• Strikes: In the case of QuoteType Volatility, the strikes for which floor prices
are quoted (may, and will usually, overlap with the cap strike region); neither
CapStrikes nor FloorStrikes are expected in this case.

• CapStrikes: The strikes for which cap prices are quoted (may, and will usually,
overlap with the floor strike region); if the QuoteType above is Price, either
CapStrikes or FloorStrikes or both are required.

• FloorStrikes: The strikes for which floor prices are quoted (may and will
usually) overlap with the cap strike region); if the QuoteType above is Price,
either CapStrikes or FloorStrikes or both are required.

• Index: The underlying zero inflation index.

• IndexCurve: The curve id of the index’s projection curve used to determine the
ATM levels for the surface.

• IndexInterpolated: Flag indicating whether the index should be interpolating.

• Observation Lag: The observation lag applicable to the term structure.

• YieldTermStructure: The nominal term structure.

• QuoteIndex: An optional node allowing the user to provide an alternative index
name for forming the quotes that will be used in building the cap floor surface. If
this node is not provided, the Index node value is used in quote construction.
For example, quotes must be created from each strike and each tenor and these
quotes are subsequently looked up in the market data when building the cap
floor volatility surface. The quotes are formed by concatenating
[Type]_INFLATIONCAPFLOOR, PRICE or RATE_[Vol_Type]VOL, [Index_Name],
[Tenor], C or F and [Strike] delimited by /. If QuoteIndex is provided, it is
used as the [Index_Name] token. If it is not provided Index is used as usual.

174

7.8.12 CDS Volatilities

When configuring volatility structures for CDS and index CDS options, there are three
options:

1. a constant volatility for all expiries, strikes and terms.

2. a volatility curve with a dependency on expiry and term, but no strike dimension.

3. a volatility surface with an expiry, term and strike dimension.

Firstly, the constant volatility configuration layout is given in Listing 92. The single
volatility quote ID, constant_quote_id, in the Quote node should be a CDS option
volatility quote as described in Section 10.15. The DayCounter node is optional and
defaults to A365F. The Calendar node is optional and defaults to NullCalendar. The
DayCounter and Calendar nodes are common to all three CDS volatility
configurations.

<CDSVolatility>
<CurveId>..<CurveId>
<CurveDescription>...</CurveDescription>
<Constant>
<Quote>constant_quote_id</Quote>

</Constant>
<DayCounter>...</DayCounter>
<Calendar>...</Calendar>

</CDSVolatility>

Listing 92: Constant CDS volatility configuration

Secondly, the volatility curve configuration layout is given in Listing 93. The volatility
quote IDs, quote_id_1, quote_id_2, etc., in the Quotes node should be CDS option
volatility quotes as described in Section 10.15. The Interpolation node supports
Linear, Cubic and LogLinear interpolation. The Extrapolation node supports
either None for no extrapolation or Flat for flat extrapolation in the volatility.

The optional boolean parameter EnforceMontoneVariance should be set to true to
raise an exception if the curve implied variance is not montone increasing with time
and should be set to false if you want to suppress such an exception. The default
value for EnforceMontoneVariance is true.

<CDSVolatility>
<CurveId>..<CurveId>
<CurveDescription>...</CurveDescription>
<Terms>
<Term>
<Label>...</Label>
<Curve>...</Curve>

</Term>
</Terms>
<Curve>
<Quotes>
<Quote>quote_id_1</Quote>
<Quote>quote_id_2</Quote>
...

</Quotes>
<Interpolation>...</Interpolation>

175

<Extrapolation>...</Extrapolation>
<EnforceMontoneVariance></EnforceMontoneVariance>

</Curve>
<DayCounter>...</DayCounter>
<Calendar>...</Calendar>

</CDSVolatility>

Listing 93: CDS volatility curve configuration

For backwards compatibility, the volatility curve configuration can also be given using
a single Expiries node as shown in Listing 94. Note that this configuration is
deprecated and the configuration in 93 is preferred. The Expiries node should take a
comma separated list of tenors and or expiry dates e.g.
<Expiries>1M,3M,6M</Expiries>. The list of expiries are extracted and a set of
quotes are created of the form INDEX_CDS_OPTION/RATE_LNVOL/[NAME]/[EXPIRY] or
INDEX_CDS_OPTION/RATE_LNVOL/[NAME]/[TERM]/[EXPIRY]. There is one quote for
each expiry in the list where the [EXPIRY] field is understood to be replaced with the
expiry string extracted from the list.

The [NAME] field is populated with the curve id or with the [QuoteName] if that is
specified. The rules for including market quotes into the volatility surface construction
are as follows:

• All quotes explicitly specified with their full name are loaded (applies to configs
of type constant or curve without wildcards)

• If a quote does not contain a term, we only load it if at most one term is
specified in the vol curve config. The quote gets the unique term specified in the
vol curve configs assigned or 5Y if the config does not specify any terms.

• If a quote contains a term if this matches one of the configured terms in the
curve configuration or if the curve configuration does not specify any terms.

The [Terms] node specifies a list of term labels “5Y”, “7Y”, ... and associated credit
curve spec names representing the curve suitable to estimate the ATM level for that
term.

If only one expiry is provided in the list, there is only one quote and a constant
volatility structure is configured as in Listing 92. If more than one expiry is provided,
a curve is configured as in 93. The interpolation is Linear, the extrapolation is Flat
and EnforceMontoneVariance is true.

<CDSVolatility>
<CurveId>..<CurveId>
<CurveDescription>...</CurveDescription>
<Terms>
<Term>
<Label>...</Label>
<Curve>...</Curve>

</Term>
</Terms>
<Expiries>...</Expiries>
<DayCounter>...</DayCounter>
<Calendar>...</Calendar>
<QuoteName>...</QuoteName>

176

</CDSVolatility>

Listing 94: Legacy deprecated CDS volatility curve configuration

Thirdly, the volatility surface configuration layout is given in Listing 95. The nodes
have the following meanings and supported values:

• Strikes: comma separated list of strikes. The strikes may be in terms of spread
or price. However, it is important to ensure that the trade XML for a CDS
option or index CDS option provides the strike in the same way. In other words,
if the strike is in terms of spread on the trade XML, the strike must be in terms
of spread in the CDS volatility configuration here. Similarly for strikes in terms
of price. A single wildcard character, *, can be used here also to indicate that all
strikes found in the market data for this CDS volatility configuration should be
used when building the CDS volatility surface.

• Expiries: comma separated list of expiry tenors and or expiry dates. A single
wildcard character, *, can be used here also to indicate that all expiries found in
the market data for this CDS volatility configuration should be used when
building the CDS volatility surface.

• TimeInterpolation: interpolation in the option expiry direction. If either
Strikes or Expiries are configured with a wildcard character, Linear is used.
If both Strikes and Expiries are configured explicitly, Linear or Cubic is
allowed here but the value must agree with the value for StrikeInterpolation.

• StrikeInterpolation: interpolation in the strike direction. If either Strikes or
Expiries are configured with a wildcard character, Linear is used. If both
Strikes and Expiries are configured explicitly, Linear or Cubic is allowed here
but the value must agree with the value for TimeInterpolation.

• Extrapolation: boolean value. If true, extrapolation is allowed. If false,
extrapolation is not allowed.

• TimeExtrapolation: extrapolation in the option expiry direction. If both
Strikes and Expiries are configured explicitly, the extrapolation in the time
direction is flat in volatility regardless of the setting here. If either Strikes or
Expiries are configured with a wildcard character, Linear, UseInterpolator,
Flat or None are allowed. If Linear or UseInterpolator is specified, the
extrapolation is linear. If Flat is specified, the extrapolation is flat. If None is
specified, it is ignored and the extrapolation is flat since extrapolation in the
time direction cannot be turned off in isolation i.e. extrapolation can only be
turned off for the surface as a whole using the Extrapolation flag.

• StrikeExtrapolation: extrapolation in the strike direction. The allowable
values are Linear, UseInterpolator, Flat or None. If Linear or
UseInterpolator is specified, the extrapolation uses the strike interpolation
setting for extrapolation i.e. linear or cubic in this case. If Flat is specified, the
extrapolation is flat. If None is specified, it is ignored and the extrapolation is
flat since extrapolation in the strike direction cannot be turned off in isolation
i.e. extrapolation can only be turned off for the surface as a whole using the
Extrapolation flag.

177

• DayCounter: allowable value is any valid day count fraction. As stated above,
this node is optional and defaults to A365F.

• Calendar: allowable value is any valid calendar. As stated above, this node is
optional and defaults to NullCalendar.

• StrikeType: allowable value is either Price or Spread. This flag denotes if the
strikes are in terms of spread or price. Currently, this is merely informational
and as outlined in the Strikes section above, it is the responsibility of the user
to ensure that the strike type in trades aligns with the configured strike type in
the CDS volatility surfaces.

• QuoteName: this node is optional and the allowable value is any string. This
value can be used in determining the name and term that appears in the quote
strings that are searched for in the market data to feed into the CDS volatility
surface construction. How it is used has been outlined above when describing the
deprecated CDS volatility curve configuration.

• StrikeFactor: this node is optional and the allowable value is any positive real
number. It defaults to 1. The strikes configured and found in the market data
quote strings may not be in absolute terms. For example, a quote string such as
INDEX_CDS_OPTION/RATE_LNVOL/CDXIGS33V1/5Y/1M/115 could be given to
indicate an index CDS option volatility quote for CDX IG Series 33 Version 1,
with underlying index term 5Y expiring in 1M with a strike spread of 115 bps.
The strike here is in bps and needs to be divided by 10,000 before being used in
the ORE volatility objects. The StrikeFactor would be set to 10000 here.

When the CDS volatility surface is configured as in Listing 95, the market is searched
for quote strings of the form
INDEX_CDS_OPTION/RATE_LNVOL/[NAME]/[EXPIRY]/[STRIKE] or
INDEX_CDS_OPTION/RATE_LNVOL/[NAME]/[TERM]/[EXPIRY]/[STRIKE]. The
population of the [NAME] field, and possibly the [TERM] field, and how they depend on
the QuoteName and ParseTerm nodes has been discussed at length above when
describing the deprecated CDS volatility curve configuration. When both the Strikes
and Expiries are configured explicitly, it is clear that the [EXPIRY] field is populated
from the list of expiries in turn and the [STRIKE] field is populated from the list of
strikes in turn. If there are m expiries in the Expiries list and n strikes in the
Strikes list, there will be m× n quotes created and searched for in the market data.
If Expiries are configured via the wildcard character, *, all quotes in the market data
matching the pattern INDEX_CDS_OPTION/RATE_LNVOL/[NAME]/*/[STRIKE] will be
used if [TERM] has not been populated and all quotes in the market data matching the
pattern INDEX_CDS_OPTION/RATE_LNVOL/[NAME]/[TERM]/*/[STRIKE] will be used if
[TERM] has been populated. Similarly for Strikes configured via the wildcard
character, *.

<CDSVolatility>
<CurveId/>
<CurveDescription/>
<Terms>
<Term>
<Label>...</Label>
<Curve>...</Curve>

</Term>

178

</Terms>
<StrikeSurface>
<Strikes>...</Strikes>
<Expiries>...</Expiries>
<TimeInterpolation>...</TimeInterpolation>
<StrikeInterpolation>...</StrikeInterpolation>
<Extrapolation>...</Extrapolation>
<TimeExtrapolation>...</TimeExtrapolation>
<StrikeExtrapolation>...</StrikeExtrapolation>

</StrikeSurface>
<DayCounter>...</DayCounter>
<Calendar>...</Calendar>
<StrikeType>...</StrikeType>
<QuoteName>...</QuoteName>
<StrikeFactor>..</StrikeFactor>
<ParseTerm>...</ParseTerm>

</CDSVolatility>

Listing 95: CDS volatility surface configuration

7.8.13 Base Correlations

Listing 96 shows the configuration of a Base Correlation curve.

<BaseCorrelations>
<BaseCorrelation>
<CurveId>CDXIG</CurveId>
<CurveDescription>CDX IG Base Correlations</CurveDescription>
<Terms>1D</Terms>
<DetachmentPoints>0.03, 0.06, 0.10, 0.20, 1.0</DetachmentPoints>
<SettlementDays>0</SettlementDays>
<Calendar>US</Calendar>
<BusinessDayConvention>F</BusinessDayConvention>
<DayCounter>A365</DayCounter>
<Extrapolate>Y</Extrapolate>

</BaseCorrelation>
</BaseCorrelations>

Listing 96: Base Correlation Configuration

The meaning of each of the elements in Listing 96 is given below.

• CurveId: Unique identifier of the base correlation structure

• CurveDescription [Optional]: A description of the base correlation structure, may
be left blank.

• Terms: Comma-separated list of tenors, sorted in increasing order, possibly a
single term to represent a flat term structure in time-direction

• DetachmentPoints: Comma-separated list of equity tranche detachment points,
sorted in increasing order
Allowable values: Any positive number less than one

• SettlementDays: The floating term structure’s settlement days argument used in
the reference date calculation

• DayCounter: The term structure’s day counter used in date to time conversions

179

• Calendar: The term structure’s calendar used in tenor to date conversions

• BusinessDayConvention: The term structure’s business day convention used in
tenor to date conversion

• Extrapolate: Boolean to indicate whether the correlation curve shall be
extrapolated or not

7.8.14 FXSpots

Listing 97 shows the configuration of the fxSpots. It is assumed that each FXSpot
CurveId is of the form "Ccy1Ccy2".

<FXSpots>
<FXSpot>
<CurveId>EURUSD</CurveId>
<CurveDescription/>

</FXSpot>
<FXSpot>
<CurveId>EURGBP</CurveId>
<CurveDescription/>

</FXSpot>
<FXSpot>
<CurveId>EURCHF</CurveId>
<CurveDescription/>

</FXSpot>
<FXSpot>
<CurveId>EURJPY</CurveId>
<CurveDescription/>

</FXSpot>
</FXSpots>

Listing 97: FXSpot Configuration

7.8.15 Securities

Listing 98 shows the configuration of the Securities. Each Security name is associated
with

• an optional SpreadQuote

• an optional RecoveryRateQuote. Usually a pricer will fall back on the recovery
rate associated to the credit curve involved in the pricing if no security specific
recovery rate is given. If no credit curve is given either, a zero recovery rate will
be assumed.

If no configuration is given for a security, in general a pricer will assume as zero spread
and recovery rate. Notice that in this case the spread and recovery will not be
simulated and therefore also be excluded from the sensitivity and stress analysis.

<Securities>
<Security>
<CurveId>SECURITY_1</CurveId>
<CurveDescription>Security</CurveDescription>
<SpreadQuote>BOND/YIELD_SPREAD/SECURITY_1</SpreadQuote>
<RecoveryRateQuote>RECOVERY_RATE/RATE/SECURITY_1</RecoveryRateQuote>

180

</Security>
</Securities>

Listing 98: Security Configuration

7.8.16 Correlations

Listing 99 shows the configuration of the Correlations. The Correlation type can be
either CMSSpread or Generic. The former one is to configure the correlation between
two CMS indexes, the latter one is to generally configure the correlation between two
indexes, e.g. between a CMS index and a IBOR index. Currently only ATM
correlation curves or Flat correlation structures are supported. Correlation quotes may
be loaded directly (by setting QuoteType to RATE) or calibrated from prices (set
QuoteType to PRICE). Moreover a flat zero correlation curve can be loaded (by
setting QuoteType to NULL). In this case market quotes are not needed to be
provided. Currently only CMSSpread correlations can be calibrated. This is done
using CMS Spread Options, and requires a CMSSpreadOption convention,
SwaptionVolatility and DiscountCurve to be provided. OptionTenors can be a comma
separated list of periods, 1Y,2Y etc, or a * to indicate a wildcard. If a wildcard is
provided, all relevant market data quotes are used.

<Correlations>
<Correlation>
<CurveId>EUR-CORR</CurveId>
<CurveDescription>EUR CMS correlations</CurveDescription>
<!--CMSSpread, Generic-->
<CorrelationType>CMSSpread</CorrelationType>
<Index1>EUR-CMS-10Y</Index1>
<Index2>EUR-CMS-2Y</Index2>
<!--Conventions, SwaptionVolatility and DiscountCurve only required when QuoteType = PRICE-->
<Conventions>EUR-CMS-10Y-2Y-CONVENTION</Conventions>
<SwaptionVolatility>EUR</SwaptionVolatility>
<DiscountCurve>EUR-EONIA</DiscountCurve>
<Currency>EUR</Currency>
<!-- ATM, Constant -->
<Dimension>ATM</Dimension>
<!-- RATE, PRICE, NULL -->
<QuoteType>PRICE</QuoteType>
<Extrapolation>true</Extrapolation>
<!-- Day counter for date to time conversion -->
<DayCounter>Actual/365 (Fixed)</DayCounter>
<!--Ccalendar and Business day convention for option tenor to date conversion -->
<Calendar>TARGET</Calendar>
<BusinessDayConvention>Following</BusinessDayConvention>
<OptionTenors>1Y,2Y</OptionTenors>

</Correlation>

Listing 99: Correlation Configuration

7.8.17 Commodity Curves

Commodity Curves are setup as price curves in ORE, meaning that they return a price
for a given time t rather than a rate or discount factor, these curves are common in
commodities and can be populated with futures prices directly.

181

Listing 100 shows the configuration of Commodity curves built from futures prices, in
this example WTI Oil prices, note there is no spot price in this configuration, rather
we have a set of futures prices only.

<CommodityCurve>
<CurveId>WTI_USD</CurveId>
<CurveDescription>WTI USD price curve</CurveDescription>
<Currency>USD</Currency>
<Quotes>
<Quote>COMMODITY_FWD/PRICE/WTI/USD/2016-06-30</Quote>
<Quote>COMMODITY_FWD/PRICE/WTI/USD/2016-07-31</Quote>
...

</Quotes>
<DayCounter>A365</DayCounter>
<InterpolationMethod>Linear</InterpolationMethod>
<Extrapolation>true</Extrapolation>

</CommodityCurve>

Listing 100: Commodity Curve Configuration for WTI Oil

Listing 101 shows the configuration for a Precious Metal curve using FX style spot and
forward point quotes, note that SpotQuote is used in this case. The different
interpretation of the forward quotes is controlled by the conventions.

<CommodityCurve>
<CurveId>XAU</CurveId>
<CurveDescription>Gold USD price curve</CurveDescription>
<Currency>USD</Currency>
<SpotQuote>COMMODITY/PRICE/XAU/USD</SpotQuote>
<Quotes>
<Quote>COMMODITY_FWD/PRICE/XAU/USD/ON</Quote>
<Quote>COMMODITY_FWD/PRICE/XAU/USD/TN</Quote>
<Quote>COMMODITY_FWD/PRICE/XAU/USD/SN</Quote>
<Quote>COMMODITY_FWD/PRICE/XAU/USD/1W</Quote>
...

</Quotes>
<DayCounter>A365</DayCounter>
<InterpolationMethod>Linear</InterpolationMethod>
<Conventions>XAU</Conventions>
<Extrapolation>true</Extrapolation>

</CommodityCurve>

Listing 101: Commodity Curve Configuration for Gold in USD

The meaning of each of the top level elements is given below. If an element is labelled
as ’Optional’, then it may be excluded or included and left blank.

• CurveId: Unique identifier for the curve.

• CurveDescription: A description of the curve. This field may be left blank.

• Currency: The commodity curve currency.

• SpotQuote [Optional]: The spot price quote, if omitted then the spot value will
be interpolated.

• Quotes: forward price quotes. These can be a futures price or forward points.

182

• DayCounter: The day count basis used internally by the curve to calculate the
time between dates.

• InterpolationMethod [Optional]: The variable on which the interpolation is
performed. The allowable values are Linear, LogLinear, Cubic, Hermite,
LinearFlat, LogLinearFlat, CubicFlat, HermiteFlat, BackwardFlat. This is
different to yield curves above in that Flat versions of the standard methods are
defined, with each of these if there is no Spot price than any extrapolation
between T0 and the first future price will be flat (i.e. the first future price will be
copied back "Flat" to T0). If the element is omitted or left blank, then it defaults
to Linear.

• Conventions [Optional]: The conventions to use, if omited it is assumed that
these quotes are Outright prices.

• Extrapolation [Optional]: Set to True or False to enable or disable extrapolation
respectively. If the element is omitted or left blank, then it defaults to True.

Alternatively commodity curves can be set up as a commodity curve times the ratio of
two yield curves as shown in listing 102. This can be used to setup commodity curves
in different currencies, for example Gold in EUR (XAUEUR) can be built from a Gold
in USD curve and then the ratio of the EUR and USD discount factors at each pillar.
This is akin to crossing FX forward points to get FX forward prices for any pair.

<CommodityCurve>
<CurveId>XAUEUR</CurveId>
<CurveDescription>Gold EUR price curve</CurveDescription>
<Currency>EUR</Currency>
<BasePriceCurve>XAU</BasePriceCurve>
<BaseYieldCurve>USD-FedFunds</BaseYieldCurve>
<YieldCurve>EUR-IN-USD</YieldCurve>
<Extrapolation>true</Extrapolation>

</CommodityCurve>

Listing 102: Commodity Curve Configuration for Gold in EUR

Commodity curves may also be set up using a base future price curve and a set of
future basis quotes to give an outright price curve. There are a number of options here
depending on whether the base future and basis future are averaging or not averaging.
Whether or not the base future and basis future is averaging is determined from the
conventions supplied in the BasePriceConventions and BasisConventions fields.

• The base future is not averaging and the basis future is not averaging. The
commodity curve that is built gives the outright price of the non-averaging
future. An example of this is the CME Henry Hub future contract, symbol NG,
and the various locational gas basis future contracts, e.g. ICE Waha Basis
Future, symbol WAH. Listing 103 demonstrates an example set-up for this curve.
The curve that is built will give the ICE Waha outright price on the basis
contract’s expiry dates.

• The base future is not averaging and the basis future is averaging. The
commodity curve that is built gives the outright price of the averaging future. In
this case, if the AverageBase field is true the base price will be averaged from
and excluding one basis future expiry to and including the next basis future

183

expiry. An example of this is the CME Light Sweet Crude Oil future contract,
symbol CL, and the various locational oil basis future contracts, e.g. CME WTI
Midland (Argus) Future, symbol FF. Listing 104 demonstrates an example
set-up for this curve. The curve that is built will give the outright average price
of WTI Midland (Argus) over the calendar month. If the AverageBase field is
false, the base price is not averaged and the basis is added to the base price to
give a curve that can be queried on an expiry date for an average price. An
example of this is a curve built for the average of the daily prices published by
Gas Daily using the ICE futures that reference the difference between the Inside
FERC price and the average Gas Daily price.

• The base future is averaging and the basis future is averaging. The commodity
curve that is built gives the outright price of the averaging future. The set-up is
identical to that outlined in Listings 103 and 104.

• The base future is averaging and the basis future is not averaging. This
combination is not currently supported.

<CommodityCurve>
<CurveId>ICE:WAH</CurveId>
<Currency>USD</Currency>
<BasisConfiguration>
<BasePriceCurve>NYMEX:NG</BasePriceCurve>
<BasePriceConventions>NYMEX:NG</BasePriceConventions>
<BasisQuotes>
<Quote>COMMODITY_FWD/PRICE/ICE:WAH/*</Quote>

</BasisQuotes>
<BasisConventions>ICE:WAH</BasisConventions>
<DayCounter>A365</DayCounter>
<InterpolationMethod>LinearFlat</InterpolationMethod>
<AddBasis>true</AddBasis>

</BasisConfiguration>
<Extrapolation>true</Extrapolation>

</CommodityCurve>

Listing 103: Commodity curve configuration for ICE Waha

<CommodityCurve>
<CurveId>NYMEX:FF</CurveId>
<Currency>USD</Currency>
<BasisConfiguration>
<BasePriceCurve>NYMEX:CL</BasePriceCurve>
<BasePriceConventions>NYMEX:CL</BasePriceConventions>
<BasisQuotes>
<Quote>COMMODITY_FWD/PRICE/NYMEX:FF/*</Quote>

</BasisQuotes>
<BasisConventions>NYMEX:FF</BasisConventions>
<DayCounter>A365</DayCounter>
<InterpolationMethod>LinearFlat</InterpolationMethod>
<AddBasis>true</AddBasis>
<AverageBase>true</AverageBase>
<PriceAsHistoricalFixing>true</PriceAsHistoricalFixing>

</BasisConfiguration>
<Extrapolation>true</Extrapolation>

</CommodityCurve>

184

Listing 104: Commodity curve configuration for WTI Midland (Argus)

The meaning of the fields in the BasisConfiguration node in Listings 103 and 104
are as follows:

• BasePriceCurve: The identifier for the base future commodity price curve.

• BasePriceConventions: The identifier for the base future contract conventions.

• BasisQuotes: The set of basis quotes to look for in the market. Note that this
can be a single wildcard string as shown in the Listings or a list of explicit
COMMODITY_FWD PRICE quote strings.

• BasisConventions: The identifier for the basis future contract conventions.

• DayCounter: Has the meaning given previously in this section.

• InterpolationMethod [Optional]: Has the meaning given previously in this
section.

• AddBasis [Optional]: This is a boolean flag where true, the default value,
indicates that the basis value should be added to the base price to give the
outright price and false indicates that the basis value should be subtracted from
the base price to give the outright price.

• MonthOffset [Optional]: This is an optional non-negative integer value. In
general, the basis contract period and the base contract period are equal, i.e. the
value of the March basis contract for ICE Waha will be added to the value of thr
March contract for CME NG. If for contracts with a monthly cycle or greater,
the base contract month is n months prior to the basis contract month, the
MonthOffset should be set to n. The default value if omitted is 0.

• PriceAsHistoricalFixing [Optional]: This is a boolean flag where true, the
default value, indicates that the historical fixings are prices of the underlying. If
set to false, the fixings are basis spreads and ORE will convert them into prices
by adding the corresponding base index fixings.

A commodity curve may also be set up as a piecewise price curve involving sets of
quotes e.g. direct future price quotes, future price quotes that are the average of other
future prices over a period, future price quotes that are the average of spot price over a
period etc. This is particularly useful for cases where there are future contracts with
different cycles. For example, in the power markets, there are daily future contracts at
the short end and monthly future contracts that average the daily prices over the
month at the long end. An example of such a set-up is shown in Listing 105.

<CommodityCurve>
<CurveId>ICE:PDQ</CurveId>
<Currency>USD</Currency>
<PriceSegments>
<PriceSegment>
<Type>Future</Type>
<Priority>1</Priority>
<Conventions>ICE:PDQ</Conventions>
<Quotes>
<Quote>COMMODITY_FWD/PRICE/ICE:PDQ/*</Quote>

185

</Quotes>
</PriceSegment>
<PriceSegment>
<Type>AveragingFuture</Type>
<Priority>2</Priority>
<Conventions>ICE:PMI</Conventions>
<Quotes>
<Quote>COMMODITY_FWD/PRICE/ICE:PMI/*</Quote>

</Quotes>
</PriceSegment>

</PriceSegments>
<DayCounter>A365</DayCounter>
<InterpolationMethod>LinearFlat</InterpolationMethod>
<Extrapolation>true</Extrapolation>
<BootstrapConfig>...</BootstrapConfig>

</CommodityCurve>

Listing 105: Commodity curve configuration for PJM Real Time Peak

The BootstrapConfig node is described in Section 7.8.19. The remaining nodes in
Listing 105 have been described already in this section. The meaning of each of the
fields in the PriceSegment node in Listing 105 is as follows:

• Type: The type of the future contract for which quotes are being provided in the
current PriceSegment. The allowable values are:

– Future: This indicates that the quote is a straight future contract price
quote.

– AveragingFuture: This indicates that the quote is for a future contract
price that is the average of other future contract prices over a given period.
The averaging period for each quote and other conventions are given in the
associated conventions determined by the Conventions node.

– AveragingSpot: This indicates that the quote is for a future contract price
that is the average of spot prices over a given period. The averaging period
for each quote and other conventions are given in the associated conventions
determined by the Conventions node.

• Priority [Optional]: An optional non-negative integer giving the priority of the
current PriceSegment relative to the other PriceSegments when there are
quotes for contracts with the same expiry dates in those segments. Values closer
to zero indicate higher priority i.e. quotes in this segment are given priority in
the event of clashes. If omitted, the PriceSegments are currently read in the
order that they are provided in the XML so that quotes in segments appearing
earlier in the XML will be given preference in the case of clashes.

• Conventions: The identifier for the future contract conventions associated with
the quotes in the PriceSegment. Details on these conventions are given in
Section 7.11.20.

• Quotes: The set of future price quotes to look for in the market. Note that this
can be a single wildcard string as shown in the Listing 105 or a list of explicit
COMMODITY_FWD PRICE quote strings.

186

7.8.18 Commodity Volatilities

The following types of commodity volatility structures are supported in ORE:

• A constant volatility structure giving the same single volatility for all expiry
times and strikes.

• A one-dimensional expiry dependent volatility structure i.e. the volatility
returned is dependent on the time to option expiry but does not change with
option strike.

• A two-dimensional volatility structure with a dependence on both expiry and
strike. There is support for absolute strikes, delta strikes and moneyness strikes.

• An average price option (APO) volatility surface. In particular, this structure
returns the volatility of an average price that can then be used directly in the
Black 76 formula to give the value of the APO.

Listing 106 outlines the configuration for a constant volatility structure.

<CommodityVolatility>
<CurveId>...</CurveId>
<CurveDescription>...</CurveDescription>
<Currency>...</Currency>
<Constant>
<Quote>...</Quote>

</Constant>
<DayCounter>...</DayCounter>
<Calendar>...</Calendar>

</CommodityVolatility>

Listing 106: Constant commodity volatility configuration

The meaning of each of the elements is as follows:

• CurveId: Unique identifier for the curve.

• CurveDescription: A description of the curve. This field may be left blank.

• Currency: The commodity curve currency.

• Quote: The single quote giving the constant volatility.

• DayCounter [Optional]: The day count basis used internally by the curve to
calculate the time between dates. If omitted it defaults to A365.

• Calendar [Optional]: The calendar used internally by the volatility structure to
amend dates generated from option tenors i.e. if a volatility is requested from the
surface using an expiry tenor. If omitted it defaults to NullCalendar meaning
there is no adjustment to the expiry on applying the option tenor.

Listing 107 outlines the configuration for the one-dimensional expiry dependent
volatility curve.

<CommodityVolatility>
<CurveId>...</CurveId>
<CurveDescription>...</CurveDescription>
<Currency>...</Currency>

187

<Curve>
<QuoteType>...</QuoteType>
<VolatilityType>...</VolatilityType>
<ExerciseType>...</ExerciseType>
<Quotes>
<Quote>...</Quote>
<Quote>...</Quote>
...

</Quotes>
<Interpolation>...</Interpolation>
<Extrapolation>...</Extrapolation>
<EnforceMontoneVariance>...</EnforceMontoneVariance>

</Curve>
<DayCounter>...</DayCounter>
<Calendar>...</Calendar>
<FutureConventions>...</FutureConventions>
<OptionExpiryRollDays>...</OptionExpiryRollDays>

</CommodityVolatility>

Listing 107: Commodity volatility curve configuration

The meaning of each of the elements is given below. Elements that were defined for the
previous configuration and are common to all of the configurations are not repeated.

• QuoteType [Optional]: The allowable values in general for QuoteType are
ImpliedVolatility and Premium. Currently, only ImpliedVolatility is
supported for commodity volatility curves. This is the default for QuoteType so
this node may be omitted.

• VolatilityType [Optional]: The allowable values in general for VolatilityType
are Lognormal, ShiftedLognormal and Normal. Currently, only Lognormal is
supported for commodity volatility curves. This is the default for
VolatilityType so this node may be omitted.

• ExerciseType [Optional]: This node is described below in the context of
surfaces. For commodity volatility curves, it is ignored and should be omitted.

• Quotes: A list of commodity option volatility quotes with different expiries to
use in the commodity curve building. The commodity option volatility quotes are
explained in Section 10.28. As indicated above, any quote string used here much
start with COMMODITY_OPTION/RATE_LNVOL. A single regular expression Quote is
also supported here in place of a list of explicit Quote strings. Note that if a list
of explicit Quote strings are provided, it is an error to have a duplicated option
expiry date. If a regular expression is used, the first quote found is used and
subsequent qutoes with the same expiry are discarded with a warning issued.

• Interpolation: The interpolation to use to give volatilities between option
expiry times. The allowable values are Linear, Cubic and LogLinear. Note that
the interpolation here is on the variance.

• Extrapolation: The extrapolation to use to give volatilities after the last expiry
date in the variance curve. The allowable values are None, UseInterpolator,
Linear and Flat. However, all options except None yield the same extrapolation
i.e. flat extrapolation in the volatility. None disables extrapolation so that an
exception is raised if the curve is queried after the last expiry for a volatility.

188

Note that as the curve is parameterised in variance, interpolation is used to
interpolate between time zero where the variance is zero and the first expiry time.

• EnforceMontoneVariance [Optional]: Boolean parameter that should be set to
true to raise an exception if the implied variance curve is not montone increasing
with time. It should be set to false to suppress such an exception. The default
value if omitted is true.

• FutureConventions [Optional]: Depending on the quotes that are provided in
the Quotes section, a CommodityFuture convention may be needed in order to
derive an option expiry date from the Expiry portion of the commodity option
quote. In particular, as outlined in Section 10.28, the Expiry portion of a
commodity option quote allows for continuation expiries of the form cN. The N is
a positive integer meaning the N-th next expiry after the valuation date on which
we are building the commodity volatility curve. When a continuation expiry is
used in a quote, the FutureConventions is needed and gives the ID of the
conventions associated with the commodity for which we are trying to build the
volatility curve. These conventions are used to determine the explicit expiry date
for the given option quote from the continuation expiry.

• OptionExpiryRollDays [Optional]: The OptionExpiryRollDays can be any
non-negative integer and may be needed when deriving an option expiry date
from the Expiry portion of the commodity option quote. If the Expiry portion of
the commodity option quote is a continuation expiry, an explicit expiry date is
deduced as explained in the previous bullet point. Additionally, in some cases,
the option quotes for the next option expiry may stop a number of business days
before that option expiry and the cN expiry in this period begins referring to the
N+1-th next option expiry. As an example, assume dv is the valuation date and
e1 = dv is the next option expiry date. If OptionExpiryRollDays is 0 then a
commodity option quote with an Expiry portion equal to c1 on dv indicates that
the option quote is for an option with expiry date equal to e1. However, if
OptionExpiryRollDays is 1, a commodity option quote with an Expiry portion
equal to c1 on dv indicates that the option quote is for an option with expiry date
equal to e2 where e2 is the next option expiry date after e1. In other words, with
OptionExpiryRollDays set to 1 the option quotes for expiry date e1 stopped on
the business day before e1. If omitted, OptionExpiryRollDays defaults to 0.

Listing 108 outlines the configuration for the two-dimensional expiry and absolute
strike commodity option surface.

<CommodityVolatility>
<CurveId>...</CurveId>
<CurveDescription>...</CurveDescription>
<Currency>...</Currency>
<StrikeSurface>
<QuoteType>...</QuoteType>
<VolatilityType>...</VolatilityType>
<ExerciseType>...</ExerciseType>
<Strikes>...</Strikes>
<Expiries>...</Expiries>
<TimeInterpolation>...</TimeInterpolation>
<StrikeInterpolation>...</StrikeInterpolation>
<Extrapolation>...</Extrapolation>

189

<TimeExtrapolation>...</TimeExtrapolation>
<StrikeExtrapolation>...</StrikeExtrapolation>

</StrikeSurface>
<DayCounter>...</DayCounter>
<Calendar>...</Calendar>
<FutureConventions>..</FutureConventions>
<OptionExpiryRollDays>...</OptionExpiryRollDays>
<PriceCurveId>...</PriceCurveId>
<YieldCurveId>...</YieldCurveId>
<OneDimSolverConfig>
<MaxEvaluations>100</MaxEvaluations>
<InitialGuess>0.35</InitialGuess>
<Accuracy>0.0001</Accuracy>
<MinMax>
<Min>0.0001</Min>
<Max>2.0</Max>

</MinMax>
</OneDimSolverConfig>
<PreferOutOfTheMoney>...</PreferOutOfTheMoney>
<QuoteSuffix>...</QuoteSuffix>

</CommodityVolatility>

Listing 108: Expiry and absolute strike commodity option surface configuration

The meaning of each of the elements is given below. Again, nodes explained in the
previous configuration are not repeated here.

• QuoteType [Optional]: As above, the allowable values for QuoteType are
ImpliedVolatility and Premium. If omitted, the default is
ImpliedVolatility. If the QuoteType is Premium, a volatility surface will be
stripped from option premium quotes. Note that Premium is only allowed if one
or both of Strikes or Expiries below is set to the single wildcard value *. In
other words, if we explicitly specify all of the strikes and expiries, we can only
build a volatility surface directly and the QuoteType must be
ImpliedVolatility.

• VolatilityType [Optional]: As above, the allowable values for VolatilityType
are Lognormal, ShiftedLognormal and Normal. This is only needed if
QuoteType is ImpliedVolatility. Currently, only Lognormal is supported for
commodity volatility surfaces. This is the default for VolatilityType so this
node may be omitted.

• ExerciseType [Optional]: The allowable values for ExerciseType are European
and American. This is only needed if QuoteType is Premium and indicates if the
option premium quotes are American or European exercise. If omitted the
default is European.

• Strikes: This can be a single wildcard value * or a comma separated list of
explicit strike prices. We explain below how these strikes are combined with the
other parameters in the configuration to give a list of commodity option quotes
to search for in the market data.

• Expiries: This can be a single wildcard value * or a comma separated list of
expiry strings. We explain below how these expiries are combined with the other
parameters in the configuration to give a list of commodity option quotes to

190

search for in the market data. Note that as outlined in Section 10.28, the Expiry
portion of the commodity option quote may be an explicit expiry date, an expiry
tenor or a continuation expiry of the form cN explained in the volatility curve
section above.

• TimeInterpolation: Indicates the interpolation in the time direction. There are
quite a number of restrictions here. If either Strikes or Expiries use the single
wildcard value *, the interpolation in both the time and strike direction is linear
regardless of the value passed here in the TimeInterpolation node. If neither
Strikes nor Expiries use the single wildcard value *, TimeInterpolation may
be set to Linear or Cubic but StrikeInterpolation must have the same value.
If it does not, then Linear is used for both. In other words, if neither Strikes
nor Expiries use the single wildcard value *, we can configure bilinear or bicubic
interpolation. Again, in all cases, the interpolation is carried out on the variance.

• StrikeInterpolation: Indicates the interpolation in the strike direction. The
requirements are exactly as outlined for the TimeInterpolation node.

• Extrapolation: A boolean value indicating if extrapolation is allowed.

• TimeExtrapolation: Indicates the extrapolation in the time direction. The
allowable values are None, UseInterpolator, Linear and Flat. If neither
Strikes nor Expiries use the single wildcard value *, the extrapolation in the
time direction is flat regardless of the value passed here. If either Strikes or
Expiries use the single wildcard value *, both Flat and None give flat
extrapolation in the time direction whereas UseInterpolator and Linear
indicate that the configured interpolation (linear or cubic) should be continued in
the time direction in order to extrapolate. Linear is only allowable here for
backward compatibility and UseInterpolator should be preferred for clarity.

• StrikeExtrapolation: Indicates the extrapolation in the strike direction. The
allowable values are None, UseInterpolator, Linear and Flat. Both Flat and
None give flat extrapolation in the strike direction. UseInterpolator and Linear
indicate that the configured interpolation (linear or cubic) should be continued in
the strike direction in order to extrapolate. Linear is only allowable here for
backward compatibility and UseInterpolator should be preferred for clarity.

• PriceCurveId [Optional]: The ID of a price curve for the commodity of the form
Commodity/{CCY}/{NAME}. This is needed if the QuoteType is Premium. It is also
needed when the QuoteType is ImpliedVolatility if either Strikes or
Expiries use the single wildcard value * and both call and put quotes are found
in the market for the same expiry and strike pair. In this case, it is needed to
determine which quotes to use based on the value of the PreferOutOfTheMoney
node.

• YieldCurveId [Optional]: The ID of a yield curve in the currency of the
commodity of the form Yield/{CCY}/{NAME}. This is needed if the QuoteType is
Premium in the stripping of the volatilities from premia.

• OneDimSolverConfig [Optional]: This is used if the QuoteType is Premium. It
provides the options for the root search in the stripping of the volatilities from
premia. If omitted, the default set of options shown in Listing 108 are used. The

191

MinMax node can be replaced with a single Step node that accepts a double
giving the step size to use in the root search.

• PreferOutOfTheMoney [Optional]: A node accepting a boolean value. If set to
true, quotes for out of the money options are preferred where a call and a put
quote are found for the same expiry strike pair. If set to false, quotes for in the
money options are preferred where a call and a put quote are found for the same
expiry strike pair. If omitted, true is assumed.

• QuoteSuffix [Optional]: The allowable values are C and P indicating Call and
Put respectively. If given, they are used in the construction of the commodity
option quote strings as explained below. They are useful in cases where the
market data contains both call and put volatility quotes for the same expiry
strike pair and you want to use only the calls (set QuoteSuffix to C) or the puts
(set QuoteSuffix to P).

As mentioned above, a number of parameters from the two-dimensional expiry and
absolute strike configuration are used in constructing the commodity option quote
strings that are looked up in the market data. There are two cases:

1. Both the Strikes and Expiries node provide a comma separated list of values.
As mentioned above, we can only use a QuoteType of ImpliedVolatility in this
case where we have explicit expiries and strikes and the VolatilityType must
be Lognormal. For example, assume the Expiries node has the set of values
e_1,e_2,...,e_N and that the Strikes node has the set of values
s_1,s_2,...,s_M. For each of the N ×M expiry strike pairs (en, sm), a quote of
the form COMMODITY_OPTION/RATE_LNVOL/{N}/{C}/e_n/s_m[/{S}] is created to
be looked up in the market data. {N} is the value in the CurveId node, {C} is
the value in the Currency node and {S} is the value in the QuoteSuffix node if
given. This explicit grid of volatility quotes must be present in the market for
the commodity volatility surface to be constructed.

2. One or both of the Strikes and Expiries node use a single wildcard value *. As
mentioned above, the QuoteType can be ImpliedVolatility or Premium in this
case. As above, assume the Expiries node has the set of values
e_1,e_2,...,e_N and that the Strikes node has the set of values
s_1,s_2,...,s_M. The additional constraint here is that N = 1 and e_1 is * or
that M = 1 and s_1 is *, or both. For each of the N ×M expiry strike pairs
(en, sm), a quote of the form COMMODITY_OPTION/{T}/{N}/{C}/e_n/s_m[/{S}]
is created to be looked up in the market data. {T} is PRICE when QuoteType is
Premium and is RATE_LNVOL when QuoteType is ImpliedVolatility, {N} is the
value in the CurveId node, {C} is the value in the Currency node and {S} is the
value in the QuoteSuffix node if given. Any quote in the market with a name
matching any of the quote strings formed in this way are then included in the
commodity volatility curve building. Note that the QuoteSuffix has no effect in
this case and should be omitted i.e. it is only used in the case of an explicit grid
of quotes above.

Listing 109 outlines the configuration for the two-dimensional expiry and moneyness
strike commodity option surface. This is similar to the absolute strike surface
configuration above but currently only supports a QuoteType of ImpliedVolatility

192

i.e. QuoteType of Premium is not supported. Also, the VolatilityType must be
Lognormal. Both forward and spot moneyness is supported.

<CommodityVolatility>
<CurveId>...</CurveId>
<CurveDescription>...</CurveDescription>
<Currency>...</Currency>
<MoneynessSurface>
<QuoteType>...</QuoteType>
<VolatilityType>...</VolatilityType>
<ExerciseType>...</ExerciseType>
<MoneynessType>...</MoneynessType>
<MoneynessLevels>...</MoneynessLevels>
<Expiries>...</Expiries>
<TimeInterpolation>...</TimeInterpolation>
<StrikeInterpolation>...</StrikeInterpolation>
<Extrapolation>...</Extrapolation>
<TimeExtrapolation>...</TimeExtrapolation>
<StrikeExtrapolation>...</StrikeExtrapolation>
<FuturePriceCorrection>...</FuturePriceCorrection>

</MoneynessSurface>
<DayCounter>...</DayCounter>
<Calendar>...</Calendar>
<FutureConventions>..</FutureConventions>
<OptionExpiryRollDays>...</OptionExpiryRollDays>
<PriceCurveId>...</PriceCurveId>
<YieldCurveId>...</YieldCurveId>

</CommodityVolatility>

Listing 109: Expiry and moneyness strike commodity option surface configuration

The meaning of each of the elements is given below. Again, nodes explained in the
previous configuration are not repeated here.

• MoneynessType: The allowable values are Spot for spot moneyness and Fwd for
forward moneyness.

• MoneynessLevels: This must be a comma separated list of moneyness values. A
moneyness value of 1 indicates a strike equal to spot or forward depending on the
value given in the MoneynessType node.

• TimeInterpolation: Only Linear is currently supported here.

• StrikeInterpolation: Only Linear is currently supported here.

• Extrapolation: A boolean value indicating if extrapolation is allowed.

• TimeExtrapolation: Only Flat is currently supported here giving flat
extrapolation of the volatility.

• StrikeExtrapolation: Indicates the extrapolation in the strike direction. The
allowable values are None, UseInterpolator, Linear and Flat. Both Flat and
None give flat extrapolation in the strike direction. UseInterpolator and
Linear indicate that the configured interpolation (linear) should be continued in
the strike direction in order to extrapolate.

• FuturePriceCorrection [Optional]: This is a boolean flag that defaults to true.

193

In most cases, for options on futures, the option expiry date is a short period
before the future expiry. If there is an arbitrary interpolation applied to the
future price curve, the future price on the option expiry date may not equal the
associated future price. If FuturePriceCorrection is true, this is corrected i.e.
the future price on option expiry is the associated future price for the future
expiry date. Note that a valid FutureConventions is needed for the correction
to be applied.

• PriceCurveId: This is required for both a spot and forward moneyness surface.

• YieldCurveId: This is required for a forward moneyness surface.

Note that, similar to the procedure outlined above for the absolute strike surface,
quote strings of the form COMMODITY_OPTION/RATE_LNVOL/{N}/{C}/e_n/MNY/{T}/l_m
are created from the moneyness configuration to be looked up in the market. Here, l_m
are the moneyness levels for m = 1, . . . ,M and {T} is the moneyness type i.e. either
Spot or Fwd.

Listing 110 outlines the configuration for the two-dimensional expiry and delta strike
commodity option surface. Similar to the moneyness strike surface configuration
above, this currently only supports a QuoteType of ImpliedVolatility i.e. QuoteType
of Premium is not supported. Also, the VolatilityType must be Lognormal. Various
delta and ATM types are supported.

<CommodityVolatility>
<CurveId>...</CurveId>
<CurveDescription>...</CurveDescription>
<Currency>...</Currency>
<DeltaSurface>
<QuoteType>...</QuoteType>
<VolatilityType>...</VolatilityType>
<ExerciseType>...</ExerciseType>
<DeltaType>...</DeltaType>
<AtmType>...</AtmType>
<AtmDeltaType>...</AtmDeltaType>
<PutDeltas>...</PutDeltas>
<CallDeltas>...</CallDeltas>
<Expiries>...</Expiries>
<TimeInterpolation>...</TimeInterpolation>
<StrikeInterpolation>...</StrikeInterpolation>
<Extrapolation>...</Extrapolation>
<TimeExtrapolation>...</TimeExtrapolation>
<StrikeExtrapolation>...</StrikeExtrapolation>
<FuturePriceCorrection>...</FuturePriceCorrection>

</DeltaSurface>
<DayCounter>...</DayCounter>
<Calendar>...</Calendar>
<FutureConventions>..</FutureConventions>
<OptionExpiryRollDays>...</OptionExpiryRollDays>
<PriceCurveId>...</PriceCurveId>
<YieldCurveId>...</YieldCurveId>

</CommodityVolatility>

Listing 110: Expiry and delta strike commodity option surface configuration

The meaning of each of the elements is given below. Again, nodes explained in the

194

previous configuration are not repeated here.

• DeltaType: The allowable supported values are Spot for spot delta Fwd for
forward delta.

• AtmType: The allowable supported values are AtmSpot, AtmFwd and
AtmDeltaNeutral.

• AtmDeltaType [Optional]: This is only needed if the AtmType is
AtmDeltaNeutral.

• PutDeltas: A comma separated list of one or more put deltas to use in the
volatility surface. Note that the put deltas should be given without a sign e.g.
<PutDeltas>0.10,0.20,0.30,0.40</PutDeltas> would be an example.

• CallDeltas: A comma separated list of one or more call deltas to use in the
volatility surface.

• Expiries: A comma separated list of one or more expiries (e.g. 1W, 1M) to
load. Supports using the single wildcard value *.

• TimeInterpolation: Only Linear is currently supported here.

• StrikeInterpolation: Allowable values are Linear, NaturalCubic,
FinancialCubic and CubicSpline.

• Extrapolation: A boolean value indicating if extrapolation is allowed.

• TimeExtrapolation: Only Flat is currently supported here giving flat
extrapolation of the volatility.

• StrikeExtrapolation: Indicates the extrapolation in the strike direction. The
allowable values are None, UseInterpolator, Linear and Flat. Both Flat and
None give flat extrapolation in the strike direction. UseInterpolator and
Linear indicate that the configured interpolation should be continued in the
strike direction in order to extrapolate.

• PriceCurveId: This is required for a delta surface.

• YieldCurveId: This is required for a delta surface.

Note that, similar to the procedure outlined above for the absolute strike surface,
quote strings are created from the configuration to be looked up in the market. For the
put deltas, quote strings of the form
COMMODITY_OPTION/RATE_LNVOL/{N}/{C}/e_n/DEL/{T}/Put/d_m are created. Here,
d_m are the PutDeltas and {T} is the delta type i.e. either Spot or Fwd. Similarly for
the call deltas, quote strings of the form
COMMODITY_OPTION/RATE_LNVOL/{N}/{C}/e_n/DEL/{T}/Call/d_j are created where
d_j are the CallDeltas. For ATM, quote strings of the form
COMMODITY_OPTION/RATE_LNVOL/{N}/{C}/e_n/DEL/ATM/{A}[/DEL/{T}] are created
where {A} is the AtmType i.e. AtmSpot, AtmFwd or AtmDeltaNeutral and {T} is the
optional delta type.

Also, it is worth adding a note here on the interpolation for a delta based surface.
Assume we want the volatility at time t and absolute strike s i.e. at the (t, s) node.
For the maturity time t, a delta "slice" i.e. a set of (delta, vol) pairs for that time t, is

195

obtained by interpolating, or extrapolating, the variance in the time direction on each
delta column. Then for each (delta, vol) pair at time t, an absolute strike value is
deduced to give a slice at time t in terms of absolute strike i.e. a set of (strike, vol)
pairs at time t. This strike versus volatility curve is then interpolated, or extrapolated,
to give the vol at the (t, s).

Listing 111 outlines the configuration for the APO volatility surface. This currently
only supports a QuoteType of ImpliedVolatility and VolatilityType must be
Lognormal. This configuration takes a base commodity volatility surface and builds a
surface that can be queried for volatilities to price APOs directly i.e. using the
volatility directly in a Black 76 formula along with the average future price. It uses the
approach described in the Section entitled Commodity Average Price Option - Future
Settlement Prices in the Product Catalogue to go from future option volatilities to
APO volatilities.

We describe here briefly a motivating example encountered in practice. We have
commodity APOs where the underlying is WTI Midland Argus averaged over the
calendar month. We do not have direct volatilities for these APO contracts. We have a
price curve for the average of WTI Midland Argus over the calendar month from the
futures market. We can use the volatility surface that we have for CME WTI to build
an APO surface for WTI Midland Argus. Listing 111 shows the configuration used in
this context.

<CommodityVolatility>
<CurveId>WTI_MIDLAND</CurveId>
<CurveDescription>WTI Midland (CAL) APO surface</CurveDescription>
<Currency>USD</Currency>
<ApoFutureSurface>
<QuoteType>ImpliedVolatility</QuoteType>
<VolatilityType>Lognormal</VolatilityType>
<MoneynessLevels>0.50,0.75,1.00,1.25,1.50</MoneynessLevels>
<VolatilityId>CommodityVolatility/USD/WTI</VolatilityId>
<PriceCurveId>Commodity/USD/WTI</PriceCurveId>
<FutureConventions>WTI</FutureConventions>
<TimeInterpolation>Linear</TimeInterpolation>
<StrikeInterpolation>Linear</StrikeInterpolation>
<Extrapolation>true</Extrapolation>
<TimeExtrapolation>Flat</TimeExtrapolation>
<StrikeExtrapolation>Flat</StrikeExtrapolation>
<MaxTenor>2Y</MaxTenor>
<Beta>0</Beta>

</ApoFutureSurface>
<DayCounter>A365</DayCounter>
<Calendar>CME</Calendar>
<FutureConventions>WTI_MIDLAND</FutureConventions>
<PriceCurveId>Commodity/USD/WTI_MIDLAND</PriceCurveId>
<YieldCurveId>Yield/USD/USD-FedFunds</YieldCurveId>

</CommodityVolatility>

Listing 111: APO surface configuration

The meaning of each of the elements is given below.

• MoneynessLevels: A comma separated list of the moneyness levels used in the
APO surface construction. Forward moneyness is assumed with a value of 1

196

indicating a strike equal to the future price.

• VolatilityId: The ID of an existing commodity option surface for options on
the future settlement price referenced in the APOs used in the generation of the
volatilities for this surface.

• PriceCurveId: The ID of an existing commodity price curve for the future
settlement price referenced in the APOs used in the generation of the volatilities
for this surface.

• FutureConventions: This ID of the commodity future conventions for the future
settlement price referenced in the APOs used in the generation of the volatilities
for this surface.

• TimeInterpolation: Only Linear is currently supported here. Note that the
interpolation is in terms of variance.

• StrikeInterpolation: Only Linear is supported here. Note that the
interpolation is in terms of variance.

• Extrapolation: A boolean value indicating if extrapolation is allowed.

• TimeExtrapolation: Only Flat is currently supported here. The flat
extrapolation is in terms of the volatility.

• StrikeExtrapolation: Indicates the extrapolation in the strike direction. The
allowable values are None, UseInterpolator, Linear and Flat. Both Flat and
None give flat extrapolation in the strike direction. UseInterpolator and
Linear indicate that the configured interpolation should be continued in the
strike direction in order to extrapolate.

• PriceCurveId: The ID of an existing commodity price curve giving the average
price for the APO period.

• YieldCurveId: This ID of a yield curve in the currency of the commodity used
for discounting.

7.8.19 Bootstrap Configuration

The BootstrapConfig node, outlined in listing 112, can be added to curve
configurations that use a bootstrap algorithm to alter the default behaviour of the
bootstrap algorithm.

<BootstrapConfig>
<Accuracy>...</Accuracy>
<GlobalAccuracy>...</GlobalAccuracy>
<DontThrow>...</DontThrow>
<MaxAttempts>...</MaxAttempts>
<MaxFactor>...</MaxFactor>
<MinFactor>...</MinFactor>
<DontThrowSteps>...</DontThrowSteps>

</BootstrapConfig>

Listing 112: BootstrapConfig node outline

The meaning of each of the elements is:

197

• Accuracy [Optional]: The accuracy with which the implied quote must match
the market quote for each instrument in the curve bootstrap. This node should
hold a positive real number. If omitted, the default value is 1.0× 10−12.

• GlobalAccuracy [Optional]: If the interpolation method in the bootstrap is
global, e.g. cubic spline, the bootstrap routine needs to perform multiple
iterative bootstraps of the curve to converge. After each such bootstrap of the
full curve, the absolute value of the change between the current bootstrap and
previous bootstrap for the curve value at each pillar is calculated. The global
bootstrap is deemed to have converged if the maximum of these changes is less
than the global accuracy or the accuracy from the Accuracy node. This node
should hold a positive real number. If omitted, the global accuracy is set equal to
the accuracy from the Accuracy node. This node is useful in some cases where a
slightly less restrictive accuracy, than that given by the Accuracy node, is needed
for the global bootstrap.

• DontThrow [Optional]: If this node is set to true, the curve bootstrap does not
throw an error when the bootstrap fails at a pillar. Instead, a curve value is
sought at the failing pillar that minimises the absolute value of the difference
between the implied quote and the market quote at that pillar. The minimum is
sought between the minimum and maximum curve value that was used in the
root finding routine that failed at the pillar. The number of steps used in this
search is given by the DontThrowSteps node below. This node should hold a
boolean value. If omitted, the default value is false i.e. the bootstrap throws an
exception at the first pillar where the bootstrap fails.

• MaxAttempts [Optional]: At each pillar, the bootstrap routine searches between a
minimum curve value and a maximum curve value for a curve value that gives an
implied quote that matches the market quote at that pillar. In some cases, the
minimum curve value and maximum curve value are too restrictive and the
bootstrap fails at a pillar. This node determines how many times the bootstrap
should be attempted at each pillar. For example, if the node is set to 1, the
bootstrap uses the minimum curve value and maximum curve value implied in
the code and fails if a root is not found. If this node is set to 2 and the first
attempt fails, the minimum curve value is reduced by a factor specified in the
node MinFactor, the maximum curve value is increased by a factor specified in
the node MaxFactor and a second attempt is made to find a root between the
enlarged bounds. If no root is found, the bootstrap then fails at this pillar. This
node should hold a positive integer. If omitted, the default value is 5.

• MaxFactor [Optional]: This node is used only if MaxAttempts is greater than 1.
The meaning of this node is given in the description of the MaxAttempts node.
This node should hold a positive real number. If omitted, the default value is 2.0.

• MinFactor [Optional]: This node is used only if MaxAttempts is greater than 1.
The meaning of this node is given in the description of the MaxAttempts node.
This node should hold a positive real number. If omitted, the default value is 2.0.

• DontThrowSteps [Optional]: This node is used only if DontThrow is true. The
meaning of this node is given in the description of the DontThrow node. This
node should hold a positive integer. If omitted, the default value is 10.

198

7.8.20 One Dimensional Solver Configuration

The OneDimSolverConfig node, outlined in Listing 113, can be added to certain curve
configurations that lead to a one dimensional solver being used in the curve
construction. For example, the EquityVolatility curve configuration can lead to
equity volatilities being stripped from equity option premiums. In this case, the
OneDimSolverConfig node can be added to the EquityVolatility curve
configuration to indicate how the solver should behave i.e. maximum number of
evaluations, initial guess, accuracy etc. The various options are outlined below.

<OneDimSolverConfig>
<MaxEvaluations>...</MaxEvaluations>
<InitialGuess>...</InitialGuess>
<Accuracy>...</Accuracy>
<MinMax>
<Min>...</Min>
<Max>...</Max>

</MinMax>
<!-- Step only needed if MinMax not provided. -->
<Step>...</Step>
<LowerBound>...</LowerBound>
<UpperBound>...</UpperBound>

</OneDimSolverConfig>

Listing 113: OneDimSolverConfig node outline

The meaning of each of the elements is:

• MaxEvaluations: This node should hold a positive integer. The maximum
number of function evaluations that can be made by the solver.

• InitialGuess: This node should hold a real number. The initial guess used by
the solver.

• Accuracy: This node should hold a positive real number. The accuracy used by
the solver in the root find.

• MinMax [Optional]: A node that holds a Min and a Max node each of which should
hold a real number. This indicates that the solver should search for a root
between the value in Min and the value in Max. The value in Min should
obviously be less than the value in Max. This node is optional. If not provided,
the Step node below should be provided to set up a step based solver.

• Step [Optional]: This node should hold a real number. The validation is a choice
between MinMax and Step so that Step can only be provided if MinMax is not and
vice versa. The value in Step provides the solver with a step size to use in its
search for a root.

• LowerBound [Optional]: This node should hold a real number. It provides a lower
bound for the search domain. If omitted, no lower bound is applied to the search
domain.

• UpperBound [Optional]: This node should hold a real number. It provides an
upper bound for the search domain. If omitted, no upper bound is applied to the
search domain. Obviously, if both LowerBound and UpperBound are provided, the

199

value in LowerBound should be less than the value in UpperBound.

200

7.9 Reference Data referencedata.xml

Reference Data is used to ease the burden on portfolio xml representation, by taking
common elements and storing them as static data. Currently this can be used for Bond
Derivatives that require bond static information.

Bond reference data is also used to build yield curves fitted to liquid bond prices, see
7.8.1.

The allowable types for ReferenceData is

1. Bond static data consists of the Leg data for a given bond.

2. SubType has been added for reporting purposes, to feed into the ISDA product
taxonomy, without impact on pricing.
Valid SubTypes are:

• ABS, Corp(orate), Loans, Muni, Sovereign

• ABX, CMBX, MBX, PrimeX, TRX, iBoxx (in case the Bond represents a
Credit or Bond index)

Note that the SubType field is currently optional and not covered by schema
checks.

<ReferenceData>
<!-- Bond reference datum -->
<ReferenceDatum id="SECURITY_1">
<Type>Bond</Type>
<BondReferenceData>
<SubType>Muni</SubType>
<IssuerId>CPTY_C</IssuerId>
<CreditCurveId>ZERO</CreditCurveId>
<ReferenceCurveId>EURBENCHMARK-EUR-6M</ReferenceCurveId>
<SettlementDays>2</SettlementDays>
<Calendar>TARGET</Calendar>
<IssueDate>20110215</IssueDate>
<LegData>
<LegType>Fixed</LegType>
<Payer>false</Payer>
<Currency>EUR</Currency>
<Notionals>
<Notional>1</Notional>

</Notionals>
<DayCounter>ActActISMA</DayCounter>
<PaymentConvention>F</PaymentConvention>
<FixedLegData>
<Rates>
<Rate>0.02</Rate>

</Rates>
</FixedLegData>
<ScheduleData>

201

<Rules>
<StartDate>20190103</StartDate>
<EndDate>20200103</EndDate>
<Tenor>1Y</Tenor>
<Calendar>TARGET</Calendar>
<Convention>U</Convention>
<TermConvention>U</TermConvention>
<Rule>Forward</Rule>
<EndOfMonth/>
<FirstDate/>
<LastDate/>

</Rules>
</ScheduleData>

</LegData>
</BondReferenceData>

</ReferenceDatum>
</ReferenceData>

202

7.10 Ibor Fallback Config: iborFallbackConfig.xml

The Ibor Fallback Configuration represents the rules for replacing Ibor reference rates
by risk free rates. If no configuration is specified, a standard configuration is used.
Specifying a custom configuration mainly serves testing purposes. The fields are:

• EnableIborFallbacks: If false, Ibor fallbacks are disabled.

• UseRfrCurveInTodaysMarket: If true, the todays market Ibor forwarding curve
for a replaced Ibor index is built using the RfrIndex OIS curve and the Spread.

• UseRfrCurveInSimulationMarket: If true, the simulation market Ibor forward
curve for a replaced Ibor index is built using the RfrIndex OIS curve and the
Spread.

• Fallback: Each Ibor index to be replaced is declared by

– IborIndex: the Ibor index name

– RfrIndex: the rfr index name

– Spread: the spread to apply to the rfr rate

– SwitchDate: the date on which the fallback is used

<IborFallbackConfig>
<GlobalSettings>

<EnableIborFallbacks>true</EnableIborFallbacks>
<UseRfrCurveInTodaysMarket>true</UseRfrCurveInTodaysMarket>
<UseRfrCurveInSimulationMarket>true</UseRfrCurveInSimulationMarket>

</GlobalSettings>
<Fallbacks>

<Fallback>
<IborIndex>CHF-LIBOR-12M</IborIndex>
<RfrIndex>CHF-SARON</RfrIndex>
<Spread>0.0020479999999999999</Spread>
<SwitchDate>2022-01-01</SwitchDate>

</Fallback>
<Fallback>

<IborIndex>CHF-LIBOR-1M</IborIndex>
<RfrIndex>CHF-SARON</RfrIndex>
<Spread>-0.000571</Spread>
<SwitchDate>2022-01-01</SwitchDate>

</Fallback>
....

203

7.11 Conventions: conventions.xml

The conventions to associate with a set market quotes in the construction of
termstructures are specified in another xml file which we will refer to as
conventions.xml in the following though the file name can be chosen by the user.
Each separate set of conventions is stored in an XML node. The type of conventions
that a node holds is determined by the node name. Every node has an Id node that
gives a unique identifier for the convention set. The following sections describe the
type of conventions that can be created and the allowed values.

7.11.1 Zero Conventions

A node with name Zero is used to store conventions for direct zero rate quotes. Direct
zero rate quotes can be given with an explicit maturity date or with a tenor and a set
of conventions from which the maturity date is deduced. The node for a zero rate
quote with an explicit maturity date is shown in Listing 114. The node for a tenor
based zero rate is shown in Listing 115.

Listing 114: Zero conventions

<Zero>
<Id> </Id>
<TenorBased>False</TenorBased>
<DayCounter> </DayCounter>
<CompoundingFrequency> </CompoundingFrequency>
<Compounding> </Compounding>

</Zero>

Listing 115: Zero conventions, tenor based

<Zero>
<Id> </Id>
<TenorBased>True</TenorBased>
<DayCounter> </DayCounter>
<CompoundingFrequency> </CompoundingFrequency>
<Compounding> </Compounding>
<TenorCalendar> </TenorCalendar>
<SpotLag> </SpotLag>
<SpotCalendar> </SpotCalendar>
<RollConvention> </RollConvention>
<EOM> </EOM>

</Zero>

The meanings of the various elements in this node are as follows:

• TenorBased: True if the conventions are for a tenor based zero quote and False if
they are for a zero quote with an explicit maturity date.

• DayCounter: The day count basis associated with the zero rate quote (for choices
see section 8.4)

• CompoundingFrequency: The frequency of compounding (Choices are Once,
Annual, Semiannual, Quarterly, Bimonthly, Monthly, Weekly, Daily).

204

• Compounding: The type of compounding for the zero rate (Choices are Simple,
Compounded, Continuous, SimpleThenCompounded).

• TenorCalendar: The calendar used to advance from the spot date to the
maturity date by the zero rate tenor (for choices see section 8.4).

• SpotLag [Optional]: The number of business days to advance from the valuation
date before applying the zero rate tenor. If not provided, this defaults to 0.

• SpotCalendar [Optional]: The calendar to use for business days when applying
the SpotLag. If not provided, it defaults to a calendar with no holidays.

• RollConvention [Optional]: The roll convention to use when applying the zero
rate tenor. If not provided, it defaults to Following (Choices are Backward,
Forward, Zero, ThirdWednesday, Twentieth, TwentiethIMM, CDS,
ThirdThursday, ThirdFriday, MondayAfterThirdFriday,
TuesdayAfterThirdFriday, LastWednesday).

• EOM [Optional]: Whether or not to use the end of month convention when
applying the zero rate tenor. If not provided, it defaults to false.

7.11.2 Deposit Conventions

A node with name Deposit is used to store conventions for deposit or index fixing
quotes. The conventions can be index based, in which case all necessary conventions
are deduced from a given index family. The structure of the index based node is shown
in Listing 116. Alternatively, all the necessary conventions can be given explicitly
without reference to an index family. The structure of this node is shown in Listing
117.

Listing 116: Deposit conventions

<Deposit>
<Id> </Id>
<IndexBased>True</IndexBased>
<Index> </Index>

</Deposit>

Listing 117: Deposit conventions

<Deposit>
<Id> </Id>
<IndexBased>False</IndexBased>
<Calendar> </Calendar>
<Convention> </Convention>
<EOM> </EOM>
<DayCounter> </DayCounter>

</Deposit>

The meanings of the various elements in this node are as follows:

• IndexBased: True if the deposit conventions are index based and False if the
conventions are given explicitly.

205

• Index: The index family from which to imply the conventions for the deposit
quote. For example, this could be EUR-EURIBOR, USD-LIBOR etc.

• Calendar: The business day calendar for the deposit quote.

• Convention: The roll convention for the deposit quote.

• EOM: True if the end of month roll convention is to be used for the deposit
quote and False if not.

• DayCounter: The day count basis associated with the deposit quote.

7.11.3 Future Conventions

A node with name Future is used to store conventions for money market (MM) or
overnight index (OI) interest rate future quotes, for example futures on Euribor 3M or
SOFR 3M underlyings. The structure of this node is shown in Listing 118. The fields
have the following meaning:

• Id: The name of the convention.

• Index: The underlying index of the futures, this is either a MM (i.e. Ibor) index
like e.g. EUR-EURIBOR-3M or an overnight index like e.g. USD-SOFR.

• DateGenerationRule [Optional]: This should be set to ’IMM’ when the start and
end dates of the future are following the IMM date logic or ’FirstDayOfMonth’
when the start and end date are the first day of a month. If not given this field
defaults to ’IMM’.

– For MM futures only ’IMM’ is allowed and the expiry date is determined as
the next 3rd Wednesday of the expiry month of a future.

– For an overnight index future ’IMM’ means that the end date of the future
is set to the 3rd Wednesday of the expiry month and the start date is set to
the 3rd Wednesday of the expiry month minus the future tenor. The setting
’IMM’ applies to SOFR-3M futures for example. ’FirstDayOfMonth’ on the
other hand means that the end date of the future is set to the first day in
the month following the future’s expiry month and the start date is set to
the first day of the month lying n months before the end date’s month
where n is the number of months of the future’s underlying tenor. The
setting ’FirstDayOfMonth’ applies to SOFR-1M futures for example. This
tenor is derived from the market quote, see 10.8.

• OvernightIndexFutureNettingType [Optional]: Only relevant for OI futures. Can
be ’Compounding’ (which is also the default value if no value is given) or
’Averaging’. For example, SOFR 3M futures are compounding while SOFR 1M
futures are averaging the daily overnight fixings over the calculation period of the
future.

Listings 119, 120, 121 show examples for Euribor-3M, SOFR-3M and SOFR-1M future
conventions.

206

Listing 118: Future conventions

<Future>
<Id> </Id>
<Index> </Index>
<DateGenerationRule> </DateGenerationRule>
<OvernightIndexFutureNettingType> </OvernightIndexFutureNettingType>

</Future>

Listing 119: Euribor 3M MM Future conventions

<Future>
<Id>EURIBOR-3M-FUTURES</Id>
<Index>EUR-EURIBOR-3M</Index>

</Future>

Listing 120: USD SOFR 3M OI Future conventions

<Future>
<Id>USD-SOFR-3M-FUTURES</Id>
<Index>USD-SOFR</Index>
<DateGenerationRule>IMM</DateGenerationRule>
<OvernightIndexFutureNettingType>Compounding</OvernightIndexFutureNettingType>

</Future>

Listing 121: USD SOFR 1M OI Future conventions

<Future>
<Id>USD-SOFR-1M-FUTURES</Id>
<Index>USD-SOFR</Index>
<DateGenerationRule>FirstDayOfMonth</DateGenerationRule>
<OvernightIndexFutureNettingType>Averaging</OvernightIndexFutureNettingType>

</Future>

7.11.4 FRA Conventions

A node with name FRA is used to store conventions for FRA quotes. The structure of
this node is shown in Listing 122. The only piece of information needed is the
underlying index name and this is given in the Index node. For example, this could be
EUR-EURIBOR-6M, CHF-LIBOR-6M etc.

Listing 122: FRA conventions

<FRA>
<Id> </Id>
<Index> </Index>

</FRA>

207

7.11.5 OIS Conventions

A node with name OIS is used to store conventions for Overnight Indexed Swap (OIS)
quotes. The structure of this node is shown in Listing 123.

Listing 123: OIS conventions

<OIS>
<Id> </Id>
<SpotLag> </SpotLag>
<Index> </Index>
<FixedDayCounter> </FixedDayCounter>
<FixedCalendar> </FixedCalendar>
<PaymentLag> </PaymentLag>
<EOM> </EOM>
<FixedFrequency> </FixedFrequency>
<FixedConvention> </FixedConvention>
<FixedPaymentConvention> </FixedPaymentConvention>
<Rule> </Rule>
<PaymentCalendar> </PaymentCalendar>

</OIS>

The meanings of the various elements in this node are as follows:

• SpotLag: The number of business days until the start of the OIS.

• Index: The name of the overnight index. For example, this could be
EUR-EONIA, USD-FedFunds etc.

• FixedDayCounter: The day count basis on the fixed leg of the OIS.

• FixedCalendar [Optional]: The business day calendar on the fixed leg. Optional
to retain backwards compatibility with older versions, if not given defaults to
index fixing calendar.

• PaymentLag [Optional]: The payment lag, as a number of business days, on both
legs. If not provided, this defaults to 0.

• EOM [Optional]: True if the end of month roll convention is to be used when
generating the OIS schedule and False if not. If not provided, this defaults to
False.

• FixedFrequency [Optional]: The frequency of payments on the fixed leg. If not
provided, this defaults to Annual.

• FixedConvention [Optional]: The roll convention for accruals on the fixed leg. If
not provided, this defaults to Following.

• FixedPaymentConvention [Optional]: The roll convention for payments on the
fixed leg. If not provided, this defaults to Following.

• Rule [Optional]: The rule used for generating the OIS dates schedule i.e.
Backward or Forward. If not provided, this defaults to Backward.

• PaymentCalendar [Optional]: The business day calendar used for determining
coupon payment dates. If not specified, this defaults to the fixing calendar
defined on the overnight index.

208

7.11.6 Swap Conventions

A node with name Swap is used to store conventions for vanilla interest rate swap
(IRS) quotes. The structure of this node is shown in Listing 124.

Listing 124: Swap conventions

<Swap>
<Id> </Id>
<FixedCalendar> </FixedCalendar>
<FixedFrequency> </FixedFrequency>
<FixedConvention> </FixedConvention>
<FixedDayCounter> </FixedDayCounter>
<Index> </Index>
<FloatFrequency> </FloatFrequency>
<SubPeriodsCouponType> </SubPeriodsCouponType>

</Swap>

The meanings of the various elements in this node are as follows:

• FixedCalendar: The business day calendar on the fixed leg.

• FixedFrequency: The frequency of payments on the fixed leg.

• FixedConvention: The roll convention on the fixed leg.

• FixedDayCounter: The day count basis on the fixed leg.

• Index: The Ibor index on the floating leg.

• FloatFrequency [Optional]: The frequency of payments on the floating leg, to be
used if the frequency is different to the tenor of the index (e.g. CAD swaps for
BA-3M have a 6M or 1Y payment frequency with a Compounding coupon)

• SubPeriodsCouponType [Optional]: Defines how coupon rates should be
calculated when the float frequency is different to that of the index. Possible
values are "Compounding" and "Averaging".

7.11.7 Average OIS Conventions

A node with name AverageOIS is used to store conventions for average OIS quotes.
An average OIS is a swap where a fixed rate is swapped against a daily averaged
overnight index plus a spread. The structure of this node is shown in Listing 125.

209

Listing 125: Average OIS conventions

<AverageOIS>
<Id> </Id>
<SpotLag> </SpotLag>
<FixedTenor> </FixedTenor>
<FixedDayCounter> </FixedDayCounter>
<FixedCalendar> </FixedCalendar>
<FixedConvention> </FixedConvention>
<FixedPaymentConvention> </FixedPaymentConvention>
<FixedFrequency> </FixedFrequency>
<Index> </Index>
<OnTenor> </OnTenor>
<RateCutoff> </RateCutoff>

</AverageOIS>

The meanings of the various elements in this node are as follows:

• SpotLag: Number of business days until the start of the average OIS.

• FixedTenor: The frequency of payments on the fixed leg.

• FixedDayCounter: The day count basis on the fixed leg.

• FixedCalendar: The business day calendar on the fixed leg.

• FixedFrequency: The frequency of payments on the fixed leg.

• FixedConvention: The roll convention for accruals on the fixed leg.

• FixedPaymentConvention: The roll convention for payments on the fixed leg.

• FixedFrequency [Optional]: The frequency of payments on the fixed leg. If not
provided, this defaults to Annual.

• Index: The name of the overnight index.

• OnTenor: The frequency of payments on the overnight leg.

• RateCutoff: The rate cut-off on the overnight leg. Generally, the overnight fixing
is only observed up to a certain number of days before the payment date and the
last observed rate is applied for the remaining days in the period. This rate
cut-off gives the number of days e.g. 2 for Fed Funds average OIS.

7.11.8 Tenor Basis Swap Conventions

A node with name TenorBasisSwap is used to store conventions for tenor basis swap
quotes. The structure of this node is shown in Listing 126.

210

Listing 126: Tenor basis swap conventions

<TenorBasisSwap>
<Id> </Id>
<LongIndex> </LongIndex>
<LongPayTenor> </ShortPayTenor>
<ShortIndex> </ShortIndex>
<ShortPayTenor> </ShortPayTenor>
<SpreadOnShort> </SpreadOnShort>
<IncludeSpread> </IncludeSpread>
<SubPeriodsCouponType> </SubPeriodsCouponType>

</TenorBasisSwap>

The meanings of the various elements in this node are as follows:

• LongIndex: The name of the long tenor Ibor index. In the case of basis swaps
with equal tenor indexes (like overnight indexed vs overnight indexed basis
swaps) it should be interpreted as the index of the received leg.

• LongPayTenor [Optional]: The frequency of payments on the LongIndex leg.
This is usually the same as the LongIndex’s tenor. However, it can also be
longer, e.g. overnight indexed vs overnight indexed basis swaps that may be
quarterly on both legs. If not provided, this defaults to the LongIndex’s tenor.

• ShortIndex: The name of the short tenor Ibor or overnight index.

• ShortPayTenor [Optional]: The frequency of payments on the ShortIndex leg.
This is usually the same as the ShortIndex’s tenor. However, it can also be
longer e.g. USD tenor basis swaps where the short tenor Ibor index is
compounded and paid on the same frequency as the long tenor Ibor index, or
overnight indexed vs overnight indexed basis swaps that may be quarterly on
both legs. If not provided, this defaults to the ShortIndex’s tenor.

• SpreadOnShort [Optional]: True if the tenor basis swap quote has the spread on
the short tenor Ibor index leg and False if not. If not provided, this defaults to
True.

• IncludeSpread [Optional]: True if the tenor basis swap spread is to be included
when compounding is performed on the short tenor Ibor index leg and False if
not. If not provided, this defaults to False.

• SubPeriodsCouponType [Optional]: This field can have the value Compounding
or Averaging. It applies to Ibor vs OI and Ibor vs Ibor basis swaps when the
frequency of payments on the short tenor leg does not equal the short tenor
index’s tenor. If Compounding is specified, then the short tenor Ibor index is
compounded and paid on the frequency specified in the ShortPayTenor node. If
Averaging is specified, then the short tenor Ibor index is averaged and paid on
the frequency specified in the ShortPayTenor node. If not provided, this defaults
to Compounding. In the context of overnight indexed vs overnight indexed basis
swaps this value will apply to both legs.

211

7.11.9 Tenor Basis Two Swap Conventions

A node with name TenorBasisTwoSwap is used to store conventions for tenor basis
swap quotes where the quote is the spread between the fair fixed rate on two swaps
against Ibor indices of different tenors. We call the swap against the Ibor index of
longer tenor the long swap and the remaining swap the short swap. The structure of
the tenor basis two swap conventions node is shown in Listing 127.

Listing 127: Tenor basis two swap conventions

<TenorBasisTwoSwap>
<Id> </Id>
<Calendar> </Calendar>
<LongFixedFrequency> </LongFixedFrequency>
<LongFixedConvention> </LongFixedConvention>
<LongFixedDayCounter> </LongFixedDayCounter>
<LongIndex> </LongIndex>
<ShortFixedFrequency> </ShortFixedFrequency>
<ShortFixedConvention> </ShortFixedConvention>
<ShortFixedDayCounter> </ShortFixedDayCounter>
<ShortIndex> </ShortIndex>
<LongMinusShort> </LongMinusShort>

</TenorBasisTwoSwap>

The meanings of the various elements in this node are as follows:

• Calendar: The business day calendar on both swaps.

• LongFixedFrequency: The frequency of payments on the fixed leg of the long
swap.

• LongFixedConvention: The roll convention on the fixed leg of the long swap.

• LongFixedDayCounter: The day count basis on the fixed leg of the long swap.

• LongIndex: The Ibor index on the floating leg of the long swap.

• ShortFixedFrequency: The frequency of payments on the fixed leg of the short
swap.

• ShortFixedConvention: The roll convention on the fixed leg of the short swap.

• ShortFixedDayCounter: The day count basis on the fixed leg of the short swap.

• ShortIndex: The Ibor index on the floating leg of the short swap.

• LongMinusShort [Optional]: True if the basis swap spread is to be interpreted as
the fair rate on the long swap minus the fair rate on the short swap and False if
the basis swap spread is to be interpreted as the fair rate on the short swap
minus the fair rate on the long swap. If not provided, it defaults to True.

7.11.10 FX Conventions

A node with name FX is used to store conventions for FX spot and forward quotes for
a given currency pair. The structure of this node is shown in Listing 128.

212

Listing 128: FX conventions

<FX>
<Id> </Id>
<SpotDays> </SpotDays>
<SourceCurrency> </SourceCurrency>
<TargetCurrency> </TargetCurrency>
<PointsFactor> </PointsFactor>
<AdvanceCalendar> </AdvanceCalendar>
<SpotRelative> </SpotRelative>

</FX>

The meanings of the various elements in this node are as follows:

• SpotDays: The number of business days to spot for the currency pair.

• SourceCurrency: The source currency of the currency pair. The FX quote is
assumed to give the number of units of target currency per unit of source
currency.

• TargetCurrency: The target currency of the currency pair.

• PointsFactor: The number by which a points quote for the currency pair should
be divided before adding it to the spot quote to obtain the forward rate.

• AdvanceCalendar [Optional]: The business day calendar(s) used for advancing
dates for both spot and forwards. If not provided, it defaults to a calendar with
no holidays.

• SpotRelative [Optional]: True if the forward tenor is to be interpreted as being
relative to the spot date. False if the forward tenor is to be interpreted as being
relative to the valuation date. If not provided, it defaults to True.

7.11.11 Cross Currency Basis Swap Conventions

A node with name CrossCurrencyBasis is used to store conventions for cross currency
basis swap quotes. The structure of this node is shown in Listing 129.

213

Listing 129: Cross currency basis swap conventions

<CrossCurrencyBasis>
<Id> </Id>
<SettlementDays> </SettlementDays>
<SettlementCalendar> </SettlementCalendar>
<RollConvention> </RollConvention>
<FlatIndex> </FlatIndex>
<SpreadIndex> </SpreadIndex>
<EOM> </EOM>
<IsResettable> </IsResettable>
<FlatIndexIsResettable> </FlatIndexIsResettable>>
<PaymentLag> </PaymentLag>
<FlatPaymentLag> </FlatPaymentLag>
<!-- for OIS only -->
<IncludeSpread> </IncludeSpread>
<Lookback> </Lookback>
<FixingDays> </FixingDays>
<RateCutoff> </RateCutoff>
<IsAveraged> </IsAveraged>
<FlatIncludeSpread> </FlatIncludeSpread>
<FlatLookback> </FlatLookback>
<FlatFixingDays> </FlatFixingDays>
<FlatRateCutoff> </FlatRateCutoff>
<FlatIsAveraged> </FlatIsAveraged>

</CrossCurrencyBasis>

The meanings of the various elements in this node are as follows:

• SettlementDays: The number of business days to the start of the cross currency
basis swap.

• SettlementCalendar: The business day calendar(s) for both legs and to arrive at
the settlement date using the SettlementDays above.

• RollConvention: The roll convention for both legs.

• FlatIndex: The name of the index on the leg that does not have the cross
currency basis spread.

• SpreadIndex: The name of the index on the leg that has the cross currency basis
spread.

• EOM [Optional]: True if the end of month convention is to be used when
generating the schedule on both legs, and False if not. If not provided, it defaults
to False.

• IsResettable [Optional]: True if the swap is mark-to-market resetting, and False
otherwise. If not provided, it defaults to False.

• FlatIndexIsResettable [Optional]: True if it is the notional on the leg paying the
flat index that resets, and False otherwise. If not provided, it defaults to True.

• FlatTenor [Optional]: the flat leg period length (typical value is 3M), defaults to
index tenor except for ON indices for which it defaults to 3M

214

• SpreadTenor [Optional]: the spread leg period length (typical value is 3M),
defaults to index tenor except for ON indices for which it defaults to 3M

• SpreadPaymentLag [Optional]: the payment lag for the spread leg, allowable
values are 0, 1, 2, ..., defaults to 0 if not given

• FlatPaymentLag [Optional]: the payment lag for the flat leg, allowable values are
0, 1, 2, ..., defaults to 0 if nove given

• SpreadIncludeSpread [Optional]: Only relevant if spread leg is OIS, allowable
values are true, false, defaults to false if not given

• SpreadLookback [Optional]: Only relevant if spread leg is OIS, allowable values
are 0D, 1D, ..., defaults to 0D if not given

• SpreadFixingDays [Optional]: Only relevant if spread leg is OIS, allowable values
are 0, 1, 2, ..., defaults to 0 if not given

• SpreadRateCutoff [Optional]: Only relevant if spread leg is OIS, allowable values
are 0, 1, 2, ..., defaults to 0 if not given

• SpreadIsAveraged [Optional]: Only relevant if spread leg is OIS, allowable values
are true, false, defaults to false if not given

• FlatIncludeSpread [Optional]: Only relevant if spread leg is OIS, allowable values
are true, false, defaults to false if not given

• FlatLookback [Optional]: Only relevant if spread leg is OIS, allowable values are
0D, 1D, ..., defaults to 0D if not given

• FlatFixingDays [Optional]: Only relevant if spread leg is OIS, allowable values
are 0, 1, 2, ..., defaults to 0 if not given

• FlatRateCutoff [Optional]: Only relevant if spread leg is OIS, allowable values
are 0, 1, 2, ..., defaults to 0 if not given

• FlatIsAveraged [Optional]: Only relevant if spread leg is OIS, allowable values
are true, false, defaults to false if not given

7.11.12 Inflation Swap Conventions

A node with name InflationSwap is used to store conventions for zero or year on year
inflation swap quotes. The structure of this node is shown in Listing 130

215

Listing 130: Inflation swap conventions

<InflationSwap>
<Id>EUHICPXT_INFLATIONSWAP</Id>
<FixCalendar>TARGET</FixCalendar>
<FixConvention>MF</FixConvention>
<DayCounter>30/360</DayCounter>
<Index>EUHICPXT</Index>
<Interpolated>false</Interpolated>
<ObservationLag>3M</ObservationLag>
<AdjustInflationObservationDates>false</AdjustInflationObservationDates>
<InflationCalendar>TARGET</InflationCalendar>
<InflationConvention>MF</InflationConvention>

</InflationSwap>

The meaning of the elements is as follows:

• FixCalendar: The calendar for the fixed rate leg of the swap.

• FixConvention: The rolling convention for the fixed rate leg of the swap.

• DayCounter: The payoff or coupon day counter, applied to both legs.

• Index: The underlying inflation index.

• Interpolated: Flag indicating interpolation of the index in the swap’s payoff
calculation.

• ObservationLag: The index observation lag to be applied.

• AdjustInflationObservationDates: Flag indicating whether index observation
dates should be adjusted or not.

• InflationCalendar: The calendar for the inflation leg of the swap.

• InflationConvention: The rolling convention for the inflation leg of the swap.

• PublicationRoll: This is an optional node taking the values None,
OnPublicationDate or AfterPublicationDate. If omitted, the value None is
used. Currently, our only known use case for a value other than None is for
Australian zero coupon inflation indexed swaps (ZCIIS). Here, the index is
published quarterly on the last Wednesday of the month following the end of the
reference quarter. The start date and maturity date of the market quoted ZCIIS
roll to the next quarterly date after the publication date of the index. For
example, the AU CPI value for Q3 2020, i.e. 1 Jul 2020 to 30 Sep 2020 was
released on 28 Oct 2020. On 27 Oct 2020, before the index publication date, the
market 5Y ZCIIS would start on 15 Sep 2020 and end on 15 Sep 2025 and
reference the Q2 inflation index value. On 29 Oct 2020, after the index
publication date, the market 5Y ZCIIS would start on 15 Dec 2020 and end on
15 Dec 2025 and reference the Q3 inflation index value. On the release date, i.e.
28 Oct 2020, the market ZCIIS that is set up is determined by whether the
PublicationRoll value is OnPublicationDate or AfterPublicationDate. If it
is set to OnPublicationDate, the swap rolls on this date and hence the market
5Y ZCIIS would start on 15 Dec 2020 and end on 15 Dec 2025 and reference the
Q3 inflation index value. If it is set to AfterPublicationDate, the swap does

216

not roll on the publication date and instead rolls on the next day, and hence the
market 5Y ZCIIS would start on 15 Sep 2020 and end on 15 Sep 2025 and
reference the Q2 inflation index value. The publication schedule for the index
must be provided in the PublicationSchedule node if PublicationRoll is not
None. An example of the AU CPI conventions set up is given in Listing 131.

• PublicationSchedule: This is an optional node and is not used if
PublicationRoll is None. If PublicationRoll is not None, it must be provided
and gives the publication dates for the inflation index. The node fields are the
same fields that are described in the Section 8.3.4, i.e. they are ScheduleData
elements. An example of the AU CPI conventions set up is given in Listing 131.
The PublicationSchedule must cover the dates on which you intend to perform
valuations, i.e. the first publication schedule date must be less than the smallest
valuation date that you intend to use and the last publication schedule date must
be greater than the largest valuation date that you intend to use.

Listing 131: AU CPI inflation swap conventions

<InflationSwap>
<Id>AUCPI_INFLATIONSWAP</Id>
<FixCalendar>AUD</FixCalendar>
<FixConvention>F</FixConvention>
<DayCounter>30/360</DayCounter>
<Index>AUCPI</Index>
<Interpolated>false</Interpolated>
<ObservationLag>3M</ObservationLag>
<AdjustInflationObservationDates>false</AdjustInflationObservationDates>
<InflationCalendar>AUD</InflationCalendar>
<InflationConvention>F</InflationConvention>
<PublicationRoll>AfterPublicationDate</PublicationRoll>
<PublicationSchedule>
<Rules>
<StartDate>2001-01-24</StartDate>
<EndDate>2030-01-30</EndDate>
<Tenor>3M</Tenor>
<Calendar>AUD</Calendar>
<Convention>Preceding</Convention>
<TermConvention>Unadjusted</TermConvention>
<Rule>LastWednesday</Rule>

</Rules>
</PublicationSchedule>

</InflationSwap>

7.11.13 CMS Spread Option Conventions

A node with name CmsSpreadOption is used to store the conventions.

217

Listing 132: Inflation swap conventions

<CmsSpreadOption>
<Id>EUR-CMS-10Y-2Y-CONVENTION</Id>
<ForwardStart>0M</ForwardStart>
<SpotDays>2D</SpotDays>
<SwapTenor>3M</SwapTenor>
<FixingDays>2</FixingDays>
<Calendar>TARGET</Calendar>
<DayCounter>A360</DayCounter>
<RollConvention>MF</RollConvention>

</CmsSpreadOption>

The meaning of the elements is as follows:

• ForwardStart: The calendar for the fixed rate leg of the swap.

• SpotDays: The number of business days to spot for the CMS Spread Index.

• SwapTenor: The frequency of payments on the CMS Spread leg.

• FixingDays: The number of fixing days.

• Calendar: The calendar for the CMS Spread leg.

• DayCounter: The day counter for the CMS Spread leg.

• RollConvention: The rolling convention for the CMS Spread Leg.

7.11.14 Ibor Index Conventions

A node with name IborIndex is used to store conventions for Ibor indices. This can be
used to define new Ibor indices without the need of adding them to the C++ code, or
also to override the conventions of existing Ibor indices.

Listing 133: Ibor index convention

<IborIndex>
<Id>EUR-EURIBOR_ACT365-3M</Id>
<FixingCalendar>TARGET</FixingCalendar>
<DayCounter>A365F</DayCounter>
<SettlementDays>2</SettlementDays>
<BusinessDayConvention>MF</BusinessDayConvention>
<EndOfMonth>true</EndOfMonth>

</IborIndex>

The meaning of the elements is as follows:

• Id: The index name. This must be of the form “CCY-NAME-TENOR” with a
currency “CCY”, an index name “NAME” and a string “TENOR” representing a
period. The name should not be “GENERIC”, since this is reserved.

• FixingCalendar: The fixing calendar of the index.

• DayCounter: The day count convention used by the index.

218

• SettlementDays: The settlement days for the index. This must be a non-negative
whole number.

• BusinessDayConvention: The business day convention used by the index.

• EndOfMonth: A flag indicating whether the index employs the end of month
convention.

Notice that if another convention depends on an Ibor index convention (because it
contains the Ibor index name defined in the latter convention), the Ibor index
convention must appear before the convention that depends on it in the convention
input file.

Also notice that customised indices can not be used in cap / floor volatility surface
configurations.

7.11.15 Overnight Index Conventions

A node with name OvernightIndex is used to store conventions for Overnight indices.
This can be used to define new Overnight indices without the need of adding them to
the C++ code, or also to override the conventions of existing Overnight indices.

Listing 134: Overnight index convention

<OvernightIndex>
<Id>EUR-ESTER</Id>
<FixingCalendar>TARGET</FixingCalendar>
<DayCounter>A360</DayCounter>
<SettlementDays>0</SettlementDays>

</OvernightIndex>

The meaning of the elements is as follows:

• Id: The index name. This must be of the form “CCY-NAME” with a currency
“CCY” and an index name “NAME”. The name should not be “GENERIC”, since
this is reserved.

• FixingCalendar: The fixing calendar of the index.

• DayCounter: The day count convention used by the index.

• SettlementDays: The settlement days for the index. This must be a non-negative
whole number.

Notice that if another convention depends on an Overnight index convention (because
it contains the Overnight index name defined in the latter convention), the Overnight
index convention must appear before the convention that depends on it in the
convention input file.

Also notice that customised indices can not be used in cap / floor volatility surface
configurations.

219

7.11.16 Inflation Index Conventions

A node with the name ZeroInflationIndex is used to store data for the creation of a
new inflation index. This avoids having to add the index definition to the C++ code
and recompile. Note that the ZeroInflationIndex node should be placed before its
use in any other convention, e.g. in an InflationSwap convention, to avoid an error
due to the new index itself not being created. If the Id node matches an existing
inflation index, the newly created index will take precedence and its defintion will be
used in the code for the given Id.

Listing 135: ZeroInflationIndex node

<ZeroInflationIndex>
<Id>...</Id>
<RegionName>...</RegionName>
<RegionCode>...</RegionCode>
<Revised>...</Revised>
<Frequency>...</Frequency>
<AvailabilityLag>...</AvailabilityLag>
<Currency>...</Currency>

</ZeroInflationIndex>

The meaning of each element is as follows:

• Id: The new inflation index name.

• RegionName: The name of the region with which the inflation index is associated.

• RegionCode: A code for the region with which the inflation index is associated.

• Revised: A boolean flag indicating whether the index is a revised index or not.
This is generally set to false but is left as an option to align with the C++
InflationIndex class definition.

• Frequency: A valid frequency indicating the publication frequency of the
inflation index, generally Monthly, Quarterly or Annual.

• AvailabilityLag: A valid period indicating the lag between the inflation index
publication for a given period and the period itself. For example, if March’s
inflation index value is published in April, the AvailabilityLag would be 1M.

• Currency: The ISO currency code of the currency associated with the inflation
index, generally the currency of the region.

7.11.17 Swap Index Conventions

A node with name SwapIndex is used to store conventions for Swap indices (also
known as “CMS” indices).

220

Listing 136: Swap index convention

<SwapIndex>
<Id>EUR-CMS-2Y</Id>
<Conventions>EUR-EURIBOR-6M-SWAP</Conventions>
<FixingCalendar>TARGET</FixingCalendar>

</SwapIndex>

The meaning of the elements is as follows:

• Id: The index name. This must be of the form “CCY-CMS-TENOR” with a
currency “CCY” and a string “TENOR” representing a period. The index name
can contain an optional tag “CCY-CMS-TAG-TENOR” which is an arbitrary
label that allows to define more than one swap index per currency.

• Conventions: A swap convention defining the index conventions.

• FixingCalendar [Optional]: The fixing calendar for the swap index fixings
publication. If not given, the fixed leg calendar from the swap conventions will be
used as a fall back.

7.11.18 FX Option Conventions

A node with name FxOption is used to store conventions for FX option quotes for a
given currency pair. The structure of this node is shown in Listing 137.

Listing 137: FX option conventions

<FxOption>
<Id>EUR-USD-FXOPTION</Id>
<FXConventionID>EUR-USD-FX</FXConventionID>
<AtmType>AtmDeltaNeutral</AtmType>
<DeltaType>Spot</DeltaType>
<SwitchTenor>2Y</SwitchTenor>
<LongTermAtmType>AtmDeltaNeutral</LongTermAtmType>
<LongTermDeltaType>Fwd</LongTermDeltaType>
<RiskReversalInFavorOf>Call</RiskReversalInFavorOf>
<ButterflyStyle>Broker</ButterflyStyle>

</FxOption>

The meanings of the various elements in this node are as follows:

• FXConventionID: The FX convention for the currency pair (see 7.11.10).
Optional, if not given, the FX spot days default to 2 and the advance calendar
defaults to source ccy + target ccy default calendars.

• AtmType: Convention of ATM option quote (Choices are AtmNull, AtmSpot,
AtmFwd, AtmDeltaNeutral, AtmVegaMax, AtmGammaMax, AtmPutCall50).

• DeltaType: Convention of Delta option quote (Choices are Spot, Fwd, PaSpot,
PaFwd).

221

• SwitchTenor [Optional]: If given, different ATM and Delta conventions will be
used if the option tenor is greater or equal the switch tenor (“long term” atm and
delta type)

• LongTermAtmType [Mandatory if and only if SwitchTenor is given]: ATM type
to use for options with tenor > switch point, if SwitchTenor is given

• LongTermDeltaType [Mandatory if and only if SwitchTenor is given]: Delta type
to use for options with tenor > switch point, if SwitchTenor is given

• RiskReversalInFavorOf [Optional]: Call (default), Put. Only relevant for BF, RR
market data input.

• ButterflyStyle [Optional]: Broker (default), Smile. Only relevant for BF, RR
market data input.

7.11.19 Commodity Forward Conventions

A node with name CommodityForward is used to store conventions for commodity
forward price quotes. The structure of this node is shown in Listing 138.

Listing 138: Commodity forward conventions

<CommodityForward>
<Id>...</Id>
<SpotDays>...</SpotDays>
<PointsFactor>...</PointsFactor>
<AdvanceCalendar>...</AdvanceCalendar>
<SpotRelative>...</SpotRelative>
<BusinessDayConvention>...</BusinessDayConvention>
<Outright>...</Outright>

</CommodityForward>

The meanings of the various elements in this node are as follows:

• Id: The identifier for the commodity forward convention. The identifier here
should match the Name that would be provided for the commodity in the trade
XML as described in Table 38.

• SpotDays [Optional]: The number of business days to spot for the commodity.
Any non-negative integer is allowed here. If omitted, this takes a default value of
2.

• PointsFactor [Optional]: This is only used if Outright is false. Any positive
real number is allowed here. When Outright is false, the commodity forward
quotes are provided as points i.e. a number that should be added to the
commodity spot to give the outright commodity forward rate. The PointsFactor
is the number by which the points quote should be divided before adding it to the
spot quote to obtain the forward price. If omitted, this takes a default value of 1.

• AdvanceCalendar [Optional]: The business day calendar(s) used for advancing
dates for both spot and forwards. The allowable values are given in Table 30. If
omitted, it defaults to NullCalendar i.e. a calendar where all days are
considered good business days.

222

• SpotRelative [Optional]: The allowable values are true and false. If true, the
forward tenor is interpreted as being relative to the spot date. If false, the
forward tenor is interpreted as being relative to the valuation date. If omitted, it
defaults to True.

• BusinessDayConvention [Optional]: The business day roll convention used to
adjust dates when getting from the valuation date to the spot date and the
forward maturity date. The allowable values are given in Table 26. If omitted, it
defaults to Following.

• Outright [Optional]: The allowable values are true and false. If true, the
forward quotes are interpreted as outright forward prices. If false, the forward
quotes are interpreted as points i.e. as a number that must be added to the spot
price to get the outright forward price. If omitted, it defaults to true.

7.11.20 Commodity Future Conventions

A node with name CommodityFuture is used to store conventions for commodity
future contracts and options on them. These conventions are used in commodity
derivative trades and commodity curve construction to calculate contract expiry dates.
The structure of this node is shown in Listing 139.

The meanings of the various elements in this node are as follows:

• Id: The identifier for the commodity future convention. The identifier here
should match the Name that would be provided for the commodity in the trade
XML as described in Table 38.

• AnchorDay [Optional]: This node is not applicable for daily future contracts and
hence is optional. It is necessary for future contracts with a monthly cycle or
greater or if the option contracts cycle is monthly or greater. This node is used
to give a date in the future contract month to use as a base date for calculating
the expiry date. It can contain a DayOfMonth node, a CalendarDaysBefore node
or an NthWeekday node:

– The DayOfMonth This node can contain any integer in the range 1, . . . , 31
indicating the day of the month. A value of 31 will guarantee that the last
day in the month is used a base date.

– The CalendarDaysBefore This node can contain any non-negative integer.
The contract expiry date is this number of calendar days before the first
calendar day of the contract month.

– The NthWeekday This node has the elements shown in Listing 140. This
node is used to indicate a date in a given month in the form of the n-th
named weekday of that month e.g. 3rd Wednesday. The allowable values for
Nth are 1, 2, 3, 4. The Weekday node takes a weekday in the form of the first
three characters of the weekday with the first character capitalised.

– The LastWeekday [Optional]: This node is used to indicate a date in a given
month in the form of the last named weekday of that month e.g. last
Wednesday. The node takes a weekday in the form of the first three
characters of the weekday with the first character capitalised.

223

– The BusinessDaysAfter This node can contain any integer. If the number
is positive the contract expiry is the n-th business day of the contract
month. If the number is negative the contract expiry date is this number of
business days before the first calendar day of the contract month.

– The WeeklyDayOfTheWeek [Optional]: This node is used to indicate a date
in a given week in the form of the named weekday, e.g. Wednesday. This
node is mandatory for weekly contract frequencies and is not allowed with
any other frequency. The node takes a weekday in the form of the first three
characters of the weekday with the first character capitalised.

• ContractFrequency: This node indicates the frequency of the commodity future
contracts. The value here is usually Monthly or Quarterly, but allowed values
are Daily, Weekly, Monthly, Quaterly and Annual.

• Calendar: The business day trading calendar(s) applicable for the commodity
future contract.

• ExpiryCalendar [Optional]: The business day expiry calendar(s) applicable for
the commodity future contract. This calendar is used when deriving expiry
dates. If omitted, this defaults to the trading day calendar specified in the
Calendar node.

• ExpiryMonthLag [Optional]: The allowable values are any integer. This value
indicates the number of months from the month containing the expiry date to
the contract month. If 0, the commodity future contract expiry date is in the
contract month. If the value of ExpiryMonthLag is n > 0, the commodity future
contract expires in the n-th month prior to the contract month. If the value of
ExpiryMonthLag is n < 0, the commodity future contract expires in the n-th
month after the contract month. The value of ExpiryMonthLag is generally 0, 1
or 2. For example, NYMEX:CL has an ExpiryMonthLag of 1 and ICE:B has an
ExpiryMonthLag of 2. If omitted, it defaults to 0.

• OneContractMonth [Optional]: This node takes a calendar month in the form of
the first three characters of the month with the first character capitalised. The
month provided should be an arbitrary valid future contract month. It is used in
cases where the ContractFrequency is not Monthly in order to determine the
valid contract months. If omitted, it defaults to January.

• OffsetDays [Optional]: The number of business days that the expiry date is
before the base date where the base date is implied by the AnchorDay node
above. Any non-negative integer is allowed here. If omitted, this takes a default
value of zero.

• BusinessDayConvention [Optional]: The business day roll convention used to
adjust the expiry date. The allowable values are given in Table 26. If omitted, it
defaults to Preceding.

• AdjustBeforeOffset [Optional]: The allowable values are true and false. If
true, if the base date implied by the AnchorDay node above is not a good
business day according to the calendar provided in the Calendar node, this date
is adjusted before the offset specified in the OffsetDays is applied. If false, this
adjustment does not happen. If omitted, it defaults to true.

224

• IsAveraging [Optional]: The allowable values are true and false. This node
indicates if the future contract is based on the average commodity price of the
contract period. If omitted, it defaults to false.

• OptionExpiryOffset [Optional]: The number of business days that the option
expiry date is before the future expiry date. Any non-negative integer is allowed
here. If omitted, this takes a default value of zero and the expiry date of an
option on the future contract is assumed to equal the expiry date of the future
contract.

• ProhibitedExpiries [Optional]: This node can be used to specify explicit dates
which are not allowed as future contract expiry dates or as option expiry dates.
A useful example of this is the ICE Brent contract which has the following
constraint on expiry dates: If the day on which trading is due to cease would be
either: (i) the Business Day preceding Christmas Day, or (ii) the Business Day
preceding New Year’s Day, then trading shall cease on the next preceding Business
Day. Each Date node can take optional attributes. The default values of these
attributes is shown in Listing 139. The convention attribute accepts a valid
business day convention in the list Preceding, ModifiedPreceding, Following
and ModifiedFollowing. This convention indicates how the future expiry date
should be adjusted if it lands on the prohibited expiry Date. If omitted, the
default is Preceding. Both Preceding and ModifiedPreceding indicate that
the next available business day before the date is tested. Following and
ModifiedFollowing indicate that the next available business day after the date
is tested. The optionConvention attribute allows the same values and behaves
in the same way to determine how the option expiry date should be adjusted if it
lands on the prohibited expiry Date. The forFuture and forOption boolean
attributes enable the prohibited expiry to apply only for the future expiry date
or the option expiry date respectively by setting the value to false.

• OptionExpiryMonthLag [Optional]: The allowable values are any integer. This
value indicates the number of months from the month containing the option
expiry date to the month containing the expiry date. If 0, the commodity future
option contract expiry date is anchored in the same month as the commodity
future contract expiry date. If the value of OptionExpiryMonthLag is n > 0, the
commodity option future contract expires in the n-th month prior to the
commodity future contract expiry month. If the value of OptionExpiryMonthLag
is n < 0, the commodity option future contract expires in the n-th month after
the the commodity future contract expiry month. The value of
OptionExpiryMonthLag should be equal to ExpiryMonthLag when
OptionExpiryOffset is used. The OptionExpiryMonthLag is rarely used. An
example is the Crude Palm Oil contract XKLS:FCPO where the future contract
expiry is in the delivery month and the option expiry is in the month that is 2
months prior to this. In this case, OptionExpiryMonthLag is 2. If omitted,
OptionExpiryMonthLag defaults to 0.

• OptionExpiryDay [Optional]: This node can contain any integer in the range
1, . . . , 31 indicating the day of the month on which an option expiry date is
anchored. A value of 31 will guarantee that the last day in the month is used a
base date. If omitted, this is not used. Setting this field takes precedence over

225

OptionExpiryOffset.

• OptionBusinessDayConvention [Optional]: The business day convention used to
adjust the option expiry date to a good business day if OptionExpiryDay is used.

• OptionContractFrequency [Optional]: This node indicates the frequency of the
commodity future options if it differs from the frequency of the underlying future
contract. The value here is usually Monthly

• OptionNthWeekday [Optional]: This node has the elements shown in Listing 140.
This node is used to indicate a date in a given month in the form of the n-th
named weekday of that month e.g. 3rd Wednesday. The allowable values for Nth
are 1, 2, 3, 4. The Weekday node takes a weekday in the form of the first three
characters of the weekday with the first character capitalised.

• OptionBusinessDayConvention [Optional]: The business day convention used to
adjust the option expiry date to a good business day if OptionExpiryDay is used.

• OptionExpiryLastWeekdayOfMonth [Optional]: This node is used to indicate a
date in a given month in the form of the last named weekday of that month e.g.
last Wednesday. The node takes a weekday in the form of the first three
characters of the weekday with the first character capitalised.

• OptionExpiryWeeklyDayOfTheWeek [Optional]: This node is used to indicate a
date in a given week in the form of the named weekday, e.g. Wednesday. The
node takes a weekday in the form of the first three characters of the weekday
with the first character capitalised. This node is mandatory for weekly expiring
options. The node is not allowed to use with any other option contract frequency.

• OptionUnderlyingFutureConvention [Optional]: Sometimes the next contract
expiry, as specified in the convention, is not the correct option underlying. For
example the base metals options expiries on the 1st Wedenesday of the contract
month, and during the first 3 months there are daily future contracts available.
The option underlying is not the future contract which matures on the option
expiry but the one which matures on the 3rd Wednesday of the month. This field
is referencing to an commodity future convention which specifies the correct
expiry date for the underlying contract.

• FutureContinuationMappings [Optional]: When building future curves, we may
use market data that has a continuation expiry, i.e. c1, c2, etc. , as opposed to
an explicit expiry date or tenor. In some cases, the continuation expiries coming
from the market data provider may skip serial months and therefore we use the
mapping here to map from the market data provider index to the relevant serial
month.

• OptionContinuationMappings [Optional]: When building option volatility
structures, we may use market data that has a continuation expiry, i.e. c1, c2,
etc. , as opposed to an explicit expiry date or tenor. In some cases, the
continuation expiries coming from the market data provider may skip serial
months and therefore we use the mapping here to map from the market data
provider index to the relevant serial month. For example, for the Crude Palm Oil
contract XKLS:FCPO, the option expiry months are serial up to the 9th month
and then alternate months. So, we would add a mapping from 10 to 11, 11 to 13

226

and so on so that the correct option expiry is arrived at when reading the market
data quotes and constructing the option volatility structure.

• AveragingData [Optional]: This node is needed for future contracts that are
used in a piecewise commodity curve PriceSegment and whose underlying is the
average of other future prices or spot prices over a given period. An example is
the ICE PMI power contract with contract specifications outlined here. It is
described in detail below.

• HoursPerDay [Optional]: For power derivatives, quantities are sometimes given
as a quantity per hour. To deduce the quantity for the day which is multiplied by
that day’s future price, one needs to know the number of hours in the day
associated with the future price. For example ICE PDQ is the daily PJM
Western Hub Real Time Peak future contract. The price each day for this
contract is the average of the locational marginal prices (LMPs) for all hours
ending 08:00 to 23:00 Eastern Pacific Time. In other words, there are 16 hours in
the day that feed in to the average yielding this settlement price. For this
contract, HoursPerDay would be 16. This field is only needed if a trade XML
references this commodity contract, has CommodityQuantityFrequency set to
PerHour and has no HoursPerDay value set directly in the XML.

• SavingsTime [Optional]: For some derivatives, quantities are given as quantity
per calendar day and hour. The monthly quantity is then scaled by the number
of calendar days times hours per day (see above) plus or minus a daylight savings
correction. To compute the daylight savings correction a convention is needed
that describes the dates on which dates one hour is gained resp. lost. Currently
supported conventions are US, Null. Default is US if no convention is given.

• ValidContractMonths [Optional]: For some commodities the contract frequency
is almost monthly but for some calendar months there are no contracts listed. For
example Corn Futures are only listed for the expiry months March, May, July,
September and December. For those contracts the ContractFrequency need to be
set to Monthly and the valid months have to be added to this node. This node is
ignored for all other frequencies and if its omitted all calendar months are valid.

An example CommodityFuture node for the NYMEX WTI future contract, specified
here, is provided in Listing 141.

The AveragingData node referenced above has the structure shown in Listing 142.
The meaning of each of the fields is as follows:

• CommodityName: The name of the commodity being averaged.

• Conventions: The identifier for the conventions associated with the commodity
being averaged.

• Period: This indicates the averaging period relative to the future expiry date.
The allowable values are:

– PreviousMonth: The calendar month prior to the month in which the (top
level) future contract’s expiry date falls is used as the averaging period.

– ExpiryToExpiry: Given a (top level) future contract’s expiry date, the
averaging period is from and excluding the previous expiry date to and

227

https://www.theice.com/products/6590369/PJM-Western-Hub-Real-Time-Peak-1-MW-Fixed-Price-Future
https://www.cmegroup.com/trading/energy/crude-oil/light-sweet-crude_contract_specifications.html

including the expiry date.

• PricingCalendar: The pricing calendar(s) used to determine the pricing dates
in the averaging period.

• UseBusinessDays [Optional]: A boolean flag that defaults to true if omitted.
When set to true, the pricing dates in the averaging period are the set of
PricingCalendar good business days. When set to false, the pricing dates in
the averaging period are the complement of the set of PricingCalendar good
business days. This may be useful in certain situations. For example, the
contract ICE PW2 with specifications here averages the PJM Western Hub
locational marginal prices over each day in the averaging period that is a
Saturday, Sunday or NERC holiday. So, in this case, UseBusinessDays would be
false and PricingCalendar would be US-NERC.

• DeliveryRollDays [Optional]: This node allows any non-negative integer value.
When averaging a commodity future contract price over the averaging period,
the averaging period may include an underlying future contract expiry date. This
node’s value indicates when we should begin using the next future contract’s
price in the averaging. If the value is zero, we should include the future contract
prices up to and including the contract expiry. If the value is one, we should
include the contract prices up to and including the day that is one business day
before the contract expiry and then switch to using the next future contract’s
price thereafter. Similarly for other non-negative integer values. If this node is
omitted, it is set to zero.

• FutureMonthOffset [Optional]: This node allows any non-negative integer value.
If this node is omitted, it is set to zero. This node indicates which future
contract is being referenced on each Pricing Date in the averaging period by
acting as an offset from the next available expiry date. If FutureMonthOffset is
zero, the settlement price of the next available monthly contract that has not
expired with respect to the Pricing Date is used as the price on that Pricing
Date. If FutureMonthOffset is one, the settlement price of the second available
monthly contract that has not expired with respect to the Pricing Date is used
as the price on that Pricing Date. Similarly for other positive values of
FutureMonthOffset.

• DailyExpiryOffset [Optional]: This node allows any non-negative integer value.
It should only be used where the CommodityName being averaged has a daily
contract frequency. If this node is omitted, it is set to zero. This node indicates
which future contract is being referenced on each Pricing Date in the averaging
period by acting as a business day offset, using the CommodityName’s expiry
calendar, from the Pricing Date. It is useful in the base metals market where the
future contract being averaged on each Pricing Date is the cash contract on that
Pricing Date i.e. the contract with expiry date two business days after the
Pricing Date.

7.11.21 Credit Default Swap Conventions

A node with name CDS is used to store conventions for credit default swaps. The
structure of this node is shown in Listing 143.

228

https://www.theice.com/products/71090520/PJM-Western-Hub-Real-Time-Peak-2x16-Fixed-Price-Future

Listing 143: CDS conventions

<CDS>
<Id>...</Id>
<SettlementDays>...</SettlementDays>
<Calendar>...</Calendar>
<Frequency>...</Frequency>
<PaymentConvention>...</PaymentConvention>
<Rule>...</Rule>
<DayCounter>...</DayCounter>
<SettlesAccrual>...</SettlesAccrual>
<PaysAtDefaultTime>...</PaysAtDefaultTime>

</CDS>

The meanings of the various elements in this node are as follows:

• Id: The identifier for the CDS convention.

• SettlementDays: The number of days after the CDS trade date when protection
starts i.e. the Protection effective date or step-in date. Any non-negative integer
is allowed here. For standard CDS after, this is generally set to 1.

• Calendar: The calendar associated with the CDS. For non-JPY currencies, this
is generally WeekendsOnly to agree with the ISDA standard. For JPY CDS, the
ISDA standard calendar is TYO documented at
https://www.cdsmodel.com/cdsmodel. This could be set up as an additional
calendar or JPN could be used as a proxy. Allowable calendar values are given in
Table 30.

• Frequency: The frequency of fee leg payments for the CDS. The ISDA standard
is Quarterly but any valid frequency is allowed.

• PaymentConvention: The business day convention for payments on the CDS.
The ISDA standard is Following but any valid business day convention from
Table 26 is allowed.

• Rule: The date generation rule for the fee leg on the CDS. The ISDA standard is
CDS2015 but any valid date generation rule is allowed.

• DayCounter: The day counter for fee leg payments on the CDS. The ISDA
standard is A360 but any valid day counter from Table 31 is allowed.

• SettlesAccrual: A boolean value indicating if an accrued fee is due on the
occurrence of a credit event. Allowable boolean values are given in the Table 42.
In general, this is set true.

• PaysAtDefaultTime: A boolean value indicating if the accrued fee, on the
occurrence of a credit event, is payable at the credit event date or the end of the
fee period. A value of true indicates that the accrued is payable at the credit
event date and a value of false indicates that it is payable at the end of the fee
period. In general, this is set true.

229

https://www.cdsmodel.com/cdsmodel

7.11.22 Bond Yield Conventions

A node with name BondYield is used to store conventions for the conversion of bond
prices into bond yields. The structure of this node is shown in Listing 144.

Listing 144: Bond yield conventions

<BondYield>
<Id>CMB-DE-BUND-10Y</Id>
<Compounding>Compounded</Compounding>
<Frequency>Annual</Frequency>
<PriceType>Clean</PriceType>
<Accuracy>1.0e-8</Accuracy>
<MaxEvaluations>100</MaxEvaluations>
<Guess>0.05</Guess>

</BondYield>

The meaning of the elements is as follows:

• Id: The constant maturity index index name. This must be of the form
“CMB-FAMILY-TENOR” where FAMILY can consist of any number of tags
separated by “-”

• Compounding: Compounding of the yield - Simple, Compounded, Continuous,
SimpleThenCompounded

• Frequency: Frequency of the cash flows - Annual, Semiannual, Quarterly,
Monthly etc.

• PriceType: Dirty or Clean

• Accuracy/MaxEvaluations/Guess: QuantLib parameters that control the
convergence of the numerical price to yield conversion.

230

Listing 139: Commodity future conventions

<CommodityFuture>
<Id>...</Id>
<AnchorDay>
...

</AnchorDay>
<ContractFrequency>...</ContractFrequency>
<Calendar>...</Calendar>
<ExpiryCalendar>...</ExpiryCalendar>
<ExpiryMonthLag>...</ExpiryMonthLag>
<OneContractMonth>...</OneContractMonth>
<OffsetDays>...</OffsetDays>
<BusinessDayConvention>...</BusinessDayConvention>
<AdjustBeforeOffset>...</AdjustBeforeOffset>
<IsAveraging>...</IsAveraging>
<OptionExpiryOffset>...</OptionExpiryOffset>
<ProhibitedExpiries>
<Dates>
<Date forFuture="true" convention="Preceding" forOption="true"

optionConvention="Preceding">...</Date>↪→

...
</Dates>

</ProhibitedExpiries>
<OptionExpiryMonthLag>...</OptionExpiryMonthLag>
<OptionExpiryDay>...</OptionExpiryDay>
<OptionContractFrequency>...</OptionContractFrequency>
<OptionNthWeekday>
<Nth>...</Nth>
<Weekday>...</Weekday>

</OptionNthWeekday>
<OptionExpiryLastWeekdayOfMonth>...</OptionExpiryLastWeekdayOfMonth>
<OptionExpiryWeeklyDayOfTheWeek>...</OptionExpiryWeeklyDayOfTheWeek>
<OptionBusinessDayConvention>...</OptionBusinessDayConvention>
<FutureContinuationMappings>
<ContinuationMapping>
<From>...</From>
<To>...</To>

</ContinuationMapping>
...

</FutureContinuationMappings>
<OptionContinuationMappings>
<ContinuationMapping>
<From>...</From>
<To>...</To>

</ContinuationMapping>
...

</OptionContinuationMappings>
<AveragingData>
...

</AveragingData>
<HoursPerDay>...</HoursPerDay>
<SavingsTime>...<SavingsTime>
<ValidContractMonths>

<Month>...</Month>
</ValidContractMonths>
<OptionUnderlyingFutureConvention>...</OptionUnderlyingFutureConvention>

</CommodityFuture>

231

Listing 140: NthWeekday node outline

<NthWeekday>
<Nth>...</Nth>
<Weekday>...</Weekday>

</NthWeekday>

Listing 141: NYMEX WTI CommodityFuture node

<CommodityFuture>
<Id>NYMEX:CL</Id>
<AnchorDay>
<DayOfMonth>25</DayOfMonth>

</AnchorDay>
<ContractFrequency>Monthly</ContractFrequency>
<Calendar>US-NYSE</Calendar>
<ExpiryMonthLag>1</ExpiryMonthLag>
<OffsetDays>3</OffsetDays>
<BusinessDayConvention>Preceding</BusinessDayConvention>
<IsAveraging>false</IsAveraging>

</CommodityFuture>

Listing 142: AveragingData node structure

<AveragingData>
<CommodityName>...</CommodityName>
<Conventions>...</Conventions>
<Period>...</Period>
<PricingCalendar>...</PricingCalendar>
<UseBusinessDays>...</UseBusinessDays>
<DeliveryRollDays>...</DeliveryRollDays>
<FutureMonthOffset>...</FutureMonthOffset>
<DailyExpiryOffset>...</DailyExpiryOffset>

</AveragingData>

232

8 Trade Data
The trades that make up the portfolio are specified in an XML file where the portfolio
data is specified in a hierarchy of nodes and sub-nodes. The nodes containing
individual trade data are referred to as elements or XML elements. These are generally
the lowest level nodes.

The top level portfolio node is delimited by an opening <Portfolio> and a closing
</Portfolio> tag. Within the portfolio node, each trade is defined by a starting
<Trade id="[Tradeid]"> and a closing </Trade> tag. Further, the trade type is set
by the TradeType XML element. Each trade has an Envelope node that includes the
same XML elements for all trade types (Id, Type, Counterparty, Rating, NettingSetId)
plus the Additional fields node, and after that, a node containing trade specific data.

An example of a portfolio.xml file with one Swap trade including the full envelope
node is shown in Listing 145.

Listing 145: Portfolio

<Portfolio>
<Trade id="Swap#1">
<TradeType> Swap </TradeType>
<Envelope>
<CounterParty> Counterparty#1 </CounterParty>
<NettingSetId> NettingSet#2 </NettingSetId>
<PortfolioIds>

<PortfoliodId> PF#1 </PortfolioId>
<PortfoliodId> PF#2 </PortfolioId>

</PortfolioIds>
<AdditionalFields>
<Sector> SectorA </Sector>
<Book> BookB </Book>
<Rating> A1 </Rating>

</AdditionalFields>
</Envelope>
<SwapData>

...
[Trade specific data for a Swap]
...

</SwapData>
</Trade>

</Portfolio>

A description of all portfolio data, i.e. of each node and XML element in the portfolio
file, with examples and allowable values follows below. There is only one XML
elements directly under the top level Portfolio node:

• TradeType: ORE currently supports 14 trade types.

Allowable values: ForwardRateAgreement, Swap, CapFloor, Swaption,
FxForward, FxSwap, FxOption, EquityForward, EquityOption, VarianceSwap,
CommodityForward, CommodityOption, CreditDefaultSwap, Bond

233

8.1 Envelope

The envelope node contains basic identifying details of a trade (Id, Type,
Counterparty, NettingSetId), a PortfolioIds node containing a list of portfolio
assignments, plus an AdditionalFields node where custom elements can be added for
informational purposes such as Book or Sector. Beside the custom elements within the
AdditionalFields node, the envelope contains the same elements for all Trade types.
The Id, Type, Counterparty and NettingSetId elements must have non-blank entries
for ORE to run. The meanings and allowable values of the various elements in the
Envelope node follow below.

• Id: The Id element in the envelope is used to identify trades within a portfolio.
It should be set to identical values as the Trade id=" " element.

Allowable values: Any alphanumeric string. The underscore (_) sign may be
used as well.

• Counterparty: Specifies the name of the counterparty of the trade. It is used to
show exposure analytics by counterparty.

Allowable values: Any alphanumeric string. Underscores (_) and blank spaces
may be used as well.

• NettingSetId [Optional]: The NettingSetId element specifies the identifier for
a netting set. If a NettingSetId is specified, the trade is eligible for close-out
netting under the terms of an associated ISDA agreement. The specified
NettingSetId must be defined within the netting set definitions file (see section
9). If left blank or omitted the trade will not belong to any netting set, and thus
not be eligible for netting.

Allowable values: Any alphanumeric string. Underscores (_) and blank spaces
may be used as well.

• PortfolioIds [Optional]: The PortfolioIds node allows the assignment of a given
trade to several portfolios, each enclosed in its own pair of tags <PortfolioId>
and </PortfolioId> . Note that ORE does not assume a hierarchical
organisation of such portfolios. If present, the portfolio IDs will be used in the
generation of some ORE reports such as the VaR report which provides
breakdown by any portfolio id that occurs in the trades’ envelopes.

Allowable values for each PortfolioId: Any string.

• AdditionalFields [Optional]: The AdditionalFields node allows the insertion of
additional trade information using custom XML elements. For example, elements
such as Sector, Desk or Folder can be used. The elements within the
AdditionalFields node are used for informational purposes only, and do not
affect any analytics in ORE.

Allowable values: Any custom element.

8.1.1 Netting Set Details

Instead of a single netting set ID, defined by a NettingSetId node, an alternative
NettingSetDetails node can be provided, which itself contains a NettingSetId

234

sub-node, and four other optional sub-nodes, which altogether allow for extending the
uniqueness of netting sets beyond the netting set ID. The allowable values for each
sub-node are any alphanumeric string. The underscore (‘_’) sign may be used as well.

The NettingSetDetails node is given in the following XML format:

Listing 146: Netting set details

<NettingSetDetails>
<NettingSetId> </NettingSetId>
<AgreementType> </AgreementType>
<CallType> </CallType>
<InitialMarginType> </InitialMarginType>
<LegalEntityId> </LegalEntityId>

</NettingSetDetails>

8.2 Trade Specific Data

After the envelope node, trade-specific data for each trade type supported by ORE is
included. Each trade type has its own trade data container which is defined by an XML
node containing a trade-specific configuration of individual XML tags - called elements
- and trade components. The trade components are defined by XML sub-nodes that
can be used within multiple trade data containers, i.e. by multiple trade types.

Details of trade-specific data for all trade types follow below.

8.2.1 Swap

The SwapData node is the trade data container for the Swap trade type. A Swap must
have at least one leg, and can have an unlimited number of legs. Each leg is
represented by a LegData trade component sub-node, described in section 8.3.3. An
example structure of a two-legged SwapData node is shown in Listing 147.

• Settlement [Optional]: Delivery type applicable to cross currency swaps, and
ignored for all other swap types. Delivery type does not impact pricing in ORE,
but npv results are produced with and without SIMM exemptions.

Settlement Cash indicates that principal exchanges on the cross currency swap
should be included in Initial Margin (IM). According to ISDA non-deliverable
(Cash) trades are excluded from the exemption from IM for the principal
exchange, i.e. the principal exchanges are included in IM.

Settlement Physical indicates that principal exchanges on the cross currency
swap should be excluded in IM (the ISDA exemption applies).

Allowable values: Cash or Physical. Defaults to Physical if left blank or omitted.

235

Listing 147: Swap data

<SwapData>
<Settlement>Cash</Settlement>
<LegData>
...

</LegData>
<LegData>
...

</LegData>
</SwapData>

Note that Swaps in non-deliverable currencies with payment in a deliverable currency
are supported by setting Settlement to Cash and - on both legs - using the Indexings
node (8.3.8), as well as setting the Currency to the deliverable currency, while keeping
the Notional expressed in the non-deliverable currency amount.

Within the Indexings node, an fx Index field is mandatory defining the deliverable and
non-deliverable currencies and fixing source. The Indexing node can also include
optional FixingCalendar, IsInArrears and FixingDays fields to determine the date(s) of
the fx fixing(s). See Listing 148 for an example non-deliverable IR swap where USD is
the payment currency and CLP is the non-deliverable currency.

236

Listing 148: Non deliverable single currency IR Swap

<SwapData>
<Settlement>Cash</Settlement>
<LegData>
<LegType>Fixed</LegType>
<Payer>false</Payer>
<Currency>USD</Currency><!-- Payment currency is USD rather than CLP -->
<Notionals>
<Notional>850000000</Notional><!-- in CLP -->
</Notionals>
<Indexings>
<Indexing>
<Index>FX-TR20H-CLP-USD</Index><!-- to convert CLP flows into USD -->
<FixingCalendar>CLP,USD</FixingCalendar>
<IsInArrears>true</IsInArrears>
<FixingDays>2</FixingDays>

</Indexing>
</Indexings>
...

</LegData>
<LegData>
<LegType>Floating</LegType>
<Payer>true</Payer>
<Currency>USD</Currency><!-- Payment currency is USD rather than CLP -->
<Notionals>
<Notional>850000000</Notional><!-- in CLP -->
</Notionals>
<Indexings>
<Indexing>
<Index>FX-TR20H-CLP-USD</Index><!-- to convert CLP flows into USD -->
<FixingCalendar>CLP,USD</FixingCalendar>
<IsInArrears>true</IsInArrears>
<FixingDays>2</FixingDays>

</Indexing>
</Indexings>
...

</LegData>
</SwapData>

8.2.2 Zero Coupon Swap

A Zero Coupon swap is set up as a swap (trade type Swap) , with one leg of type
ZeroCouponFixed. Listing 149 shows an example. The ZeroCouponFixed leg contains
an additional ZeroCouponFixedLegData block. See 8.3.19 for details on the
ZeroCouponFixed leg specification.

237

Listing 149: Zero Coupon Swap Data

<SwapData>
<LegData>
<LegType>Floating</LegType>
<Payer>true</Payer>
...

</LegData>
<LegData>
<LegType>ZeroCouponFixed</LegType>
<Payer>false</Payer>
...
<ZeroCouponFixedLegData>

<Rates>
<Rate>0.02</Rate>

</Rates>
<Compounding>Simple</Compounding>

</ZeroCouponFixedLegData>
</LegData>

</SwapData>

8.2.3 Cap/Floor

The CapFloorData node is the trade data container for the CapFloor trade type. It’s a
cap, floor or collar (i.e. a portfolio of a long cap and a short floor for a long position in
the collar) on a series of Ibor, SIFMA, OIS, CMS, Duration-adjusted CMS, CMS
Spread, CPI, YY coupons.

The CapFloorData node contains a LongShort sub-node which indicates whether the
cap (floor, collar) is long or short, and a LegData sub-node where the LegType can be
set to Floating, CMS, CMSSpread, DurationAdjustedCMS, CPI or YY, plus elements
for the Cap and Floor rates. An example structure with Cap rates is shown in in
Listing 150. The optional node PaymentDates in the LegData subnode is currently
only used for OIS and IBOR indices (see 8.3.3).

A CapFloorData node must have either Caps or Floors elements, or both. In the case
of both (I.e. a collar with long cap and short floor) the sequence is that Caps elements
must be above the Floors elements. Note that the Caps and Floors elements must be
outside the LegData sub-node, i.e. a CapFloor can’t have a capped or floored Floating
or CMS leg. The Payer flag in the LegData subnode is ignored for this instrument.
Notice that the signs in the definition of a collar (long cap, short floor) for the
CapFloor instruments is exactly opposite to 8.3.6.

238

Listing 150: Cap/Floor data

<CapFloorData>
<LongShort>Long</LongShort>
<LegData>
<Payer>false</Payer>
<LegType>Floating</LegType>
...

</LegData>
<Caps>
<Cap>0.05</Cap>

</Caps>
<Premiums>
<Premium>
<Amount>1000</Amount>
<Currency>EUR</Currency>
<PayDate>2021-01-27</PayDate>

</Premium>
</Premiums>

</CapFloorData>

The meanings and allowable values of the elements in the CapFloorData node follow
below.

• LongShort: This node defines the position in the cap (floor, collar) and can take
values Long or Short.

• LegData: This is a trade component sub-node outlined in section 8.3.3. Exactly
one LegData node is allowed, and the LegType element must be set to Floating
(Ibor and OIS), CMS, CMSSpread, DurationAdjustedCMS, CPI or YY.

• Caps: This node has child elements of type Cap capping the floating leg (after
applying spread if any). The first rate value corresponds to the first coupon, the
second rate value corresponds to the second coupon, etc. If the number of
coupons exceeds the number of rate values, the rate will be kept flat at the value
of last entered rate for the remaining coupons. For a fixed cap rate over all
coupons, one single rate value is sufficient. The number of entered rate values
cannot exceed the number of coupons.

Allowable values for each Cap element: Any real number. The rate is expressed
in decimal form, eg 0.05 is a rate of 5%

• Floors: This node has child elements of type Floor flooring the floating leg (after
applying spread if any). The first rate value corresponds to the first coupon, the
second rate value corresponds to the second coupon, etc. If the number of
coupons exceeds the number of rate values, the rate will be kept flat at the value
of last entered rate for the remaining coupons. For a fixed floor rate over all
coupons, one single rate value is sufficient. The number of entered rate values
cannot exceed the number of coupons.

Allowable values for each Floor element: Any real number. The rate is expressed
in decimal form, eg 0.05 is a rate of 5%

• Premiums [Optional]: Option premium amounts paid by the option buyer to the

239

option seller.

Allowable values: See section 8.3.2

8.2.4 Forward Rate Agreement

A forward rate agreement (trade type ForwardRateAgreement is set up using a
ForwardRateAgreementData block as shown in listing 151. The forward rate
agreement specific elements are:

• StartDate: A FRA expires/settles on the startDate.
Allowable values: See Date in Table 26.

• EndDate: EndDate is the date when the forward loan or deposit ends. It follows
that (EndDate - StartDate) is the tenor/term of the underlying loan or deposit.

Allowable values: See Date in Table 26.

• Currency: The currency of the FRA notional.
Allowable values: See Table 28 Currency.

• Index: The name of the interest rate index the FRA is benchmarked against.

Allowable values: An alphanumeric string of the form CCY-INDEX-TENOR.
CCY, INDEX and TENOR must be separated by dashes (-). CCY and INDEX
must be among the supported currency and index combinations. TENOR must
be an integer followed by D, W, M or Y, except for Overnight indices which do
not require a TENOR. See Table 32.

• LongShort: Specifies whether the FRA position is long (one receives the agreed
rate) or short (one pays the agreed rate).

Allowable values: Long, Short.

• Strike: The agreed forward interest rate.

Allowable values: Any real number. The strike rate is expressed in decimal form,
e.g. 0.05 is a rate of 5%.

• Notional: No accretion or amortisation, just a constant notional.
Allowable values: Any positive real number.

Listing 151: Forward Rate Agreement Data

<ForwardRateAgreementData>
<StartDate>20161028</StartDate>
<EndDate>20351028</EndDate>
<Currency>EUR</Currency>
<Index>EUR-EURIBOR-6M</Index>
<LongShort>Long</LongShort>
<Strike>0.001</Strike>
<Notional>1000000000</Notional>

</ForwardRateAgreementData>

240

8.2.5 Swaption

The SwaptionData node is the trade data container for the Swaption trade type. The
SwaptionData node has one and exactly one OptionData trade component sub-node,
and at least one LegData trade component sub-node. These trade components are
outlined in section 8.3.1 and section 8.3.3.

Supported swaption exercise styles are European and Bermudan. Swaptions of both
exercise styles can have an arbitrary number of legs, with each leg represented by a
LegData sub-node. Cross currency swaptions are not supported for either exercise
style, i.e. the Currency element must have the same value for all LegData sub-nodes of
a swaption. There must be at least one full coupon period after the exercise date for
European Swaptions, and after the last exercise date for Bermudan Swaptions. See
Table 17 for further details on requirements for swaptions.

The structure of an example SwaptionData node of a European swaption is shown in
Listing 152.

Listing 152: Swaption data

<SwaptionData>
<OptionData>

<LongShort>Long</LongShort>
<Style>European</Style>
<Settlement>Physical</Settlement>
<ExerciseDates>
<ExerciseDate>2027-03-02</ExerciseDate>

</ExerciseDates>
...
<Premiums>
<Premium>
<Amount>807000</Amount>
<Currency>GBP</Currency>
<PayDate>2021-06-15</PayDate>

</Premium>
</Premiums>

</OptionData>
<LegData>

<LegType>Fixed</LegType>
<Payer>false</Payer>
<Currency>GBP</Currency>
...

</LegData>
<LegData>

<LegType>Floating</LegType>
<Payer>true</Payer>
<Currency>GBP</Currency>
...

</LegData>
</SwaptionData>

241

A Swaption requires:
OptionData One OptionData sub-node
Style Bermudan or European
ExerciseDates European swaptions can only have one ExerciseDate

child element.
LegData At least one LegData sub-node
Currency The same currency for all LegData sub-nodes.
LegType Allowed types are Cashflow, Fixed or Floating. Float-

ing coupons can be (capped / floored) Ibor, (capped /
floored) compounded or averaged OIS, or BMA/SIFMA.
Standalone options (nakedOption = true) are not al-
lowed, neither are local OIS cap/floors.

Table 17: Requirements for Swaptions

The OptionData trade component sub-node is outlined in section 8.3.1. The relevant
fields in the OptionData node for a Swaption are:

• LongShort: The allowable values are Long or Short. Note that the payer and
receiver legs in the underlying swap are always from the perspective of the party
that is Long. E.g. for a Short swaption with a fixed leg where the Payer flag is
set to false, it means that the counterparty receives the fixed flows.

LongShort
Payer for Fixed leg
on underlying Swap

Payer for Floating leg
on underlying Swap Resulting Set Up and Flows

Long true false

The Party to the trade buys an
option to enter a swap where the
Party pays fixed and receives
floating

Short true false

The Party to the trade sells an
option to the Counterparty to enter
a swap where the Counterparty
pays fixed and receives floating

Long false true

The Party to the trade buys an
option to enter a swap where the
Party receives fixed and pays
floating

Short false true

The Party to the trade sells an
option to the Counterparty to enter
a swap where the Counterparty
receives fixed and pays floating

Table 18: Swaption set up and resulting flows

• OptionType[Optional]: This flag is optional for swaptions, and even if set, has no
impact. Whether a swaption is a payer or receiver swaption is determined by the
Payer flags on the legs of the underlying swap.

242

• Style: The exercise style of the Swaption. The allowable values are European,
Bermudan or American. Note that American exercise style isn’t supported, and
if set to American, it will behave as Bermudan exercise style.

• NoticePeriod[Optional]: The notice period defining the date (relative to the
exercise date) on which the exercise decision has to be taken. If not given the
notice period defaults to 0D, i.e. the notice date is identical to the exercise date.
Allowable values: A number followed by D, W, M, or Y

• NoticeCalendar[Optional]: The calendar used to compute the notice date from
the exercise date. If not given defaults to the NullCalendar (no holidays,
weekends are no holidays either). Allowable values: See Table 30 Calendar.

• NoticeConvention[Optional]: The roll convention used to compute the notice
date from the exercise date. Defaults to Unadjusted if not given. Allowable
values: See Table 27 Roll Convention.

• Settlement: Delivery Type. The allowable values are Cash or Physical. Note
that for TradeType CallableSwap only Physical is allowed.

• SettlementMethod[Optional]: Specifies the method to calculate the settlement
amount for Swaptions and CallableSwaps. Allowable values: PhysicalOTC,
PhysicalCleared, CollateralizedCashPrice, ParYieldCurve. Defaults to
ParYieldCurve if Settlement is Cash and defaults to PhysicalOTC if Settlement
is Physical.

PhysicalOTC = OTC traded swaptions with physical settlement
PhysicalCleared = Cleared swaptions with physical settlement
CollateralizedCashPrice = Cash settled swaptions with settlement price
calculation using zero coupon curve discounting
ParYieldCurve = Cash settled swaptions with settlement price calculation using
par yield discounting 9 10

• ExerciseFees[Optional]: This node contains child elements of type
ExerciseFee. Similar to a list of notionals (see 8.3.3) the fees can be given either

– as a list where each entry corresponds to an exercise date and the last entry
is used for all remaining exercise dates if there are more exercise dates than
exercise fee entries, or

– using the startDate attribute to specify a change in a fee from a certain
day on (w.r.t. the exercise date schedule)

Fees can either be given as an absolute amount or relative to the current notional
of the period immediately following the exercise date using the type attribute
together with specifiers Absolute resp. Percentage. If not given, the type
defaults to Absolute. Percentage fees are expressed in decimal form, e.g. 0.05 is
a fee of 5% of notional.

If a fee is given as a positive number the option holder has to pay a
corresponding amount if they exercise the option. If the fee is negative on the
other hand, the option holder receives an amount on the option exercise.

9https://www.isda.org/book/2006-isda-definitions/
10https://www.isda.org/a/TlAEE/Supplement-No-58-to-ISDA-2006-Definitions.pdf

243

Only supported for Swaptions and Callable Swaps currently.

• ExerciseFeeSettlementPeriod[Optional]: The settlement lag for exercise fee
payments. Defaults to 0D if not given. This lag is relative to the exercise date
(as opposed to the notice date). Allowable values: A number followed by D, W,
M, or Y

• ExerciseFeeSettlementCalendar[Optional]: The calendar used to compute the
exercise fee settlement date from the exercise date. If not given defaults to the
NullCalendar (no holidays, weekends are no holidays either). Allowable values:
See Table 30 Calendar.

• ExerciseFeeSettlementConvention[Optional]: The roll convention used to
compute the exercise fee settlement date from the exercise date. Defaults to
Unadjusted if not given. Allowable values: See Table 27 Roll Convention.

• An ExerciseDates node where exactly one ExerciseDate date element must be
given for European style swaptions, and for Bermudan style swaptions at least
two ExerciseDate date elements must be given.

• Premiums [Optional]: Option premium node with amounts paid by the option
buyer to the option seller.

Allowable values: See section 8.3.2

• An ExerciseData [Optional] node where one Date element must be given, and
one Price element can optionally also be given. See Listing 153

This node marks the Swaption as exercised. If the ExerciseData node is omitted
it is assumed the Swaption has not been exercised.

The effective exercise date is the next ExerciseDate in the ExerciseDates node
greater or equal the given Date in ExerciseData.

For a cash-settled Swaption, the Price given in ExerciseData represents the
cash settlement amount. It is paid according to the PaymentData node: If an
explicit list of payment dates is given, the payment takes place on the next date
following the effective exercise date. If the PaymentData is rules-based, the
payment date is derived from the effective exercise date using the given calendar,
lag and convention.

If a Swaption is cash-settled and has an ExerciseData node with a Date but no
Price, then the Swaption is considered exercised on the given date, but without
a settlement amount being paid.

Listing 153: ExerciseData to mark a Swaption or CallableSwap as exercised

<ExerciseData>
<Date>2023-09-03</Date>
<Price>112000</Price>

</ExerciseData>

• A PaymentData [Optional] node can be added which defines dates or rules-based
settlement date(s) for cash-settled Swaptions. Note that if rules-based, only

244

Exercise is allowed in the RelativeTo field for Swaptions. See PaymentData in
8.3.1

8.2.6 FX Forward

The FXForwardData node is the trade data container for the FxForward trade type.
The structure - including example values - of the FXForwardData node is shown in
Listing 154.

Listing 154: FX Forward data

<FxForwardData>
<ValueDate>2023-04-09</ValueDate>
<BoughtCurrency>EUR</BoughtCurrency>
<BoughtAmount>1000000</BoughtAmount>
<SoldCurrency>USD</SoldCurrency>
<SoldAmount>1500000</SoldAmount>
<Settlement>Physical</Settlement>
<SettlementData>
...

</SettlementData>
</FxForwardData>

The meanings and allowable values of the various elements in the FXForwardData node
follow below.

• ValueDate: The value date of the FX Forward.
Allowable values: See Date in Table 26.

• BoughtCurrency: The currency to be bought on value date.
Allowable values: See Table 28 Currency.

• BoughtAmount: The amount to be bought on value date.
Allowable values: Any positive real number.

• SoldCurrency: The currency to be sold on value date.
Allowable values: See Table 28 Currency.

• SoldAmount: The amount to be sold on value date.
Allowable values: Any positive real number.

• Settlement [Optional]: Delivery type. Note that Non-Deliverable Forwards can
be represented by Cash settlement.
Allowable values: Cash or Physical. Defaults to Physical if left blank or omitted.

• SettlementData [Optional]: This node is used to specify the settlement of the
cash flows on the value date.

A SettlementData node is shown in Listing 155, and the meanings and allowable
values of its elements follow below.

• Currency: The currency in which the FX Forward is settled. This field is only
used if settlement is Cash.
Allowable values: See Table 28 Currency. Defaults to the sold currency if left
blank or omitted.

245

• FXIndex: The FX reference index for determining the FX fixing at the value
date. This field is required if settlement is Cash and the payment date is greater
than the value date. Otherwise, it is ignored.
Allowable values: The format of the FXIndex is “FX-FixingSource-CCY1-CCY2”
as described in Table 34.

• Date [Optional]: If specified, this will be the payment date.
Allowable values: See Date in Table 26. If left blank or omitted, defaults to the
value date with some adjustments applied from the Rules sub-node.

• Rules [Optional]: If Date is left blank or omitted, this node will be used to derive
the payment date from the value date. The Rules sub-node is shown in Listing
155, and the meanings and allowable values of its elements follow below.

– PaymentLag [Optional]: The lag between the value date and the payment
date.
Allowable values: Any valid period, i.e. a non-negative whole number,
optionally followed by D (days), W (weeks), M (months), Y (years). For
cash settlement and if a FXIndex is specified defaults to the fx convention
(field “SpotDays”) if blank or omitted, otherwise to 0. If a whole number is
given and no letter, it is assumed that it is a number of D (days).

– PaymentCalendar [Optional]: The calendar to be used when applying the
payment lag.
Allowable values: See Table 30 Calendar. For cash settlement and if a
FXIndex is specified defaults to the fx convention (field “AdvanceCalendar”)
if left blank or omitted, otherwise to NullCalendar (no holidays).

– PaymentConvention [Optional]: The roll convention to be used when
applying the payment lag.
Allowable values: See Table 27 Roll Convention. For cash settlement and if
a FXIndex is specified defaults to the fx convention ((field “Convention”) if
left blank or omitted, otherwise to Unadjusted.

Note that FX Forwards also cover Precious Metals forwards, i.e. with currencies XAU,
XAG, XPT, XPD, and Cryptocurrency forwards, see supported Cryptocurrencies in
Table 28.

Listing 155: Example SettlementData node with Rules sub-node

<SettlementData>
<Currency>USD</Currency>
<FXIndex>FX-ECB-EUR-USD</FXIndex>
<Date>2020-09-03</Date>
<Rules>
<PaymentLag>2D</PaymentLag>
<PaymentCalendar>USD</PaymentCalendar>
<PaymentConvention>Following</PaymentConvention>

</Rules>
</SettlementData>

246

8.2.7 FX Average Forward

The FXAverageForwardData node is the trade data container for the
FxAverageForward trade type. The structure with example values node is shown in
Listing 156.

Listing 156: FX Average Forward data

<FxAverageForwardData>
<PaymentDate>2023-04-09</PaymentDate>
<!-- Schedule block that determines observation dates for FX averaging -->
<ObservationDates>

...
</ObservationDates>
<FixedPayer>true</FixedPayer>
<ReferenceNotional>8614</ReferenceNotional>
<ReferenceCurrency>EUR</ReferenceCurrency>
<SettlementNotional>10000</SettlementNotional>
<SettlementCurrency>USD</SettlementCurrency>
<FXIndex>FX-ECB-EUR-USD</FXIndex>
<Settlement>Cash</Settlement>

</FxAverageForwardData>

The instrument’s payoff is driven by an arithmetic average of observed FX rates,
expressed in terms of the node names:

ω × (ReferenceNotional× AverageFX− SettlementNotional)

The meanings and allowable values of the various elements in the
FXAverageForwardData node follow below.

• PaymentDate: The date of the settlement cash flow.
Allowable values: See Date in Table 26.

• ObservationDates: Schedule data that determine the observation dates that are
taken into account in the FX rate averaging. See section 8.3.4

• FixedPayer: If true, the payoff multiplier ω is set to 1, otherwise -1.
Allowable values: true, false

• ReferenceNotional: The amount to be converted into settlement currency at the
average FX rate
Allowable values: Any positive real number.

• ReferenceCurrency: The currency of the reference notional above.
Allowable values: See Table 28 Currency.

• SettlementNotional: The fixed amount to be paid or received depending on the
fixed payer flag above
Allowable values: Any positive real number.

• SettlementCurrency: The currency of the settlement notional above.
Allowable values: See Table 28 Currency.

247

• FXIndex: The FX reference index for determining the FX fixing for averaging.
Allowable values: The format of the FXIndex is “FX-FixingSource-CCY1-CCY2”
as described in Table 34. Notice that since the payoff is based on an arithmetic
average, the order of the currencies in the FX index matters: The averaging will
be done on fx rates quoted as CCY1-CCY2 (foreign-domestic).

8.2.8 FX Swap

The FXSwapData node is the trade data container for the FxSwap trade type. The
structure - including example values - of the FXSwapData node is shown in Listing 157.
It contains no sub-nodes.

Listing 157: FX Swap data

<FxSwapData>
<NearDate>2018-09-01</NearDate>
<NearBoughtCurrency>EUR</NearBoughtCurrency>
<NearBoughtAmount>1000000</NearBoughtAmount>
<NearSoldCurrency>USD</NearSoldCurrency>
<NearSoldAmount>1140000</NearSoldAmount>
<FarDate>2028-09-01</FarDate>
<FarBoughtAmount>1300000</FarBoughtAmount>
<FarSoldAmount>1000000</FarSoldAmount>
<Settlement>Cash</Settlement>

</FxSwapData>

The meanings and allowable values of the various elements in the FXSwapData node
follow below. All elements are required.

• NearDate: The date of the initial fx exchange of the FX Swap.
Allowable values: See Date in Table 26.

• NearBoughtCurrency: The currency to be bought in the initial exchange at near
date, and sold in the final exchange at far date.
Allowable values: See Table 28 Currency.

• NearBoughtAmount: The amount to be bought on near date.
Allowable values: Any positive real number.

• NearSoldCurrency: The currency to be sold in the initial fx exchange at near
date, and bought in the final exchange at far date.
Allowable values: See Table 28 Currency.

• NearSoldAmount: The amount to be sold on near date.
Allowable values: Any positive real number.

• FarDate: The date of the final fx exchange of the FX Swap.
Allowable values: Any date further into the future than NearDate. See Date in
Table 26.

• FarBoughtAmount: The amount to be bought on far date.
Allowable values: Any positive real number.

• FarSoldAmount: The amount to be sold on far date.

248

Allowable values: Any positive real number.

• Settlement [Optional]: Delivery type. Note that Non-Deliverable FX Swaps can
be represented by Cash settlement, and that deliverable FX Swaps will be
excluded from the CRIF output. Delivery type does not impact pricing in ORE.

Allowable values: Cash or Physical. Defaults to Physical if left blank or omitted.

Note that FX Swaps also cover Precious Metals swaps, i.e. with currencies XAU, XAG,
XPT, XPD, and Cryptocurrency swaps, see supported Cryptocurrencies in Table 28.

8.2.9 FX Option

The FXOptionData node is the trade data container for the FxOption trade type. FX
options with exercise styles European or American are supported. The FXOptionData
node includes one and only one OptionData trade component sub-node plus elements
specific to the FX Option. The structure of an FXOptionData node for an FX Option
is shown in Listing 158.

Listing 158: FX Option data

<FxOptionData>
<OptionData>
<LongShort>Long</LongShort>
<OptionType>Call</OptionType>
<Style>European</Style>
<Settlement>Cash</Settlement>
<PayOffAtExpiry>false</PayOffAtExpiry>
<ExerciseDates>

<ExerciseDate>2026-03-01</ExerciseDate>
</ExerciseDates>
<Premiums>
<Premium>
<Amount>10900</Amount>
<Currency>EUR</Currency>
<PayDate>2020-03-01</PayDate>

</Premium>
</Premiums>

</OptionData>
<BoughtCurrency>EUR</BoughtCurrency>
<BoughtAmount>1000000</BoughtAmount>
<SoldCurrency>USD</SoldCurrency>
<SoldAmount>1700000</SoldAmount>

</FxOptionData>

The meanings and allowable values of the elements in the FXOptionData node follow
below.

• OptionData: This is a trade component sub-node outlined in section 8.3.1. The
relevant fields in the OptionData node for an FxOption are:

– LongShort The allowable values are Long or Short.

– OptionType The allowable values are Call or Put. For option type Put,
Bought and Sold currencies/amounts are switched compared to the trade

249

data node. For example, a holder of BoughtCurrency EUR SoldCurrency
USD FX Call Option has the right to buy EUR using USD, while holder of
the Put counterpart has the right to buy USD using EUR, or equivalently
sell EUR for USD.

– Style The allowable values are European or American.

– Settlement The allowable values are Cash or Physical.

– PayOffAtExpiry [Optional] The allowable values are true for payoff at
expiry, or false for payoff at exercise (relevant for American style
FxOptions). Defaults to true if left blank or omitted.

– AutomaticExercise [Optional] The allowable values are true indicating
Automatic Exercise is applicable and false indicates that it is not. Used if
the FXOption expiry date is on the current date or in the past, and the
payment date is in the future - so that there still is an outstanding cashflow
if the FXOption was in the money on the expiry date. In this case, if
AutomaticExercise is applied, the FX fixing on the expiry date is used to
automatically determine the payoff and thus whether the option was
exercised or not. Defaults to false if left blank or omitted.

– An ExerciseDates node where exactly one ExerciseDate date element must
be given. For American style FxOptions the ExerciseDate represents the
Expiry date, i.e. they can be exercised up until this date.

– A PaymentData [Optional] node can be added which defines the settlement
date of the option payoff. See PaymentData in 8.3.1

– Premiums [Optional]: Option premium amounts paid by the option buyer to
the option seller. See section 8.3.2

See 8.3.1 for further specifications of the OptionData node.

• BoughtCurrency: The bought currency of the FX option. See OptionData above
for more details.

Allowable values: See Table 28.

• BoughtAmount: The amount in the BoughtCurrency.

Allowable values: Any positive real number.

• SoldCurrency: The sold currency of the FX option. See OptionData above for
more details.

Allowable values: See Table 28.

• SoldAmount: The amount in the SoldCurrency.

Allowable values: Any positive real number.

• FXIndex [Optional]: If the option European, has cash settlement and is subject
to Automatic Exercise, as indicated by the AutomaticExercise node under
OptionData, this node must be populated with a valid FX index. The FX index
is used to retrieve an FX rate on the expiry date that is in turn used to

250

determine the payoff on the cash settlement date. The payoff is in the
SoldCurrency i.e. the domestic currency.

Allowable values: A valid FX index from the Table 34.

Note that FX Options also cover Precious Metals Options, i.e. with currencies XAU,
XAG, XPT, XPD, and Cryptocurrency options, see supported Cryptocurrencies in
Table 28.

8.2.10 FX Asian Option

The FxAsianOptionData node is the trade data container for the FxAsianOption trade
type. The FxAsianOptionData node includes one OptionData trade component
sub-node plus elements specific to the FX Asian Option.

A FX Asian Option is a path-dependent option whose payoff depends upon the
averaged foreign exchange rate over a pre-set period of time.

The structure of an example FxAsianOptionData node for a FX Asian Option is
shown in Listing 159.

251

Listing 159: FX Asian Option data

<Trade id="FxAsianOption">
<TradeType>FxAsianOption</TradeType>
<Envelope>

<CounterParty>CPTY_A</CounterParty>
<NettingSetId>CPTY_A</NettingSetId>
<AdditionalFields />

</Envelope>
<FxAsianOptionData>

<Currency>USD</Currency>
<Quantity>100</Quantity>
<Strike>1.05</Strike>
<Underlying>

<Type>FX</Type>
<Name>ECB-EUR-USD</Name>

</Underlying>
<OptionData>

<LongShort>Long</LongShort>
<OptionType>Call</OptionType>
<PayoffType>Asian</PayoffType>
<PayoffType2>Arithmetic</PayoffType2>
<ExerciseDates>

<ExerciseDate>2020-07-15</ExerciseDate>
</ExerciseDates>

</OptionData>
<Settlement>2020-07-20</Settlement>
<ObservationDates>

<Rules>
<StartDate>2019-12-27</StartDate>
<EndDate>2020-07-06</EndDate>
<Tenor>1D</Tenor>
<Calendar>US</Calendar>
<Convention>F</Convention>
<TermConvention>F</TermConvention>
<Rule>Forward</Rule>

</Rules>
</ObservationDates>

</FxAsianOptionData>
</Trade>

In the above example, the holder of the FxAsianOption has a call option that gives the
right but not obligation to pay 105 USD (the strike) and receive 100*[the average
USDEUR FX rate during the Asian period] USD (the underlying).

If OptionType would be changed to Put, the holder of the option would have the right
to receive 105 USD (the strike) and pay 100*[the average USDEUR FX rate during the
Asian period] USD (the underlying).

The payoff is:
Payoff = Quantity ·MAX(ω · (A(0, T)−K), 0)

where:

• A(0, T): the arithmetic average FX rate over the Asian observation period from
start 0 to end T, expressed as amount of CCY2 per one unit of CCY1.

252

• K: strike FX rate, expressed as amount of CCY2 per one unit of CCY1.

• ω: 1 for a call option (ie receiving averaged FX and paying strike), -1 for a put
option

The meanings and allowable values of the elements in the FxAsianOptionData node
follow below.

• Currency: The payoff currency.
Allowable values: See Table 28 Currency.

• Quantity: The quantity of the underlying currency (CCY1). See payoff formula
above.
Allowable values: all positive real numbers

• Strike: The strike of the option, expressed as amount of CCY2 per one unit of
CCY1.
Allowable values: all positive real numbers

• Underlying: An Underlying node where Type must be set to FX and Name is the
foreign exchange currency pair (on the form SOURCE-CCY1-CCY2) including
the Currency above typically as CCY2 and another currency defined as the
underlying currency as CCY1.
Allowable values: See 8.3.29

• OptionData: This is a trade component sub-node outlined in section 8.3.1. The
relevant fields in the OptionData node for an FxAsianOption are:

– LongShort The allowable values are Long or Short.

– OptionType The allowable values are Call or Put.

– PayoffType which must be set to Asian or AverageStrike to identify a fixed
or floating strike asian payoff,

– PayoffType2 [Optional] can be optionally set to Arithmetic or Geometric
and defaults to Arithmetic if not given.

– An ExerciseDates node where exactly one ExerciseDate date element must
be given.

– A PaymentData [Optional] node can be added which defines the settlement
of the option payoff.

– A Premiums [Optional] node can be added to represent deterministic option
premia to be paid by the option holder. See section 8.3.2

• Settlement[Optional]: The settlement date.
Allowable values: See Date in Table 26. Defaults to the ExerciseDate if left blank
or omitted.

• ObservationDates: The observation dates for the asian period, given as a
rules-based or dates-based schedule, analogous to a ScheduleData node but
called ObservationDates.
Allowable values: See the definition in 8.3.4

253

8.2.11 FX Barrier Option

European exercise, American barrier.

The FxBarrierOptionData node is the trade data container for the FxBarrierOption
trade type. The barrier level of an FX Barrier Option is quoted as the amount in
SoldCurrency per unit BoughtCurrency. The FxBarrierOptionData node includes one
OptionData trade component sub-node and one BarrierData trade component
sub-node plus elements specific to the FX Barrier Option.

An FX Barrier option is a path-dependent option whose existence depends upon an
FX spot rate reaching a pre-set barrier level. Exercise is European.

This product has a continuously monitored single barrier (American Barrier style) with
a Vanilla European FX Option Underlying.

The structure of an example FxBarrierOptionData node for a FX Barrier Option is
shown in Listing 160.

Listing 160: FX Barrier Option data

<FxBarrierOptionData>
<OptionData>

<LongShort>Long</LongShort>
<!-- Bought and Sold currencies/amounts are switched for Put -->
<OptionType>Call</OptionType>
<Style>European</Style>
<Settlement>Cash</Settlement>
<ExerciseDates>
<ExerciseDate>2021-12-14</ExerciseDate>
</ExerciseDates>
...

</OptionData>
<BarrierData>
<Type>UpAndIn</Type>
<Levels>

<Level>1.2</Level>
</Levels>
<Rebate>0.0</Rebate>
</BarrierData>
<StartDate>2019-01-25</StartDate>
<Calendar>TARGET</Calendar>
<FXIndex>FX-ECB-EUR-USD</FXIndex>
<BoughtCurrency>EUR</BoughtCurrency>
<BoughtAmount>1000000</BoughtAmount>
<SoldCurrency>USD</SoldCurrency>
<SoldAmount>1100000</SoldAmount>

</FxBarrierOptionData>

The meanings and allowable values of the elements in the FxBarrierOptionData node
follow below.

• OptionData: This is a trade component sub-node outlined in section 8.3.1. The
relevant fields in the OptionData node for an FxBarrierOption are:

– LongShort The allowable values are Long or Short.

254

– OptionType The allowable values are Call or Put.
Call means that the holder of the option, upon expiry - assuming knock-in
or no knock-out - has the right to receive the BoughtAmount and pay the
SoldAmount.
Put means that the Bought and Sold currencies/amounts are switched
compared to the trade data node. For example, holder of BoughtCurrency
EUR SoldCurrency JPY FX Barrier Call Option has the right to buy EUR
using JPY, while holder of the Put counterpart has the right to buy JPY
using EUR, or equivalently sell EUR for JPY. An alternative to define the
latter option is to copy the Call option with following changes:
a) swapping BoughtCurrency with SoldCurrency, b) swapping
BoughtAmount with SoldAmount and c) inverting the barrier level (for
example changing 110 to 0.0090909). Here barrier level is quoted as amount
of EUR per unit JPY, which is not commonly seen on market and
inconsistent with the format in Call options. For these reasons, using
Put/Call flag instead is recommended.

– Style The FX Barrier Option type allows for European option exercise style
only.

– Settlement The allowable values are Cash or Physical.

– A PaymentData [Optional] node can be added which defines the settlement
of the option payoff.

– An ExerciseDates node where exactly one ExerciseDate date element must
be given.

– Premiums [Optional]: Option premium amounts paid by the option buyer to
the option seller. See section 8.3.2

• BarrierData: This is a trade component sub-node outlined in section 8.3.31.
Level specified in BarrierData should be quoted as the amount in SoldCurrency
per unit BoughtCurrency, with both currencies as defined in
FxBarrierOptionData node. Changing the option from Call to Put or vice versa
does not require switching the barrier level, i.e. the level stays quoted as
SoldCurrency per unit BoughtCurrency, regardless of Put/Call.

• StartDate [Optional]: The start date for checking if a barrier has been breached
prior to today’s date. If omitted or left blank no check is made and it is assumed
no barrier has been breached in the past. Has no impact if set to today’s date or
a date in the future.

Allowable values: See Date in Table 26.

• Calendar [Optional]: The calendar associated with the FX Index. Required if
StartDate is set to a date prior to today’s date, otherwise optional.

Allowable values: See Table 30 Calendar.

• FXIndex [Optional]: A reference to an FX Index source to check if the barrier has
been breached. Required if StartDate is set to a date prior to today’s date,
otherwise optional and can be omitted but not left blank.

255

Allowable values: The format of the FX Index is“FX-SOURCE-CCY1-CCY2” as
described in table 34.

• BoughtCurrency: The bought currency of the FX barrier option. See
OptionData above for more details.

Allowable values: See Table 28 Currency.

• BoughtAmount: The amount in the BoughtCurrency.

Allowable values: Any positive real number.

• SoldCurrency: The sold currency of the FX barrier option. See OptionData
above for more details.

Allowable values: See Table 28 Currency.

• SoldAmount: The amount in the SoldCurrency.

Allowable values: Any positive real number.

Note that FX Barrier Options also cover Precious Metals, i.e. with currencies XAU,
XAG, XPT, XPD, and Cryptocurrencies, see supported Cryptocurrencies in Table 28.

8.2.12 FX Digital Barrier Option

The FxDigitalBarrierOptionData node is the trade data container for the
FxDigitalBarrierOption trade type. The FxDigitalBarrierOptionData node includes
one OptionData trade component sub-node and one BarrierData trade component
sub-node plus elements specific to the FX Digital Barrier Option.

An FX Digital Barrier Option pays a given cash amount in domestic currency at
expiry, if the underlying fx rate has hit (or not hit) a continuously monitored barrier
(as for the FxTouchOption) and the fx rate at the expiry date is above (call) or below
(put) a given strike.

The structure of an example FxDigitalBarrierOptionData node for a FX Digital
Barrier Option is shown in Listing 161.

256

Listing 161: FX Digital Barrier Option data

<FxDigitalBarrierOptionData>
<OptionData>

<LongShort>Long</LongShort>
<OptionType>Call</OptionType>
<Style>European</Style>
<Settlement>Cash</Settlement>
<ExerciseDates>
<ExerciseDate>2021-12-14</ExerciseDate>
</ExerciseDates>
...

</OptionData>
<BarrierData>

<Type>DownAndIn</Type>
<Levels>

<Level>1.18</Level>
</Levels>

</BarrierData>
<StartDate>2019-01-25</StartDate>
<Calendar>TARGET</Calendar>
<FXIndex>FX-ECB-EUR-USD</FXIndex>
<Strike>1.1</Strike>
<PayoffAmount>100000</PayoffAmount>
<PayoffCurrency>USD</PayoffCurrency>
<ForeignCurrency>EUR</ForeignCurrency>
<DomesticCurrency>USD</DomesticCurrency>

</FxDigitalBarrierOptionData>

The meanings and allowable values of the elements in the
FxDigitalBarrierOptionData node follow below.

• OptionData: This is a trade component sub-node outlined in section 8.3.1. The
relevant fields in the OptionData node for an FxDigitalBarrierOption are:

– LongShort The allowable values are Long or Short.

– OptionType The allowable values are Call or Put. Given knock-in or no
knock-out, Call means that the digital payout will occur if the fx rate at the
expiry date is above the given strike, and Put means that the digital payout
will occur if the fx rate at the expiry date is below the given strike.

– Style The FX Digital Barrier Option type allows for European option
exercise style only.

– Settlement The allowable values are Cash or Physical.

– An ExerciseDates node where exactly one ExerciseDate date element must
be given.

– Premiums [Optional]: Option premium amounts paid by the option buyer
to the option seller.

Allowable values: See section 8.3.2

• BarrierData: This is a trade component sub-node outlined in section 8.3.31.
Level specified in BarrierData should be quoted as the amount in

257

DomesticCurrency per one unit of ForeignCurrency, with both currencies as
defined in FxDigitalBarrierOptionData node.

• StartDate[Optional]: The start date for checking if a barrier has been breached
prior to today’s date. If omitted or left blank no check is made and it is assumed
no barrier has been breached in the past. Has no impact if set to today’s date or
a date in the future. If‘StartDate’ is provided then the fixings for dates between
this date and the asof date are checked to see if the option was triggered. If no
fixing is available then we skip that date. This is to allow for backwards
compatibility.

Allowable values: See Date in Table 26.

• Calendar[Optional]: The calendar associated with the FX Index. Required if
StartDate is set to a date prior to today’s date, otherwise optional.

Allowable values: See Table 30 Calendar.

• FXIndex[Optional]: A reference to an FX Index source to check if the barrier has
been breached. Required if StartDate is set to a date prior to today’s date,
otherwise optional, and can be omitted but not left blank.

Allowable values: The format of the FX Index is“FX-SOURCE-CCY1-CCY2” as
described in table 34.

• Strike: The FX strike price, expressed as the amount in DomesticCurrency per
one unit of ForeignCurrency.

Allowable values: Any positive real number.

• PayoffAmount: The fixed payoff amount expressed in the PayoffCurrency. It is
cash-or-nothing payoff that depends on the option being in or out of the money,
and whether the barrier has been breached.

Allowable values: Any positive real number.

• PayoffCurrency[Optional]: The payoff currency of the FX digital option is the
currency of the payoff amount. Must be either the Domestic or Foreign currency
for this trade, If omitted this defaults to DomesticCurrency as defined in
FxDigitalBarrierOptionData node.

Allowable values: See Table 28 Currency.

• ForeignCurrency: The foreign currency of the FX digital barrier option is
equivalent to the bought currency.

Allowable values: See Table 28 Currency.

• DomesticCurrency: The domestic currency of the FX digital barrier option is
equivalent to the sold currency.

Allowable values: See Table 28 Currency.

Note that FX Digital Barrier Options also cover Precious Metals, i.e. with currencies
XAU, XAG, XPT, XPD, and Cryptocurrencies, see supported Cryptocurrencies in
Table 28.

258

8.2.13 FX Digital Option

The FxDigitalOptionData node is the trade data container for the FxDigitalOption
trade type. The FxDigitalOptionData node includes one OptionData trade
component sub-node plus elements specific to the FX Digital Option. The structure of
an example FxDigitalOptionData node for a FX Digital Option is shown in Listing
162.

Listing 162: FX Digital Option data

<FxDigitalOptionData>
<OptionData>

<LongShort>Long</LongShort>
<OptionType>Call</OptionType>
<Style>European</Style>
<Settlement>Cash</Settlement>
<ExerciseDates>
<ExerciseDate>2021-12-14</ExerciseDate>
</ExerciseDates>
...

</OptionData>
<Strike>1.1</Strike>
<PayoffCurrency>USD</PayoffCurrency>
<PayoffAmount>100000</PayoffAmount>
<ForeignCurrency>EUR</ForeignCurrency>
<DomesticCurrency>USD</DomesticCurrency>

</FxDigitalOptionData>

The meanings and allowable values of the elements in the FxDigitalOptionData node
follow below.

• OptionData: This is a trade component sub-node outlined in section 8.3.1. The
relevant fields in the OptionData node for an FxDigitalOption are:

– LongShort The allowable values are Long or Short.

– OptionType The allowable values are Call or Put. Call means that the
digital payout will occur if the fx rate at the expiry date is above the given
strike, and Put means that the digital payout will occur if the fx rate at the
expiry date is below the given strike.

– Style The FX Digital Option type allows for European option exercise style
only.

– Settlement The allowable values are Cash or Physical.

– An ExerciseDates node where exactly one ExerciseDate date element must
be given.

– Premiums [Optional]: Option premium amounts paid by the option buyer
to the option seller.

Allowable values: See section 8.3.2

• Strike: The FX strike price, expressed as the amount in DomesticCurrency per
one unit of ForeignCurrency.

259

Allowable values: Any positive real number.

• PayoffCurrency[Optional]: The payoff currency of the FX digital option is the
currency of the payoff amount. Must be either the Domestic or Foreign currency
for this trade, If omitted this defaults to the domestic currency.

Allowable values: See Table 28 Currency.

• PayoffAmount: The fixed payoff amount expressed in payoff currency. It is
cash-or-nothing payoff that depends on the option being in or out of the money.

Allowable values: Any positive real number.

• ForeignCurrency: The foreign currency of the FX digital option is equivalent to
the bought currency.

Allowable values: See Table 28 Currency.

• DomesticCurrency: The domestic currency of the FX digital option is equivalent
to the sold currency.

Allowable values: See Table 28 Currency.

Note that FX Digital Options also cover Precious Metals, i.e. with currencies XAU,
XAG, XPT, XPD, and Cryptocurrencies, see supported Cryptocurrencies in Table 28.

8.2.14 FX Double Barrier Option

The FxDoubleBarrierOptionData node is the trade data container for the
FxDoubleBarrierOption trade type.

An FX Double Barrier Option is a path-dependent option whose existence depends
upon an FX spot rate reaching one of the two pre-set barrier levels. Exercise is
European, and barriers are American (continuously monitored).

FX Double Barrier options can be knock-in or knock-out:

• A knock-in option is a barrier option that only comes into existence/becomes
active when the FX spot rate reaches the one of the barrier level at any point in
the option’s life. Once a barrier is knocked-in, the option will not cease to exist
until the option expires and effectively it becomes a Vanilla FX Option.

• A knock-out option starts its life active, but ceases to exist/becomes inactive, if
the one of the barriers is reached during the life of the option.

The barrier levels of an FX Double Barrier Option are quoted as the amount in
SoldCurrency per unit BoughtCurrency. The FxDoubleBarrierOptionData node
includes one OptionData trade component sub-node and one BarrierData trade
component sub-node plus elements specific to the FX Double Barrier Option. The
structure of an example FxDoubleBarrierOptionData node for a FX Double Barrier
Option is shown in Listing 163.

260

Listing 163: FX Double Barrier Option data

<FxDoubleBarrierOptionData>
<OptionData>

<LongShort>Long</LongShort>
<!-- Bought and Sold currencies/amounts are switched for Put -->
<OptionType>Call</OptionType>
<Style>European</Style>
<ExerciseDates>
<ExerciseDate>2021-12-14</ExerciseDate>
</ExerciseDates>
...

</OptionData>
<BarrierData>

<Type>KnockOut</Type> <!-- KnockOut or KnockIn -->
<Levels>

<Level>1.1</Level>
<Level>1.2</Level>

</Levels>
<Rebate>0.0</Rebate>

</BarrierData>
<StartDate>2019-01-25</StartDate>
<Calendar>TARGET</Calendar>
<FXIndex>FX-ECB-EUR-USD</FXIndex>
<BoughtCurrency>EUR</BoughtCurrency>
<BoughtAmount>1000000</BoughtAmount>
<SoldCurrency>USD</SoldCurrency>
<SoldAmount>1100000</SoldAmount>

</FxDoubleBarrierOptionData>

The meanings and allowable values of the elements in the
FxDoubleBarrierOptionData node follow below.

• OptionData: This is a trade component sub-node outlined in section 8.3.1. The
relevant fields in the OptionData node for an FxDoubleBarrierOption are:

– LongShort The allowable values are Long or Short.

– OptionType The allowable values are Call or Put.
Call means that the holder of the option, upon expiry - assuming knock-in
or no knock-out - has the right to receive the BoughtAmount and pay the
SoldAmount.
Put means that the Bought and Sold currencies/amounts are switched
compared to the trade data node. For example, holder of BoughtCurrency
EUR SoldCurrency JPY FX Double Barrier Call Option has the right to
buy EUR using JPY, while holder of the Put counterpart has the right to
buy JPY using EUR, or equivalently sell EUR for JPY. An alternative to
define the latter option is to copy the Call option with following changes:
a) swapping BoughtCurrency with SoldCurrency, b) swapping
BoughtAmount with SoldAmount and c) inverting the barrier level (for
example changing 110 to 0.0090909). Here barrier level is quoted as amount
of EUR per unit JPY, which is not commonly seen on market and
inconsistent with the format in Call options. For these reasons, using
Put/Call flag instead is recommended.

261

– Style The FX Double Barrier Option type allows for European option
exercise style only.

– Settlement The allowable values are Cash or Physical.

– A PaymentData [Optional] node can be added which defines the settlement
of the option payoff.

– An ExerciseDates node where exactly one ExerciseDate date element must
be given.

– Premiums [Optional]: Option premium amounts paid by the option buyer to
the option seller.

Allowable values: See section 8.3.2

• BarrierData: This is a trade component sub-node outlined in section 8.3.31.
Levels specified in BarrierData should be quoted as the amount in SoldCurrnecy
per unit BoughtCurrency, with both currencies as defined in
FxDoubleBarrierOptionData node. Changing the option from Call to Put or vice
versa does not require switching the barrier levels. Two levels in ascending order
should be defined in Levels. Type should be KnockOut or KnockIn.

• StartDate [Optional]: The start date for checking if a barrier has been breached
prior to today’s date. If omitted or left blank no check is made and it is assumed
no barrier has been breached in the past. Has no impact if set to today’s date or
a date in the future.

Allowable values: See Date in Table 26.

• Calendar [Optional]: The calendar associated with the FX Index. Required if
StartDate is set to a date prior to today’s date, otherwise optional.

Allowable values: See Table 30 Calendar.

• FXIndex [Optional]: A reference to an FX Index source to check if the barrier has
been breached. Required if StartDate is set to a date prior to today’s date,
otherwise optional and can be omitted but not left blank.

Allowable values: The format of the FX Index is“FX-SOURCE-CCY1-CCY2” as
described in table 34.

• BoughtCurrency: The bought currency of the FX barrier option. See
OptionData above for more details.

Allowable values: See Table 28 Currency.

• BoughtAmount: The amount in the BoughtCurrency.

Allowable values: Any positive real number.

• SoldCurrency: The sold currency of the FX barrier option. See OptionData
above for more details.

Allowable values: See Table 28 Currency.

• SoldAmount: The amount in the SoldCurrency.

262

Allowable values: Any positive real number.

8.2.15 FX Double Touch Option

The FxDoubleTouchOptionData node is the trade data container for the
FxDoubleTouchOption trade type. The FxDoubleTouchOptionData node includes one
OptionData trade component sub-node and one BarrierData trade component
sub-node plus elements specific to the FX Double Touch Option.

An FX Double Touch Option pays a given cash amount (PayoffAmount) at expiry or
at hit if the underlying fx rate has hit either of the barriers (KnockIn) resp. has not
hit any of barriers (KnockOut) using continuous monitoring between start and expiry
date. No rebates are supported.

The structure of an example FxDoubleTouchOptionData node for an FX Double
Touch Option is shown in Listing 164.

Listing 164: FX Double Touch Option data

<FxDoubleTouchOptionData>
<OptionData>

<LongShort>Long</LongShort>
<PayOffAtExpiry>true</PayOffAtExpiry>
<ExerciseDates>
<ExerciseDate>2021-12-14</ExerciseDate>
</ExerciseDates>
...

</OptionData>
<BarrierData>

...
<Type>KnockOut</Type> <!-- KnockOut or KnockIn -->
<Levels>

<Level>1.1</Level>
<Level>1.2</Level>

</Levels>
...

</BarrierData>
<ForeignCurrency>EUR</ForeignCurrency>
<DomesticCurrency>USD</DomesticCurrency>
<PayoffCurrency>USD</PayoffCurrency>
<PayoffAmount>100000</PayoffAmount>
<StartDate>2019-01-25</StartDate>
<FXIndex>FX-ECB-EUR-USD</FXIndex>
<Calendar>TARGET</Calendar>

</FxDoubleTouchOptionData>

The meanings and allowable values of the elements in the FxDoubleTouchOptionData
node follow below.

• OptionData: This is a trade component sub-node outlined in section 8.3.1. The
relevant fields in the OptionData node for an FxDoubleTouchOption are as
below. Note that the OptionType can be omitted.

– LongShort The allowable values are Long or Short.

263

– PayOffAtExpiry [Optional] true for payoff at expiry and false for payoff at
hit. Currently, for both KnockOut and KnockIn barriers, only payoff at
expiry (i.e. true) is supported. Defaults to true if left blank or omitted.

– An ExerciseDates node where exactly one ExerciseDate date element must
be given.

– PaymentData [Optional]: This defines the settlement of the option payoff.

– Premiums [Optional]: Option premium amounts paid by the option buyer to
the option seller.

Allowable values: See section 8.3.2

• BarrierData: This is a trade component sub-node outlined in section 8.3.31.
Two levels in ascending order should be defined in Levels. Type should be
KnockOut or KnockIn. Levels specified in BarrierData should be quoted as the
amount in DomesticCurrency (sold currency) per unit ForeignCurrency (bought
currency).

• ForeignCurrency: The foreign currency of the FX touch option is equivalent to
the bought currency.

Allowable values: See Table 28 Currency.

• DomesticCurrency: The domestic currency of the FX touch option is equivalent
to the sold currency.

Allowable values: See Table 28 Currency.

• PayoffCurrency: The payoff currency of the FX touch option is the currency of
the payoff amount.

Allowable values: See Table 28 Currency.

• PayoffAmount: The fixed payoff amount expressed in payoff currency. It is
cash-or-nothing payoff that depends on the option being in or out of the money,
and whether the barrier has been touched.

Allowable values: Any positive real number.

• StartDate [Optional]: The start date for checking if a barrier has been breached
prior to today’s date. If omitted or left blank no check is made and it is assumed
no barrier has been breached in the past. Has no impact if set to today’s date or
a date in the future.

Allowable values: See Date in Table 26.

• FXIndex [Optional]: A reference to an FX Index source to check if the barrier has
been breached. Required if StartDate is set to a date prior to today’s date,
otherwise optional, and can be omitted but not left blank.

Allowable values: The format of the FX Index is“FX-SOURCE-CCY1-CCY2” as
described in table 34.

• Calendar [Optional]: The calendar associated with the FX Index. Required if
StartDate is set to a date prior to today’s date, otherwise optional.

264

Allowable values: See Table 30 Calendar.

8.2.16 FX European Barrier Option

European exercise, European barrier.

The FxEuropeanBarrierOptionData node is the trade data container for the
FxEuropeanBarrierOption trade type. The barrier level of an FX European Barrier
Option is quoted as the amount in SoldCurrency per unit BoughtCurrency. The
FxEuropeanBarrierOptionData node includes one OptionData trade component
sub-node and one BarrierData trade component sub-node plus elements specific to
the FX Barrier Option.

An FX European Barrier option gives the buyer the right, but not the obligation, to
exchange a set amount of one currency for another, at a predetermined exchange rate,
at one predetermined time in the future. This right may be withdrawn depending upon
an FX spot rate reaching a predetermined barrier level at the predetermined time, the
underlying is monitored only at expiry with a single barrier (European Barrier style).

The structure of an example FxEuropeanBarrierOptionData node for a FX European
Barrier Option is shown in Listing 165.

Listing 165: FX European Barrier Option data

<FxEuropeanBarrierOptionData>
<OptionData>

<LongShort>Long</LongShort>
<!-- Bought and Sold currencies/amounts are switched for Put -->
<OptionType>Call</OptionType>
<Style>European</Style>
<Settlement>Cash</Settlement>
<ExerciseDates>
<ExerciseDate>2021-12-14</ExerciseDate>
</ExerciseDates>
...

</OptionData>
<BarrierData>
<Type>UpAndIn</Type>
<Levels>

<Level>1.2</Level>
</Levels>
<Rebate>100000</Rebate>
</BarrierData>
<BoughtCurrency>EUR</BoughtCurrency>
<BoughtAmount>1000000</BoughtAmount>
<SoldCurrency>USD</SoldCurrency>
<SoldAmount>1100000</SoldAmount>

</FxEuropeanBarrierOptionData>

The meanings and allowable values of the elements in the
FxEuropeanBarrierOptionData node follow below.

• OptionData: This is a trade component sub-node outlined in section 8.3.1. The
relevant fields in the OptionData node for an FxEuropeanBarrierOption are:

265

– LongShort The allowable values are Long or Short.

– OptionType The allowable values are Call or Put.
Call means that the holder of the option, upon expiry - assuming knock-in
or no knock-out - has the right to receive the BoughtAmount and pay the
SoldAmount.
Put means that the Bought and Sold currencies/amounts are switched
compared to the trade data node. For example, holder of BoughtCurrency
EUR SoldCurrency JPY FX European Barrier Call Option has the right to
buy EUR using JPY, while holder of the Put counterpart has the right to
buy JPY using EUR, or equivalently sell EUR for JPY. An alternative to
define the latter option is to copy the Call option with following changes:
a) swapping BoughtCurrency with SoldCurrency, b) swapping
BoughtAmount with SoldAmount and c) inverting the barrier level (for
example changing 110 to 0.0090909). Here barrier level is quoted as amount
of EUR per unit JPY, which is not commonly seen on market and
inconsistent with the format in Call options. For these reasons, using
Put/Call flag instead is recommended.

– Style The FX European Barrier Option type allows for European option
exercise style only.

– Settlement The allowable values are Cash or Physical.

– An ExerciseDates node where exactly one ExerciseDate date element must
be given.

– A PaymentData [Optional] node can be added which defines the settlement
date of the option payoff.

– Premiums [Optional]: Option premium amounts paid by the option buyer to
the option seller. See section 8.3.2

• BarrierData: This is a trade component sub-node outlined in section 8.3.31.
Level specified in BarrierData should be quoted as the amount in SoldCurrency
per unit BoughtCurrency, with both currencies as defined in
FxEuropeanBarrierOptionData node. Changing the option from Call to Put or
vice versa does not require switching the barrier level, i.e. the level stays quoted
as SoldCurrency per unit BoughtCurrency, regardless of Put/Call.

• BoughtCurrency: The bought currency of the FX barrier option. See
OptionData above for more details.

Allowable values: See Table 28 Currency.

• BoughtAmount: The amount in the BoughtCurrency.

Allowable values: Any positive real number.

• SoldCurrency: The sold currency of the FX barrier option. See OptionData
above for more details.

Allowable values: See Table 28 Currency.

• SoldAmount: The amount in the SoldCurrency.

266

Allowable values: Any positive real number.

Note that FX European Barrier Options also cover Precious Metals, i.e. with
currencies XAU, XAG, XPT, XPD, and Cryptocurrencies, see supported
Cryptocurrencies in Table 28.

8.2.17 FX KIKO Barrier Option

European exercise, American barriers.

The FXKIKOBarrierOptionData node is the trade data container for the
FxKIKOBarrierOption trade type.

An FX KIKO Barrier option is an option with both a knock-out and a knock-in barrier.
The knock-out barrier can be happen at any time (American barrier), and once the
knock-in barrier is hit the trade becomes a single (American) barrier knock-out trade.
The KIKO option can only be exercised (one time, European style) if the knock-out
barrier is never touched and the knock-in barrier is touched at least once.

The strike rate and barrier levels of an FX KIKO Barrier Option are expressed as
amount in SoldCurrency per unit BoughtCurrency.

The FXKIKOBarrierOptionData node includes one OptionData trade component
sub-node and two BarrierData trade component sub-nodes plus elements specific to
the FX KIKO Barrier Option. The structure of an example
FXKIKOBarrierOptionData node for a FX KIKO Barrier Option is shown in Listing
166.

267

Listing 166: FX KIKO Barrier Option data

<FxKIKOBarrierOptionData>
<OptionData>

<LongShort>Long</LongShort>
<!-- Bought and Sold currencies/amounts are switched for Put -->
<OptionType>Call</OptionType>
<Style>European</Style>
<Settlement>Cash</Settlement>
<ExerciseDates>
<ExerciseDate>2021-12-14</ExerciseDate>
</ExerciseDates>
...

</OptionData>
<Barriers>

<BarrierData>
<Type>UpAndIn</Type>
<Levels>

<Level>1.2</Level>
</Levels>

</BarrierData>
<BarrierData>

<Type>DownAndOut</Type>
<Levels>

<Level>1.2</Level>
</Levels>

</BarrierData>
</Barriers>
<StartDate>2019-01-25</StartDate>
<Calendar>TARGET</Calendar>
<FXIndex>FX-ECB-EUR-USD</FXIndex>
<BoughtCurrency>EUR</BoughtCurrency>
<BoughtAmount>1000000</BoughtAmount>
<SoldCurrency>USD</SoldCurrency>
<SoldAmount>1100000</SoldAmount>

</FxKIKOBarrierOptionData>

The meanings and allowable values of the elements in the FXKIKOBarrierOptionData
node follow below.

• OptionData: This is a trade component sub-node outlined in section 8.3.1. The
relevant fields in the OptionData node for an FxKIKOBarrierOption are:

– LongShort The allowable values are Long or Short.

– OptionType The allowable values are Call or Put.
Call means that the holder of the option, upon expiry - assuming knock-in
or no knock-out - has the right to receive the BoughtAmount and pay the
SoldAmount.
Put means that the Bought and Sold currencies/amounts are switched
compared to the trade data node. For example, holder of BoughtCurrency
EUR SoldCurrency JPY FX KIKO Barrier Call Option has the right to buy
EUR using JPY, while holder of the Put counterpart has the right to buy
JPY using EUR, or equivalently sell EUR for JPY. An alternative to define
the latter option is to copy the Call option with following changes:

268

a) swapping BoughtCurrency with SoldCurrency, b) swapping
BoughtAmount with SoldAmount and c) inverting the barrier level (for
example changing 110 to 0.0090909). Here barrier level is quoted as amount
of EUR per unit JPY, which is not commonly seen on market and
inconsistent with the format in Call options. For these reasons, using
Put/Call flag instead is recommended.

– Style The FX KIKO Barrier Option type allows for European option
exercise style only.

– Settlement The allowable values are Cash or Physical.

– An ExerciseDates node where exactly one ExerciseDate date element must
be given.

– Premiums [Optional]: Option premium amounts paid by the option buyer
to the option seller.

Allowable values: See section 8.3.2

• Barriers: This node contains two barrierData nodes, one must be a KnockIn
barrier (UpAndIn or DownAndIn) and the other must be a KnockOut barrier
(UpAndOut or DownAndOut).

• BarrierData: This is a trade component sub-node outlined in section 8.3.31.
FxKIKOBarrierOptions do not currently support rebates. Level specified in
BarrierData should be quoted as the amount in SoldCurrency per unit
BoughtCurrency, with both currencies as defined in FxKIKOBarrierOptionData
node. Changing the option from Call to Put or vice versa does not require
switching the barrier level, i.e. the level stays quoted as SoldCurrency per unit
BoughtCurrency, regardless of Put/Call.

• StartDate[Optional]: The start date for checking if a barrier has been breached
prior to today’s date. If omitted or left blank no check is made and it is assumed
no barrier has been breached in the past. Has no impact if set to today’s date or
a date in the future.

Allowable values: See Date in Table 26.

• Calendar[Optional]: The calendar associated with the FX Index. Required if
StartDate is set to a date prior to today’s date, otherwise optional.

Allowable values: See Table 30 Calendar.

• FXIndex[Optional]: A reference to an FX Index source to check if the barrier has
been breached. Required if StartDate is set to a date prior to today’s date,
otherwise optional and can be omitted but not left blank.

Allowable values: The format of the FX Index is“FX-SOURCE-CCY1-CCY2” as
described in table 34.

• BoughtCurrency: The bought currency of the FX barrier option. See
OptionData above for more details.

Allowable values: See Table 28 Currency.

269

• BoughtAmount: The amount in the BoughtCurrency.

Allowable values: Any positive real number.

• SoldCurrency: The sold currency of the FX barrier option. See OptionData
above for more details.

Allowable values: See Table 28 Currency.

• SoldAmount: The amount in the SoldCurrency.

Allowable values: Any positive real number.

Note that FX KIKO Options also cover Precious Metals, i.e. with currencies XAU,
XAG, XPT, XPD, and Cryptocurrencies, see supported Cryptocurrencies in Table 28.

8.2.18 FX Touch Option

The FxTouchOptionData node is the trade data container for the FxTouchOption
trade type. The FxTouchOptionData node includes one OptionData trade component
sub-node and one BarrierData trade component sub-node plus elements specific to
the FX Touch Option.

An FX Touch Option pays a given cash amount (PayoffAmount) at expiry or at hit if
the underlying fx rate has hit a barrier (UpAndIn, DownAndIn - called One Touch)
resp. has not hit a barrier (UpAndOut, DownAndOut - called No Touch) using
continuous monitoring between start and expiry date. No rebates are supported.

The structure of an example FxTouchOptionData node for an FX Touch Option is
shown in Listing 167.

Listing 167: FX Touch Option data

<FxTouchOptionData>
<OptionData>

<LongShort>Long</LongShort>
<PayOffAtExpiry>true</PayOffAtExpiry>
<ExerciseDates>
<ExerciseDate>2021-12-14</ExerciseDate>
</ExerciseDates>
...

</OptionData>
<BarrierData>
<Type>DownAndOut</Type>
<Levels>
<Level>0.009</Level>
</Levels>
</BarrierData>
<ForeignCurrency>JPY</ForeignCurrency>
<DomesticCurrency>USD</DomesticCurrency>
<PayoffCurrency>USD</PayoffCurrency>
<PayoffAmount>100000</PayoffAmount>
<StartDate>2019-01-25</StartDate>
<FXIndex>FX-TR20H-USD-JPY</FXIndex>
<Calendar>NYB,TKB</Calendar>

</FxTouchOptionData>

270

The meanings and allowable values of the elements in the FxTouchOptionData node
follow below.

• OptionData: This is a trade component sub-node outlined in section 8.3.1. The
OptionType sub-node is not required and is inferred from the BarrierData type
(i.e. Call for an Up barrier, and Put for a Down barrier). The relevant fields in
the OptionData node for an FxTouchOption are:

– LongShort The allowable values are Long or Short.

– PayOffAtExpiry [Optional] true for payoff at expiry and false for payoff at
hit. For UpAndOut and DownAndOut barrier, only payoff at expiry (true)
is supported. Defaults to true if left blank or omitted. This field is ignored
in pricing, and the option payoff will be calculated at expiry. This field only
has an impact on the description of the trade economics. The
GenericBarrierOption can also be used to ‘replicate’ the FXTouchOption
with payoff at hit if required.

– An ExerciseDates node where exactly one ExerciseDate date element
must be given.

– A PaymentData [Optional] node can be added which defines the settlement
of the option payoff. If the option is payoff at hit, (i.e. PayoffAtExpiry is
false), the option payment data must be rules-based, and the RelativeTo
sub-node of (Rules) must be set to Exercise.

– Premiums [Optional]: Option premium amounts paid by the option buyer to
the option seller.

Allowable values: See section 8.3.2

• BarrierData: This is a trade component sub-node outlined in section 8.3.31.
Level specified in BarrierData should be quoted as the amount in
DomesticCurrency (sold currency) per unit ForeignCurrency (bought currency).
Note that the level stays quoted as DomesticCurrency per unit ForeignCurrency,
regardless of barrier type.

• ForeignCurrency: The foreign (bought) currency of the FX touch option.

Allowable values: See Table 28 Currency.

• DomesticCurrency: The domestic (sold) currency of the FX touch option.

Allowable values: See Table 28 Currency.

• PayoffCurrency: The payoff currency of the FX touch option is the currency of
the payoff amount.

Allowable values: See Table 28 Currency.

• PayoffAmount: The fixed payoff amount expressed in payoff currency. It is
cash-or-nothing payoff that depends on the option being in or out of the money,
and whether the barrier has been touched.

Allowable values: Any positive real number.

271

• StartDate [Optional]: The start date for checking if a barrier has been breached
prior to today’s date. If omitted or left blank no check is made and it is assumed
no barrier has been breached in the past. Has no impact if set to today’s date or
a date in the future.

Allowable values: See Date in Table 26.

• FXIndex [Optional]: A reference to an FX Index source to check if the barrier has
been breached. Required if StartDate is set to a date prior to today’s date,
otherwise optional, and can be omitted but not left blank.

Allowable values: The format of the FX Index is“FX-SOURCE-CCY1-CCY2” as
described in table 34.

• Calendar [Optional]: The calendar associated with the FX Index. Required if
StartDate is set to a date prior to today’s date, otherwise optional.

Allowable values: See Table 30 Calendar.

Note that FX Touch Options also cover Precious Metals, i.e. with currencies XAU,
XAG, XPT, XPD, and Cryptocurrencies, see supported Cryptocurrencies in Table 28.

8.2.19 FX Variance and Volatility Swap

The FxVarianceSwapData node is the trade data container for the FxVarianceSwap
trade type. Only vanilla variance swaps are supported by this trade type - exotic
variance swaps are supported by ScriptedTrade. The structure of an example
VarianceSwapData node for an FX variance swap is shown in Listing 168.

Listing 168: Variance Swap data

<FxVarianceSwapData>
<StartDate>2018-05-10</StartDate>
<EndDate>2018-11-12</EndDate>
<Currency>EUR</Currency>
<Underlying>
<Type>FX</Type>
<Name>ECB-EUR-JPY</Name>

</Underlying>
<LongShort>Long</LongShort>
<Strike>0.05</Strike>
<Notional>200000</Notional>
<Calendar>EUR</Calendar>
<MomentType>Variance</MomentType>

</FxVarianceSwapData>

The meanings and allowable values of the elements in the FxVarianceSwapData node
below.

• StartDate: The variance swap start date.
Allowable values: See Date in Table 26.

• EndDate: The variance swap end date.
Allowable values: See Date in Table 26.

272

• Currency: The bought currency of the variance swap.
Allowable values: See Table 28 Currency.

• Name: The identifier of the underlying currency pair.
Allowable values: A string of the form SOURCE-CCY1-CCY2, where SOURCE
is the fixing source and the fixing is expressed as amount in CCY2 per one unit
of CCY1.
See Table 34. Note that FxVarianceSwap is an exception in that the ordering of
CCY1 and CCY2 must be set up as for FxIndex.

• Underlying: This node may be used as an alternative to the Name node to specify
the underlying FX. The Underlying node is described in further detail in Section
8.3.29.

• LongShort: Defines whether the trade is long in the FX variance. For the
avoidance of doubt, a long FX swap has positive value if the realised variance
exceeds the variance strike.
Allowable values: Long, Short

• Strike: The volatility strike Kvol of the variance swap quoted absolutely (i.e. not
as a percent). If the swap was struck in terms of variance, the square root of that
variance should be used here.
Allowable values: Any positive real number.

• Notional: The vega notional of the variance swap. This is the notional in terms
of volatility units (like the strike). If the swap was struck in terms of a variance
notional Nvar, the corresponding vega notional is given by
Nvol = Nvar ∗ 2 ∗ 100 ∗Kvol (where Kvol is in absolute terms).
Allowable values: Any non-negative real number.

• Calendar: The calendar determining the observation/fixing dates according to
which variance is accrued is the combination of the calendar(s) given here plus
the combined calendars of the two involved currencies.
Allowable values: See Table 30.

• MomentType[Optional]: A flag to distinguish if the swap is struck in terms of
volatility or variance. The MomentType should be set to Volatility or Variance
depending on the payoff. Note that MomentType does not necessarily need to be
equivalent to the way the Strike is quoted which is always as a Volatility.
Allowable values: Volatility or Variance. Defaults to Variance if left blank or
omitted.

Note that FX Variance and Volatility Swaps also cover Precious Metals, i.e. with
currencies XAU, XAG, XPT, XPD, and Cryptocurrencies, see supported
Cryptocurrencies in Table 28.

8.2.20 Equity Option

The EquityOptionData node is the trade data container for the EquityOption trade
type. Equity options with exercise styles European and American are supported. For a
Quanto payoff and Composite equity options, only European exercise is supported.

Quanto payoff means that the payoff Currency is different than currency the

273

underlying equity is quoted in.
Composite or "compo" equity options have a StrikeCurrency that is different than
currency the underlying equity is quoted in. (This is unrelated to the CompositeTrade
trade type.)

The EquityOptionData node includes one and only one OptionData trade component
sub-node plus elements specific to the equity option. The structure of an example
EquityOptionData node for an equity option is shown in Listing 169.

Listing 169: Equity Option data

<EquityOptionData>
<OptionData>

<LongShort>Long</LongShort>
<OptionType>Call</OptionType>
<Style>American</Style>
<Settlement>Cash</Settlement>
<PayOffAtExpiry>true</PayOffAtExpiry>
<ExerciseDates>

<ExerciseDate>2022-03-01</ExerciseDate>
</ExerciseDates>
...

</OptionData>
<Name>RIC:.SPX</Name>
<Currency>USD</Currency>
<Strike>2147.56</Strike>
<StrikeCurrency>USD</StrikeCurrency>
<Quantity>17000</Quantity>

</EquityOptionData>

The meanings and allowable values of the elements in the EquityOptionData node
follow below.

• OptionData: This is a trade component sub-node outlined in section 8.3.1 Option
Data. The relevant fields in the OptionData node for an EquityOption are:

– LongShort: The allowable values are Long or Short.

– OptionType: The allowable values are Call or Put. Call means that the
option holder has the right to buy the given quantity of the underlying
equity at the strike price. Put means that the option holder has the right to
sell the given quantity of the underlying equity at the strike price.

– Style: The allowable values are European and American. For Quanto
payoffs, i.e. if Currency and underlying equity currency are different, this
must be set to European.

– Settlement: The allowable values are Cash or Physical. If Currency and
underlying equity currency are different, i.e. Quanto payoff, this must be set
to Cash.

– PayOffAtExpiry [Optional]: The allowable values are true for payoff at
expiry, or false for payoff at exercise. This field is relevant for American
style EquityOptions, and defaults to true if left blank or omitted.

274

– An ExerciseDates node where exactly one ExerciseDate date element must
be given.

– Premiums [Optional]: Option premium amounts paid by the option buyer
to the option seller.

Allowable values: See section 8.3.2

• Name: The identifier of the underlying equity or equity index.

Allowable values: See Name for equity trades in Table 37.

• Underlying: This node may be used as an alternative to the Name node to specify
the underlying equity. This in turn defines the equity curve used for pricing. The
Underlying node is described in further detail in Section 8.3.29.

• Currency: The payment currency of the equity option.

Allowable values: See Currency and Minor Currencies in Table 26. If this is
different to the currency that the underlying equity is quoted in, then a Quanto
payoff will be applied. Using the corresponding major currency for an equity
quoted in the minor currency will not correspond to a Quanto payoff.

• Strike[Mandatory except if StrikeData node is used]: The option strike price.

Allowable values: Any positive real number.

• StrikeCurrency [Mandatory for Quanto/Compo, Optional otherwise]: The
currency that the Strike is quoted in. If the option is Quanto, then this field
must not be left blank, and must equal the currency that the underlying equity is
quoted in, up to the minor/major currency. For example, if the underlying equity
is quoted in GBP, thenStrikeCurrency must be either GBP or GBp. If the
option is a Compo option, then this field must not be left blank, and it must
equal the payment currency of the option and different to the underlying
currency.

Note:
Quanto: Payment currency and the currency the underlying equity is quoted in
differ. StrikeCurrency is in the currency the equity is quoted in.
Compo (Composite): Payment currency and the currency the underlying equity
is quoted in differ. StrikeCurrency is in the payment currency.

Allowable values: See Fiat Currencies and Minor Currencies in Table 28. Must
be the major or minor currency of the Currency field above, or in the Quanto
case it must be the major or minor currency the underlying is quoted in. If left
blank or omitted, and payment currency is the same as the equity currency, it
defaults to the Currency field (payment currency) above.

• StrikeData[Optional]: Alternatively, instead of the Strike and the
StrikeCurrency fields above a StrikeData node can be used as described in
Section 8.3.30. Note that for EquityOptions only StrikePrice is supported
within the StrikeData node, and not StrikeYield.

• Quantity: The number of units of the underlying covered by the transaction.

Allowable values: Any positive real number.

275

8.2.21 Equity Futures Option

The EquityFutureOptionData node is the trade data container for the
EquityFutureOption trade type. Equity options with exercise styles European and
American are supported. The EquityFutureOptionData node includes one and only
one OptionData trade component sub-node plus elements specific to the equity future
option. The structure of an example EquityFutureOptionData node for an equity
option is shown in Listing 170.

Listing 170: Equity Future Option data

<EquityFutureOptionData>
<OptionData>

<LongShort>Long</LongShort>
<OptionType>Call</OptionType>
<Style>American</Style>
<Settlement>Cash</Settlement>
<PayOffAtExpiry>true</PayOffAtExpiry>
<ExerciseDates>

<ExerciseDate>2022-03-01</ExerciseDate>
</ExerciseDates>
...

</OptionData>
<Name>RIC:.SPX</Name>
<Currency>USD</Currency>
<StrikeData>

<StrikePrice>
<Value>2147.56</Value>
<Currency>USD</Currency>

</StrikePrice>
</StrikeData>

<Quantity>17000</Quantity>
<FutureExpiryDate>2021-01-29</FutureExpiryDate>

</EquityFutureOptionData>

The meanings and allowable values of the elements in the EquityFutureOptionData
node follow below.

• OptionData: This is a trade component sub-node outlined in section 8.3.1 Option
Data. The relevant fields in the OptionData node for an EquityOption are:

– LongShort The allowable values are Long or Short.

– OptionType The allowable values are Call or Put. Call means that the
option holder has the right to buy the given quantity of the underlying
equity at the strike price. Put means that the option holder has the right to
sell the given quantity of the underlying equity at the strike price.

– Style The allowable value is European.

– Settlement The allowable values are Cash or Physical.

– PayOffAtExpiry [Optional] The allowable values are true for payoff at
expiry, or false for payoff at exercise. This field is relevant for American
style EquityOptions, and defaults to true if left blank or omitted.

276

– An ExerciseDates node where exactly one ExerciseDate date element must
be given.

– Premiums [Optional]: Option premium amounts paid by the option buyer
to the option seller.

Allowable values: See section 8.3.2

• Name: The identifier of the underlying equity or equity index.
Allowable values: See Name for equity trades in Table 36.

• Underlying: This node may be used as an alternative to the Name node to specify
the underlying equity. This in turn defines the equity curve used for pricing. The
Underlying node is described in further detail in Section 8.3.29.

• Currency: The currency of the equity option.
Allowable values: See Table 28.

• StrikeData: The option strike price.
Allowable values: Only supports StrikePrice as described in Section 8.3.30.

• Quantity: The number of units of the underlying covered by the transaction.
Allowable values: Any positive real number.

• FutureExpiryDate [Optional]: If IsFuturePrice is true and the underlying is a
future contract settlement price, this node allows the user to specify the expiry
date of the underlying future contract.

Allowable values: This should be a valid date as outlined in Table 26. If not
provided, it is assumed that the future contract’s expiry date is equal to the
option expiry date provided in the OptionData node.

8.2.22 Equity Forward

The EquityForwardData node is the trade data container for the EquityForward trade
type. Vanilla equity forwards are supported. The structure of an example
EquityForwardData node for an equity forward is shown in Listing 171.

Listing 171: Equity Forward data

<EquityForwardData>
<LongShort>Long</LongShort>
<Maturity>2018-06-30</Maturity>
<Name>RIC:.SPX</Name>
<Currency>USD</Currency>
<Strike>2147.56</Strike>
<StrikeCurrency>USD</StrikeCurrency>
<Quantity>17000</Quantity>

</EquityForwardData>

The meanings and allowable values of the elements in the EquityForwardData node
follow below.

• LongShort: Defines whether the underlying equity will be bought (long) or sold
(short).

277

Allowable values: Long, Short.

• Maturity: The maturity date of the forward contract, i.e. the date when the
underlying equity will be bought/sold.
Allowable values: Any date string, see Date in Table 26.

• Name: The identifier of the underlying equity or equity index.

Allowable values: See Name for equity trades in Table 36.

• Underlying: This node may be used as an alternative to the Name node to specify
the underlying equity. This in turn defines the equity curve used for pricing. The
Underlying node is described in further detail in Section 8.3.29.

• Currency: The currency of the equity forward.
Allowable values: See Fiat Currencies and Minor Currencies in Table 28.

• Strike: The agreed buy/sell price of the equity forward.
Allowable values: Any positive real number.

• StrikeCurrency: [Optional] The currency of the strike value. Defaults to
Currency field
Allowable values: See Fiat Currencies and Minor Currencies in Table 28.

• Quantity: The number of units of the underlying equity to be bought/sold.
Allowable values: Any positive real number.

8.2.23 Equity Swap

An Equity Swap uses its own trade type EquitySwap, and is set up using a
EquitySwapData node with one leg of type Equity and one more leg - called Funding
leg - that can be either Fixed or Floating. Listing 172 shows an example. The Equity
leg contains an additional EquityLegData block. See 8.3.16 for details on the Equity
leg specification.

Cross currency EquitySwaps are supported, i.e. the Equity and the Funding legs do
not need to have the same currency. However, if the Funding leg uses Indexings with
FromAssetLeg set to true to derive the notionals from the Equity leg, then the
Funding leg must use the same currency as the Equity leg.

Note that pricing for an EquitySwap is based on discounted cashflows, whereas pricing
for a TotalReturnSwap (GenericTRS) on an equity underlying uses the accrual
method. The accrual method is common practice when daily unwind rights are present
in the trade terms.

Also note that, unlike other leg types, the DayCounter field is optional for an Equity
leg, and defaults to ACT/365 if left blank or omitted. The daycount convention for
the equity leg of an equity swap does not impact pricing, only the accrued amount
(displayed in cashflows).

278

Listing 172: Equity Swap Data

<EquitySwapData>
<LegData>
<LegType>Floating</LegType>
<Payer>true</Payer>
<DayCounter>ACT/365</DayCounter>
...

</LegData>
<LegData>
<LegType>Equity</LegType>
<Payer>false</Payer>
<DayCounter>ACT/365</DayCounter>
...
<EquityLegData>
...
</EquityLegData>

</LegData>
</EquitySwapData>

If the equity swap has a resetting notional, typically the Funding leg’s notional will be
aligned with the equity leg’s notional. To achieve this, Indexings on the floating leg
can be used, see 8.3.8. In the context of equity swaps the indexings can be defined in a
simplified way by adding an Indexings node with a subnode FromAssetLeg set to true
to the Funding leg’s LegData node. The Notionals node is not required in the
Funding leg’s LegData in this case. An example is shown in listing 173.

279

Listing 173: Equity Swap Data with notional reset and FX indexing

<EquitySwapData>
<LegData>
<LegType>Floating</LegType>
<Currency>USD</Currency>
...
<!-- Notionals node is not required, set to 1 internally -->
...
<Indexings>

<!-- derive the indexing information (equity price, FX) from the Equity leg -->
<FromAssetLeg>true</FromAssetLeg>

</Indexings>
</LegData>
<LegData>
<LegType>Equity</LegType>
<Currency>USD</Currency>
...
<EquityLegData>
<Quantity>1000</Quantity>

<Underlying>
<Type>Equity</Type>
<Name>.STOXX50E</Name>
<IdentifierType>RIC</IdentifierType>
</Underlying>

<InitialPrice>2937.36</InitialPrice>
<NotionalReset>true</NotionalReset>
<FXTerms>
<EquityCurrency>EUR</EquityCurrency>
<FXIndex>FX-ECB-EUR-USD</FXIndex>

</FXTerms>
</EquityLegData>
...

</LegData>
</EquitySwapData>

8.2.24 Dividend Swap

An Dividend Swap uses its the trade type EquitySwap, shown above 8.2.23, and is set
up using a EquitySwapData node with one leg of type Equity, with ReturnType equal
to Dividend and one more leg that can be either Fixed or Floating. Listing 174 shows
an example.

An example is shown in listing 173.

280

Listing 174: Dividend Swap Data

<EquitySwapData>
<LegData>

...
</LegData>
<LegData>

<Payer>false</Payer>
<LegType>Equity</LegType>
<Currency>EUR</Currency>
<PaymentConvention>Following</PaymentConvention>
<DayCounter>A360</DayCounter>
<EquityLegData>

<ReturnType>Dividend</ReturnType>
<Underlying>
<Type>Equity</Type>
<Name>.STOXX50E</Name>
<IdentifierType>RIC</IdentifierType>
</Underlying>
<Quantity>10000</Quantity>

</EquityLegData>
<ScheduleData>

<Rules>
<StartDate>2018-12-31</StartDate>
<EndDate>2020-12-31</EndDate>
<Tenor>6M</Tenor>
<Calendar>EUR</Calendar>
<Convention>ModifiedFollowing</Convention>
<TermConvention>ModifiedFollowing</TermConvention>
<Rule>Forward</Rule>

</Rules>
</ScheduleData>

</LegData>
</EquitySwapData>

8.2.25 Equity Asian Option

The EquityAsianOptionData node is the trade data container for the
EquityAsianOption trade type. The EquityAsianOptionData node includes one
OptionData trade component sub-node plus elements specific to the Equity Asian
Option.

An Equity Asian Option is a path-dependent option whose payoff depends upon the
averaged price of an Equity underlying over a pre-set period of time.

The structure of an example EquityAsianOptionData node for an Equity Asian
Option is shown in Listing 175.

281

Listing 175: Equity Asian Option data

<Trade id="EquityAsianOption">
<TradeType>EquityAsianOption</TradeType>
<Envelope>

<CounterParty>CPTY_A</CounterParty>
<NettingSetId>CPTY_A</NettingSetId>
<AdditionalFields />

</Envelope>
<EquityAsianOptionData>

<Quantity>100</Quantity>
<Currency>USD</Currency>
<StrikeData>

<Value>3100</Value>
<Currency>USD</Currency>

</StrikeData>
<Underlying>

<Type>Equity</Type>
<Name>RIC:.SPX</Name>
<Currency>USD</Currency>

</Underlying>
<OptionData>

<LongShort>Long</LongShort>
<OptionType>Call</OptionType>
<PayoffType>Asian</PayoffType>
<PayoffType2>Arithmetic</PayoffType2>
<ExerciseDates>

<ExerciseDate>2020-07-15</ExerciseDate>
</ExerciseDates>
<Premiums> ... </Premiums>

</OptionData>
<Settlement>2020-07-20</Settlement>
<ObservationDates>

<Rules>
<StartDate>2019-12-27</StartDate>
<EndDate>2020-07-06</EndDate>
<Tenor>1D</Tenor>
<Calendar>US</Calendar>
<Convention>F</Convention>
<TermConvention>F</TermConvention>
<Rule>Forward</Rule>

</Rules>
</ObservationDates>

</EquityAsianOptionData>
</Trade>

In the above example, the holder of the EquityAsianOption has a call option that gives
the right but not obligation to pay 310,000 USD (Strike*Quantity) and receive [the
averaged equity spot price during the Asian period] USD multiplied by the Quantity.

If OptionType would be changed to Put, the holder of the option would have the right
to receive 310,000 USD (Strike*Quantity) and pay [the averaged equity spot price
during the Asian period] USD multiplied by the Quantity.

The payoff is:
Payoff = Quantity ·MAX(ω · (A(0, T)−K), 0)

282

where:

• A(0, T): the arithmetic average of underlying euqity spot price over the Asian
observation period from start 0 to end T, quoted in Currency

• K: equity strike price, quoted in Currency

• ω: 1 for a call option (ie receiving averaged equity spot price and paying strike),
-1 for a put option

The meanings and allowable values of the elements in the EquityAsianOptionData
node follow below.

• StrikeData: A node containing the strike in Value and the currency in which
both the underlying and the strike are quoted in Currency. Allowable values:
See Currency in Table 26. The strike may be any positive real number. The
currency provided in this node may be quoted as corresponding minor currency
to the underlying major currency.

• Quantity: The quantity of the underlying equities. See payoff formula above.
Allowable values: all positive real numbers

• Underlying: One (and only one) Underlying node where Type must be set to
Equity.
Allowable values: See 8.3.29. Note that the equity must be quoted in the
Currency above.

• OptionData: The relevant fields in the OptionData node for an
EquityAsianOption are the LongShort flag, the OptionType (call/put), the
PayoffType which must be set to Asian or AverageStrike to identify a fixed or
floating strike asian payoff, and the ExerciseDates node where exactly one
ExerciseDate date element must be given. PayoffType2 can be optionally set to
Arithmetic or Geometric and defaults to Arithmetic if not given. Furthermore, a
Premiums node can be added to represent deterministic option premia to be paid
by the option holder.
Allowable values: See 8.3.1 for the general structure of the option data node

• Settlement[Optional]: The settlement date.
Allowable values: See Date in Table 26. Defaults to the ExerciseDate if left blank
or omitted.

• ObservationDates: The observation dates for the asian period, given as a
rules-based or dates-based schedule, analogous to a ScheduleData node but
called ObservationDates.
Allowable values: See the definition in 8.3.4

8.2.26 Equity Barrier Option

European exercise, American barrier.

The EquityBarrierOptionData node is the trade data container for the
EquityBarrierOption trade type. The barrier level of an Equity Barrier Option should
be quoted in the currency of the underlying Equity spot price. The
EquityBarrierOptionData node includes one OptionData trade component sub-node

283

and one BarrierData trade component sub-node plus elements specific to the Equity
Barrier Option.

An Equity Barrier Option is a path-dependent option whose existence depends upon
an Equity underlying spot price reaching a pre-set barrier level. Exercise is European.

This product has a continuously monitored single barrier (American Barrier style) with
a Vanilla European Equity Option Underlying.

The structure of an example EquityBarrierOptionData node for an Equity Barrier
Option is shown in Listing 176.

Listing 176: Equity Barrier Option data

<EquityBarrierOptionData>
<OptionData>

...
</OptionData>
<BarrierData>

...
</BarrierData>
<StartDate>2019-01-25</StartDate>
<Calendar>TARGET</Calendar>
<EQIndex>EQ-RIC:.SPX</EQIndex>
<Name>RIC:.SPX</Name>
<StrikeData>

<StrikePrice>
<Value>3200.00</Value>
<Currency>USD</Currency>

</StrikePrice>
</StrikeData>
<Quantity>1000</Quantity>

</EquityBarrierOptionData>

The meanings and allowable values of the elements in the EquityBarrierOptionData
node follow below.

• OptionData: This is a trade component sub-node outlined in section 8.3.1. Note
that the Equity Barrier Option type allows for European option style only.

• BarrierData: This is a trade component sub-node outlined in section 8.3.31.
Level specified in BarrierData should be quoted in the same currency with the
underlying Equity spot price. Changing the option from Call to Put or vice versa
does not require switching the barrier level.

• StartDate[Optional]: The start date for checking if a barrier has been breached
prior to today’s date. If omitted or left blank no check is made and it is assumed
no barrier has been breached in the past. Has no impact if set to today’s date or
a date in the future.

Allowable values: See Date in Table 26.

• Calendar[Optional]: The calendar associated with the Equity Index. Required if
StartDate is set to a date prior to today’s date, otherwise optional.

Allowable values: See Table 30 Calendar.

284

• EQIndex[Optional]: A reference to an Equity Index source to check if the barrier
has been breached. Required if StartDate is set to a date prior to today’s date,
otherwise optional and can be omitted but not left blank.

Allowable values: The format of the Equity Index is“EQ-RIC:Code”.

• Underlying: This node may be used as an alternative to the Name node to specify
the underlying equity. This in turn defines the equity curve used for pricing. The
Underlying node is described in further detail in Section 8.3.29.

• StrikeData: A node containing the strike in Value and the currency in which
both the underlying and the strike are quoted in Currency. Allowable values:
Only supports StrikePrice as described in Section 8.3.30.

• Quantity: The number of units of the underlying covered by the transaction.

Allowable values: Any positive real number.

8.2.27 Equity Digital Option

The EquityDigitalOptionData node is the trade data container for the
EquityDigitalOption trade type. The EquityDigitalOptionData node includes one
OptionData trade component sub-node plus elements specific to the Equity Digital
Option. The structure of an example EquityDigitalOptionData node for an Equity
Digital Option is shown in Listing 177.

Listing 177: Equity Digital Option data

<EquityDigitalOptionData>
<OptionData>

<LongShort>Long</LongShort>
<OptionType>Call</OptionType>
<Style>European</Style>
<ExerciseDates>

<ExerciseDate>2027-02-26</ExerciseDate>
</ExerciseDates>
...

</OptionData>
<Strike>3300</Strike>
<PayoffCurrency>USD</PayoffCurrency>
<PayoffAmount>1000</PayoffAmount>
<Name>RIC:.SPX</Name>
<Quantity>1000</Quantity>

</EquityDigitalOptionData>

The meanings and allowable values of the elements in the EquityDigitalOptionData
node follow below.

• OptionData: This is a trade component sub-node outlined in section 8.3.1. The
relevant fields in the OptionData node for an EquityDigitalOption are:

– LongShort The allowable values are Long or Short.

– OptionType The allowable values are Call or Put. Call means that the
option is in the money when the underlying equity price is above the strike,

285

and Put means that the option is in the money when the underlying equity
price is below the strike.

– Style The allowable value is European. Note that the Equity Digital
Option type allows for European option style only.

– An ExerciseDates node where exactly one ExerciseDate date element must
be given.

– Premiums [Optional]: Option premium amounts paid by the option buyer
to the option seller.

Allowable values: See section 8.3.2

• Strike: The option strike price per one unit of the underlying, expressed in the
currency of the underlying equity .

Allowable values: Any positive real number.

• PayoffCurrency: The payoff currency of the Equity Digital Option is the
currency of the payoff amount. Must be consistent with the currency of the
underlying Equity spot price.

Allowable values: See Table 28 Currency.

• PayoffAmount: The fixed payoff amount per unit of underlying expressed in
payoff currency. It is cash-or-nothing payoff that depends on the option being in
or out of the money.

Allowable values: Any positive real number.

• Underlying: This node may be used as an alternative to the Name node to specify
the underlying equity. This in turn defines the equity curve used for pricing. The
Underlying node is described in further detail in Section 8.3.29.

• Quantity: The number of units of the underlying covered by the transaction.

Allowable values: Any positive real number.

8.2.28 Equity Double Barrier Option

The EquityDoubleBarrierOptionData node is the trade data container for the
EquityDoubleBarrierOption trade type.

An Equity Double Barrier Option is a path-dependent option whose existence depends
upon an Equity spot rate reaching one of the two pre-set barrier levels. Exercise is
European, and barriers are American (continuously monitored).

Equity Double Barrier options can be knock-in or knock-out:

• A knock-in option is a barrier option that only comes into existence/becomes
active when the Equity spot rate reaches the one of the barrier level at any point
in the option’s life. Once a barrier is knocked-in, the option will not cease to
exist until the option expires and effectively it becomes a Vanilla Equity Option.

• A knock-out option starts its life active, but ceases to exist/becomes inactive, if
the one of the barriers is reached during the life of the option.

286

The barrier levels of an Equity Double Barrier Option should be quoted in the
currency of the underlying Equity spot price. The EquityDoubleBarrierOptionData
node includes one OptionData trade component sub-node and one BarrierData trade
component sub-node plus elements specific to the Equity Double Barrier Option. The
structure of an example EquityDoubleBarrierOptionData node for a Equity Double
Barrier Option is shown in Listing 178.

Listing 178: Equity Double Barrier Option data

<EquityDoubleBarrierOptionData>
<OptionData>

<LongShort>Long</LongShort>
<OptionType>Call</OptionType>
<Style>European</Style>
<Settlement>Cash</Settlement>
<ExerciseDates>

<ExerciseDate>2021-01-29</ExerciseDate>
</ExerciseDates>

</OptionData>
<BarrierData>

<Type>KnockOut</Type>
<Levels>

<Level>3000.00</Level>
<Level>3500.00</Level>

</Levels>
</BarrierData>
<Name>RIC:.SPX</Name>
<Currency>USD</Currency>

<StrikeData>
<StrikePrice>

<Value>3200.00</Value>
<Currency>USD</Currency>

</StrikePrice>
</StrikeData>

<Quantity>1000</Quantity>
<StartDate>2019-12-27</StartDate>
<Calendar>US-NYSE</Calendar>
<EQIndex>EQ-RIC:.SPX</EQIndex>

</EquityDoubleBarrierOptionData>

The meanings and allowable values of the elements in the
EquityDoubleBarrierOptionData node follow below.

• OptionData: This is a trade component sub-node outlined in section 8.3.1. The
relevant fields in the OptionData node for an EquityDoubleBarrierOption are:

– LongShort The allowable values are Long or Short.

– OptionType The allowable values are Call or Put.

– Style The Equity Double Barrier Option type allows for European option
exercise style only.

– Settlement The allowable values are Cash or Physical.

287

– An ExerciseDates node where exactly one ExerciseDate date element
must be given.

– Optional PremiumAmount, PremiumCurrency, and PremiumPayDate fields to
specify the Equity Double Barrier Option premium.

• BarrierData: This is a trade component sub-node outlined in section 8.3.31. Two
levels in ascending order should be defined in Levels. Type should be KnockOut
or KnockIn.

Allowable values: See Table 30 Calendar.

• Underlying: This node may be used as an alternative to the Name node to specify
the underlying equity. This in turn defines the equity curve used for pricing. The
Underlying node is described in further detail in Section 8.3.29.

• Currency: The currency of the equity option.

Allowable values: See Table 28 Currency.

• StrikeData: A node containing the strike in Value and the currency in which
both the underlying and the strike are quoted in Currency. Allowable values:
Only supports StrikePrice as described in Section 8.3.30.

• Quantity: The number of units of the underlying covered by the transaction.

Allowable values: Any positive real number.

• StartDate [Optional]: The start date for checking if a barrier has been breached
prior to today’s date. If omitted or left blank no check is made and it is assumed
no barrier has been breached in the past. Has no impact if set to today’s date or
a date in the future.

Allowable values: See Date in Table 26.

• Calendar [Optional]: The calendar associated with the Equity Index. Required if
StartDate is set to a date prior to today’s date, otherwise optional.

• EQIndex [Optional]: A reference to an Equity Index source to check if the barrier
has been breached. Required if StartDate is set to a date prior to today’s date,
otherwise optional and can be omitted but not left blank.

Allowable values: The format of the Equity Index is“EQ-RIC:Code”.

8.2.29 Equity Double Touch Option

The EquityDoubleTouchOptionData node is the trade data container for the
EquityDoubleTouchOption trade type. The EquityDoubleTouchOptionData node
includes one OptionData trade component sub-node and one BarrierData trade
component sub-node plus elements specific to the Equity Double Touch Option.

An Equity Double Touch Option pays a given cash amount (PayoffAmount) at expiry
or at hit if the underlying equity price or index has hit either of the barriers (KnockIn)
resp. has not hit any of barriers (KnockOut) using continuous monitoring between
start and expiry date. No rebates are supported.

288

The structure of an example EquityDoubleTouchOptionData node for an Equity
Double Touch Option is shown in Listing 179.

Listing 179: Equity Double Touch Option data

<EquityDoubleTouchOptionData>
<OptionData>

<LongShort>Long</LongShort>
<PayOffAtExpiry>true</PayOffAtExpiry>
<ExerciseDates>
<ExerciseDate>2021-12-14</ExerciseDate>
</ExerciseDates>
...

</OptionData>
<BarrierData>

...
<Type>KnockIn</Type> <!-- KnockOut or KnockIn -->
<Levels>

<Level>3000</Level>
<Level>4500</Level>

</Levels>
...

</BarrierData>
<PayoffCurrency>USD</PayoffCurrency>
<PayoffAmount>1000000</PayoffAmount>
<Name>RIC:.SPX</Name>
<StartDate>2021-03-01</StartDate>
<Calendar>USD</Calendar>
<EQIndex>EQ-RIC:.SPX</EQIndex>

</EquityDoubleTouchOptionData>

The meanings and allowable values of the elements in the
EquityDoubleTouchOptionData node follow below.

• OptionData: This is a trade component sub-node outlined in section 8.3.1. The
relevant fields in the OptionData node for an EquityDoubleTouchOption are as
below. Note that the OptionType can be omitted.

– LongShort The allowable values are Long or Short.

– PayOffAtExpiry [Optional] true for payoff at expiry and false for payoff at
hit. Currently, for both KnockOut and KnockIn barriers, only payoff at
expiry (i.e. true) is supported. Defaults to true if left blank or omitted.

– An ExerciseDates node where exactly one ExerciseDate date element must
be given.

– Premiums [Optional]: Option premium amounts paid by the option buyer
to the option seller.

Allowable values: See section 8.3.2

• BarrierData: This is a trade component sub-node outlined in section 8.3.31. Two
levels in ascending order should be defined in Levels. Type should be KnockOut
or KnockIn. Levels specified in BarrierData should be quoted in the same
currency as the underlying Equity spot prices.

289

• PayoffCurrency: The payoff currency of the Equity Double Touch Option is the
currency of the payoff amount. Must be consistent with the currency of the
underlying Equity spot prices.

Allowable values: See Table 28 Currency.

• PayoffAmount: The fixed payoff amount expressed in payoff currency. It is
cash-or-nothing payoff that depends on the option being in or out of the money,
and whether the barrier has been touched.

Allowable values: Any positive real number.

• Underlying: This node may be used as an alternative to the Name node to specify
the underlying equity. This in turn defines the equity curve used for pricing. The
Underlying node is described in further detail in Section 8.3.29.

• StartDate[Optional]: The start date for checking if a barrier has been breached
prior to today’s date. If omitted or left blank no check is made and it is assumed
no barrier has been breached in the past. Has no impact if set to today’s date or
a date in the future.

Allowable values: See Date in Table 26.

• Calendar[Optional]: The calendar associated with the Equity Index. Required if
StartDate is set to a date prior to today’s date, otherwise optional.

Allowable values: See Table 30 Calendar.

• EQIndex[Optional]: A reference to an Equity Index source to check if the barrier
has been breached. Required if StartDate is set to a date prior to today’s date,
otherwise optional and can be omitted but not left blank.

Allowable values: The format of the Equity Index is“EQ-RICCode”.

8.2.30 Equity European Barrier Option

European exercise, European barrier.

The EquityEuropeanBarrierOptionData node is the trade data container for the
EquityEuropeanBarrierOption trade type. The barrier level of an Equity European
Barrier Option is quoted in the currency of the underlying Equity spot price. The
EquityEuropeanBarrierOptionData node includes one OptionData trade component
sub-node and one BarrierData trade component sub-node plus elements specific to
the Equity European Barrier Option.

An Equity European Barrier Option gives the buyer the right, but not the obligation,
to buy a set number of shares of a single name equity or an equity index, at a
predetermined strike price, at one predetermined time in the future. This right may be
withdrawn depending upon an Eqity spot price or index reaching a predetermined
barrier level at the predetermined time, the underlying is monitored only at expiry
with a single barrier (European Barrier style).

The structure of an example EquityEuropeanBarrierOptionData node for an Equity
European Barrier Option is shown in Listing 180.

290

Listing 180: Equity European Barrier Option data

<EquityEuropeanBarrierOptionData>
<OptionData>

...
</OptionData>
<BarrierData>

...
</BarrierData>
<Name>RIC:.SPX</Name>
<StrikeData>

<StrikePrice>
<Value>3200.00</Value>
<Currency>USD</Currency>

</StrikePrice>
</StrikeData>
<Quantity>1000</Quantity>>

</EquityEuropeanBarrierOptionData>

The meanings and allowable values of the elements in the
EquityEuropeanBarrierOptionData node follow below.

• OptionData: This is a trade component sub-node outlined in section 8.3.1. Note
that the Equity European Barrier Option type allows for European option style
only.

• BarrierData: This is a trade component sub-node outlined in section 8.3.31.
Level specified in BarrierData should be quoted in the same currency with the
underlying Equity spot price. Changing the option from Call to Put or vice versa
does not require switching the barrier level.

• Underlying: This node may be used as an alternative to the Name node to specify
the underlying equity. This in turn defines the equity curve used for pricing. The
Underlying node is described in further detail in Section 8.3.29.

• StrikeData: A node containing the strike in Value and the currency in which
both the underlying and the strike are quoted in Currency. Allowable values:
Only supports StrikePrice as described in Section 8.3.30.

• Quantity: The number of units of the underlying covered by the transaction.

Allowable values: Any positive real number.

8.2.31 Equity Touch Option

The EquityTouchOptionData node is the trade data container for the
EquityTouchOption trade type. The EquityTouchOptionData node includes one
OptionData trade component sub-node and one BarrierData trade component
sub-node plus elements specific to the Equity Touch Option.

An Equity Touch Option pays a given cash amount (PayoffAmount) at expiry or at hit
if the underlying equity price or index has hit a barrier (UpAndIn, DownAndIn) resp.
has not hit a barrier (UpAndOut, DownAndOut) using continuous monitoring between
start and expiry date. No rebates are supported.

291

The structure of an example EquityTouchOptionData node for an Equity Touch
Option is shown in Listing 181.

Listing 181: Equity Touch Option data

<EquityTouchOptionData>
<OptionData>

<LongShort>Long</LongShort>
<PayOffAtExpiry>true</PayOffAtExpiry>
<Settlement>Cash</Settlement>
<ExerciseDates>
<ExerciseDate>2022-03-01</ExerciseDate>
</ExerciseDates>
...

</OptionData>
<BarrierData>

<Type>UpAndIn</Type>
<Levels>

<Level>3300</Level>
</Levels>

</BarrierData>
<PayoffCurrency>USD</PayoffCurrency>
<PayoffAmount>1000000</PayoffAmount>
<Name>RIC:.SPX</Name>
<StartDate>2019-12-27</StartDate>
<Calendar>US-NYSE</Calendar>
<EQIndex>EQ-RIC:.SPX</EQIndex>>

</EquityTouchOptionData>

The meanings and allowable values of the elements in the EquityTouchOptionData
node follow below.

• OptionData: This is a trade component sub-node outlined in section 8.3.1. The
OptionType sub-node is not required and is inferred from the BarrierData type
(i.e. Call for an Up barrier, and Put for a Down barrier). The relevant fields in
the OptionData node for an EquityTouchOption are:

– LongShort The allowable values are Long or Short.

– PayOffAtExpiry [Optional] true for payoff at expiry and false for payoff at
hit. For UpAndOut and DownAndOut barriers, only payoff at expiry (i.e.
true) is supported. Defaults to true if left blank or omitted.

– Settlement The allowable values are Cash or Physical.

– An ExerciseDates node where exactly one ExerciseDate date element must
be given.

– Premiums [Optional]: Option premium amounts paid by the option buyer
to the option seller.

Allowable values: See section 8.3.2

• BarrierData: This is a trade component sub-node outlined in section 8.3.31.
Level specified in BarrierData should be quoted in the same currency as the
underlying Equity spot price.

292

• PayoffCurrency: The payoff currency of the Equity Touch Option is the currency
of the payoff amount. Must be consistent with the currency of the underlying
Equity spot price.

Allowable values: See Currency in Table 26.

• PayoffAmount: The fixed payoff amount expressed in payoff currency. It is
cash-or-nothing payoff that depends on the option being in or out of the money,
and whether the barrier has been touched.

Allowable values: Any positive real number.

• Underlying: This node may be used as an alternative to the Name node to specify
the underlying equity. This in turn defines the equity curve used for pricing. The
Underlying node is described in further detail in Section 8.3.29.

• StartDate[Optional]: The start date for checking if a barrier has been breached
prior to today’s date. If omitted or left blank no check is made and it is assumed
no barrier has been breached in the past. Has no impact if set to today’s date or
a date in the future.

Allowable values: See Date in Table 26.

• Calendar[Optional]: The calendar associated with the Equity Index. Required if
StartDate is set to a date prior to today’s date, otherwise optional.

Allowable values: See Table 30 Calendar.

• EQIndex[Optional]: A reference to an Equity Index source to check if the barrier
has been breached. Required if StartDate is set to a date prior to today’s date,
otherwise optional and can be omitted but not left blank.

Allowable values: The format of the Equity Index is“EQ-RICCode”.

8.2.32 Equity Variance Swap

The EqutiyVarianceSwapData node is the trade data container for the
EquityVarianceSwap trade type. Only vanilla variance swaps are supported. The
structure of an example EqutiyVarianceSwapData node for an equity variance swap is
shown in Listing 182.

293

Listing 182: Variance Swap data

<EquityVarianceSwapData>
<StartDate>2016-01-29</StartDate>
<EndDate>2016-05-05</EndDate>
<Currency>USD</Currency>
<Underlying>
<Type>Equity</Type>
<Name>.SPX</Name>
<IdentifierType>RIC</IdentifierType>

</Underlying>
<LongShort>Long</LongShort>
<Strike>0.20</Strike>
<Notional>50000</Notional>
<Calendar>US</Calendar>
<MomentType>Variance</MomentType>
<AddPastDividends>true</AddPastDividends>

</EqutiyVarianceSwapData>

The meanings and allowable values of the elements in the EquityVarianceSwapData
node below.

• StartDate: The variance swap start date.
Allowable values: See Date in Table 26.

• EndDate: The variance swap end date.
Allowable values: See Date in Table 26.

• Currency: The bought currency of the variance swap.
Allowable values: See Currency in Table 26.

• Name: The identifier of the underlying equity or equity index.
Allowable values: See Name for equity trades in Table 36.

• Underlying: This node may be used as an alternative to the Name node to specify
the underlying equity. This in turn defines the equity curve used for pricing. The
Underlying node is described in further detail in Section 8.3.29.

• LongShort: Defines whether the trade is long in the equity variance. For the
avoidance of doubt, a long variance swap has positive value if the realised
variance exceeds the variance strike.
Allowable values: Long, Short

• Strike: The volatility strike Kvol of the variance swap quoted absolutely (i.e. not
as a percent). If the swap was struck in terms of variance, the square root of that
variance should be used here.
Allowable values: Any positive real number.

• Notional: The vega notional of the variance swap. This is the notional in terms
of volatility units (like the strike). If the swap was struck in terms of a variance
notional Nvar, the corresponding vega notional is given by
Nvol = Nvar ∗ 2 ∗ 100 ∗Kvol (where Kvol is in absolute terms).
Allowable values: Any non-negative real number.

294

• Calendar: The calendar determining the observation/fixing dates according to
which variance is accrued is the combination of the calendar(s) given here plus
the calendar associated with the equity in the equity curve configuration. If no
such calendar is given in the equity curve configuration the standard calendar for
the equity currency (also defined in the curve config) is used instead.
Allowable values: See Table 30.

• MomentType[Optional]: A flag to distinguish if the swap is struck in terms of
volatility or variance. The MomentType should be set to Volatility or Variance
depending on the payoff. Note that MomentType does not necessarily need to be
equivalent to the way the Strike is quoted which is always as a Volatility.
Allowable values: Volatility or Variance. Defaults to Variance if left blank or
omitted.

• AddPastDividends[Optional]: A flag to distinguish if past dividend payments
should be added to the fixings when calculating accrued variance.
Allowable values: true or false. Defaults to false if left blank or omitted.

8.2.33 Equity Cliquet Option

The EquityCliquetOptionData node is the trade data container for the
EquityCliquetOption trade type. A cliquet option consists of a series of consecutive
forward starting equity options, with each option being struck at a given moneyness
(commonly at-the-money) when it becomes active.

The payoff is:

N ·min

(
capg,max

(
floorg,

n∑
i=1

δ ·min
(
capl,max

(
floorl, Sti/Sti−1

−M
))))

where

• Sti : Price of the underlying at time tt.

• capg: Global Cap.

• floorg: Global Floor.

• capl: Local Cap.

• floorl: Local Floor.

• δ: 1 for Call, -1 for Put option.

• M : Moneyness.

• n: Number of valuation dates.

• N : Notional

The structure of an example EquityCliquetOptionData node for an equity cliquet
option is shown in Listing 183.

295

Listing 183: Cliquet Option data

<EquityCliquetOptionData>
<Underlying>
<Type>Equity</Type>
<Name>.SPX</Name>
<IdentifierType>RIC</IdentifierType>

</Underlying>
<Currency>USD</Currency>
<Notional>1000000.0</Notional>
<LongShort>Short</LongShort>
<OptionType>Call</OptionType>
<Moneyness>1.0</Moneyness>
<LocalCap>0.07</LocalCap>
<LocalFloor></LocalFloor>
<GlobalCap></GlobalCap>
<GlobalFloor>-0.07</GlobalFloor>
<ScheduleData>

<Dates>
<Dates>

<Date>20171231</Date>
<Date>20181231</Date>
<Date>20191231</Date>
<Date>20201231</Date>
<Date>20211231</Date>
<Date>20221231</Date>

</Dates>
<Calendar>USD</Calendar>
<Convention>F</Convention>

</Dates>
</ScheduleData>
<SettlementDays>5</SettlementDays>
<Premium>0.027</Premium>
<PremiumPaymentDate>31-12-2017</PremiumPaymentDate>
<PremiumCurrency>USD</PremiumCurrency>

</EquityCliquetOptionData>

The meanings and allowable values of the elements in the CliquetOptionData node
below.

• Name: The identifier of the underlying equity or equity index.
Allowable values: See Name for equity trades in Table 36.

• Underlying: This node may be used as an alternative to the Name node to specify
the underlying equity. This in turn defines the equity curve used for pricing. The
Underlying node is described in further detail in Section 8.3.29.

• Currency: The currency of the notional, and thus of the option.
Allowable values: See Currency in Table 26. The Currency must be the same as
the currency of the underlying equity.

• Notional: The notional of the cliquet option.
Allowable values: Any positive real number.

• LongShort: Defines whether the trade is long or short the option.
Allowable values: Long, Short

296

• OptionType: The type of the option.
Allowable values: Call, Put

• Moneyness: Adjustment of option return. The moneyness M each forward
starting option is being struck at.
Allowable values: Any real number. Expressed in decimal form where 1.0 is
at-the-money, 1.1 is 110% of the at-the-money strike, 0.9 is 90% of the
at-the-money strike, etc.

• LocalCap[Optional]: The local cap, capl, in each of the option return.
Allowable values: Any real number. If left blank or omitted, no local cap is
applied.

• LocalFloor[Optional]: The local floor, floorl, in each of the option return.
Allowable values: Any real number. If left blank or omitted, no local floor is
applied.

• GlobalCap[Optional]: The global cap, capg, for the option return.
Allowable values: Any real number. If left blank or omitted, no global cap is
applied.

• GlobalFloor[Optional]: The global floor,floorg, for the option return.
Allowable values: Any real number. If left blank or omitted, no global floor is
applied.

• ScheduleData: A schedule of dates that define the valuation dates of the
consecutive forward starting options forming the Equity Cliquet Option. The
first date in the schedule is the start date of the first consecutive option, the
second date in the schedule is the end/valuation date of the first consecutive
option, and also the start date of the second consecutive option, etc. The last
date is the final valuation date, with payoff of the whole Cliquet option at this
date plus SettlementDays.
Allowable values: A node on the same form as ScheduleData, (see 8.3.4).

• SettlementDays[Optional]: Number of days from the last valuation date to the
payoff being paid or received. The payoff date is determined with regards to
calendar and term date convention of the schedule’s calendar.
Allowable values: Any positive integer. Defaults to zero if left blank or omitted.

• Premium[Optional]: The premium paid for the option.
Allowable values: Any real number. Expressed in decimal form relative to
notional.

• PremiumPaymentDate[Optional]: The date the premium is the paid.
Allowable values: See Date in Table 26. Note that if a Premium is specified, a
PremiumPaymentDate must also be specified.

• PremiumCurrency[Optional]: The currency the premium is to paid in.
Allowable values: See Currency in Table 26. Defaults to the currency of the
notional.

297

8.2.34 Equity Position

An equity position represents a position in a single equity - using a single Underlying
node, or in a weighted basket of underlying equities - using multiple Underlying nodes.

An Equity Position can be used both as a stand alone trade type (TradeType:
EquityPosition) or as a trade component (EquityPositionData) used within the
TotalReturnSwap (Generic TRS) trade type, to set up for example Equity Basket
trades.

It is set up using an EquityPositionData block as shown in listing 184. The meanings
and allowable values of the elements in the block are as follows:

• Quantity: The number of shares or units of the weighted basket held.
Allowable values: Any positive real number

• Underlying: One or more underlying descriptions. If a basket of equities is
defined, the Weight field should be populated for each underlyings. The weighted
basket price is then given by

Basket-Price = Quantity×
∑
i

Weighti × Si × FXi

where

– Si is the price of the ith share in the basket

– FXi is the FX Spot converting from the ith equity currency to the first
equity currency which is by definition the currency in which the npv of the
basket is expressed.

Allowable values: See 8.3.29 for the definition of an underlying. Only equity
underlyings are allowed.

298

Listing 184: Equity position data

<Trade id="EquityPosition">
<TradeType>EquityPosition</TradeType>
<Envelope>...</Envelope>
<EquityPositionData>
<Quantity>1000</Quantity>
<Underlying>
<Type>Equity</Type>
<Name>BE0003565737</Name>
<Weight>0.5</Weight>
<IdentifierType>ISIN</IdentifierType>
<Currency>EUR</Currency>
<Exchange>XFRA</Exchange>

</Underlying>
<Underlying>
<Type>Equity</Type>
<Name>GB00BH4HKS39</Name>
<Weight>0.5</Weight>
<IdentifierType>ISIN</IdentifierType>
<Currency>GBP</Currency>
<Exchange>XLON</Exchange>

</Underlying>
</EquityPositionData>

</Trade>

8.2.35 Equity Option Position

An equity option position represents a position in a single equity option - using a
single Underlying node, or in a weighted basket of underlying equity options - using
multiple Underlying nodes.

An Equity Option Position can be used both as a stand alone trade type (TradeType:
EquityOptionPosition) or as a trade component (EquityOptionPositionData) used
within the TotalReturnSwap (Generic TRS) trade type, to set up for example Equity
Option Basket trades.

It is set up using an EquityOptionPositionData block as shown in listing 185. The
meanings and allowable values of the elements in the block are as follows:

• Quantity: The number of options written on one underlying share resp. the
number of units of the option basket held.
Allowable values: Any positive real number

• Underlying: One or more underlying descriptions, each comprising an
Underlying block, an Optiondata block and a Strike element, in that order:

– Underlying: an underlying description, see 8.3.29, only equity underlying
are allowed

– OptionData: the option description, see 8.3.1, the relevant / allowed data is

∗ LongShort: the type of the position,long and Short positions are
allowed. Note that negative weights are allowed. A long position with a
negative weight results in a short position, and a short position with a
negative weight results in a long position.

299

∗ OptionType: Call or Put

∗ Style: European or American

∗ Settlement: Cash or Physical

∗ ExerciseDates: exactly one exercise must be given representing the
European exercise date or the last American exercise date

– Strike: the strike of the option. Allowable values are non-negative real
numbers.

If a basket of equities is defined, the Weight field should be populated for each
underlying. The weighted basket price is then given by

Basket-Price = Quantity×
∑
i

Weighti × pi × FXi

where

• pi is the price of the ith option in the basket, written on one underlying share

• FXi is the FX Spot converting from the ith equity currency to the first equity
currency which is by definition the currency in which the npv of the basket is
expressed.

300

Listing 185: Equity Option position data

<Trade id="EquityOptionPositionTrade">
<TradeType>EquityOptionPosition</TradeType>
<EquityOptionPositionData>

<!-- basket price = quantity x sum_i (weight_i x equityOptionPrice_i x fx_i) -->
<Quantity>1000</Quantity>
<!-- option #1 -->
<Underlying>
<Underlying>
<Type>Equity</Type>
<Name>.SPX</Name>
<Weight>0.5</Weight>
<IdentifierType>RIC</IdentifierType>

</Underlying>
<OptionData>
<LongShort>Long</LongShort>
<OptionType>Call</OptionType>
<Style>European</Style>
<Settlement>Cash</Settlement>
<ExerciseDates>
<ExerciseDate>2021-01-29</ExerciseDate>

</ExerciseDates>
</OptionData>
<Strike>3300</Strike>

</Underlying>
<!-- option #2 -->
<Underlying>
<Underlying>
<Type>Equity</Type>
<Name>.SPX</Name>
<Weight>0.5</Weight>
<IdentifierType>RIC</IdentifierType>

</Underlying>
<OptionData>
<LongShort>Long</LongShort>
<OptionType>Call</OptionType>
<Style>European</Style>
<Settlement>Cash</Settlement>
<ExerciseDates>
<ExerciseDate>2021-01-29</ExerciseDate>

</ExerciseDates>
</OptionData>
<Strike>3400</Strike>

</Underlying>
<!-- option #3 -->
<!-- ... -->

</EquityOptionPositionData>
</Trade>

8.2.36 CPI Swap

A CPI swap can be set up as a swap with trade type Swap, with one leg of type CPI.
Listing 186 shows an example. The CPI leg contains an additional CPILegData block.
See 8.3.17 for details on the CPI leg specification.

301

Listing 186: CPI Swap Data (using Swap trade type)

<SwapData>
<LegData>
<LegType>Floating</LegType>
<Payer>true</Payer>
...

</LegData>
<LegData>
<LegType>CPI</LegType>
<Payer>false</Payer>
...
<CPILegData>
...
</CPILegData>

</LegData>
</SwapData>

Alternatively, a CPI swap can be set up using the InflationSwap trade type, see Listing
187. The structure of the InflationSwapData container is the same as for SwapData
above.

Listing 187: CPI Swap Data (using InflationSwap trade type)

<InflationSwapData>
<LegData>
<LegType>Floating</LegType>
<Payer>true</Payer>
...

</LegData>
<LegData>
<LegType>CPI</LegType>
<Payer>false</Payer>
...
<CPILegData>
...
</CPILegData>

</LegData>
</InflationSwapData>

8.2.37 Year on Year Inflation Swap

A Year on Year inflation swap can be set up with trade type Swap, with one leg of
type YY. Listing 188 shows an example. The YY leg contains an additional YYLegData
block. See 8.3.18 for details on the YY leg specification.

302

Listing 188: Year on Year Swap Data (using Swap trade type)

<SwapData>
<LegData>
<LegType>Floating</LegType>
<Payer>true</Payer>
...

</LegData>
<LegData>
<LegType>YY</LegType>
<Payer>false</Payer>
...
<YYLegData>
...
</YYLegData>

</LegData>
</SwapData>

Alternatively, a Year on Year inflation swap can be set up using the InflationSwap
trade type, see Listing 189. The structure of the InflationSwapData container is the
same as for SwapData above.

Listing 189: Year on Year Swap Data (using InflationSwap trade type)

<InflationSwapData>
<LegData>
<LegType>Floating</LegType>
<Payer>true</Payer>
...

</LegData>
<LegData>
<LegType>YY</LegType>
<Payer>false</Payer>
...
<YYLegData>
...
</YYLegData>

</LegData>
</InflationSwapData>

8.2.38 Bond

A Bond is set up using a BondData block, and can be both a stand-alone instrument
with trade type Bond, or a trade component used by multiple bond derivative
instruments.

A Bond can be set up in a short version referencing an underlying bond static, or in a
long version where the underlying bond details are specified explicitly, including a full
LegData block. The short version is shown in listing 190. The details of the bond are
read from the reference data in this case using the SecurityId as a key. The bond trade
is fully specified by

• SecurityId: The id identifying the bond.

303

Allowable Values: A valid bond identifier, typically the ISIN of the reference
bond with the ISIN: prefix, e.g.: ISIN:XXNNNNNNNNNN

• BondNotional: The notional of the position in the reference bond, expressed in
the currency of the bond.

Allowable Values: Any non-negative real number

• CreditRisk [Optional] Boolean flag indicating whether to show Credit Risk on
the Bond product. If set to false, the product class will not be set to Credit, and
there will be no credit sensitivities. However, if the underlying bond reference is
set up without a CreditCurveId - typically for some highly rated government
bonds - the CreditRisk flag will have no impact on the product class and no
credit sensitivities will be shown even if CreditRisk is set to true.

Allowable Values: true or false Defaults to true if left blank or omitted.

in this case.

Listing 190: Bond Data

<BondData>
<SecurityId>ISIN:XS0982710740</SecurityId>
<BondNotional>100000000.0</BondNotional>
<CreditRisk>true</CreditRisk>

</BondData>

For the long version, the bond details are inlined in the trade as shown in listing 191.
The bond specific elements are

• IssuerId [Optional]: A text description of the issuer of the bond. This is for
informational purposes and not used for pricing.

Allowable values: Any string. If left blank or omitted, the bond will not have any
issuer description.

• CreditCurveId [Optional]: The unique identifier of the bond. This is used for
pricing, and is required for bonds for which a credit - related margin component
should be generated, and otherwise left blank. If left blank, the bond (and any
bond derivatives using the bond as a trade component) will be plain IR rather
than a IR/CR.

Allowable values: A valid bond identifier, typically the ISIN of the reference
bond with the ISIN: prefix, e.g.: ISIN:XXNNNNNNNNNN

• SecurityId: The unique identifier of the bond. This defines the security specific
spread to be used for pricing.

Allowable values: A valid bond identifier, typically the ISIN of the reference
bond with the ISIN: prefix, e.g.: ISIN:XXNNNNNNNNNN

• ReferenceCurveId: The benchmark curve to be used for pricing. This is typically
the main ibor index for the currency of the bond, and if no ibor index is available
for the currency in question, a currency-specific benchmark curve can be used.

304

Allowable values: For currencies with available ibor indices:
An alphanumeric string of the form [CCY]-[INDEX]-[TERM]. CCY, INDEX and
TERM must be separated by dashes (-). CCY and INDEX must be among the
supported currency and index combinations. TERM must be an integer followed
by D, W, M or Y. See Table 32.

For currencies without available ibor indices:
An alphanumeric string of the form [CCY]BENCHMARK-[CCY]-TERM,
matching a benchmark curve set up in the market data configuration.

Examples: IDRBENCHMARK-IDR-3M, EGPBENCHMARK-EGP-3M,
UAHBENCHMARK-UAH-3M, NGNBENCHMARK-NGN-3M

• SettlementDays: The settlement lag in number of business days applicable to the
security.

Allowable values: A non-negative integer.

• Calendar: The calendar associated to the settlement lag.

Allowable values: See Table 30 Calendar.

• IssueDate: The issue date of the security.

See Date in Table 26.

• PriceQuoteMethod [Optional]: The quote method of the bond. Bond price
quotes and historical bond prices (stored as “fixings”) follow this method. Also,
the initial price for bond total return swaps follows this method. Defaults to
PerentageOfPar.

Allowable values: PercentageOfPar or CurrencyPerUnit

• PriceQuoteBaseValue [Optional]: The base value for quote method =
CurrencyPerUnit. Bond price quotes, historical bond prices stored as fixings and
initial prices in bond total return swaps are divided by this value. Defaults to 1.0.

Allowable values: Any real number.

A LegData block then defines the cashflow structure of the bond, this can be of type
fixed, floating etc. Note that a LegData block should only be included in the long
version.

305

Listing 191: Bond Data

<BondData>
<IssuerId>Ineos Group Holdings SA</IssuerId>
<CreditCurveId>ISIN:XS0982710740</CreditCurveId>
<SecurityId>ISIN:XS0982710740</SecurityId>
<ReferenceCurveId>EUR-EURIBOR-6M</ReferenceCurveId>
<SettlementDays>2</SettlementDays>
<Calendar>TARGET</Calendar>
<IssueDate>20160203</IssueDate>
<PriceQuoteMethod>PercentageOfPar</PriceQuoteMethod>
<PriceQuoteBaseValue>1.0</PriceQuoteBaseValue>
<LegData>

<LegType>Fixed</LegType>
<Payer>false</Payer>
...

</LegData>
</BondData>

The bond trade type supports perpetual schedules, i.e. perpetual bonds can be
represented by omitting the EndDate in the leg data schedule definition. Only rule
based schedules can be used to indicate perpetual schedules.

8.2.39 Bond Position

A bond position represents a position in a weighted basket of underlying bonds.

A bond position can be used both as a stand alone trade type (TradeType:
BondPosition) or as a trade component (BondBasketData) used within the
TotalReturnSwap (Generic TRS) trade type.

It is set up using an BondBasketData block as shown in listing 192. The meanings and
allowable values of the elements in the block are as follows:

• Quantity: The number of units of the weighted basket held.
Allowable values: Any positive real number

• Identifier: The identifier of the weighted basket. The Underlying data can be
retrieved from the reference data via this identifier, if not given in the trade itself.

• Underlying[Optional]: One or more underlying descriptions. If bond basket data
is set up in the reference data for the given identifier, the underlying data will be
populated from there and does not need to be provided in the trade.
Allowable values: See 8.3.29 for the definition of an underlying. Only bond
underlyings are allowed.

306

Listing 192: Bond position data

<Trade id="BondPosition">
<TradeType>BondPosition</TradeType>
<Envelope>...</Envelope>
<BondBasketData>
<Quantity>1000</Quantity>
<Identifier>ISIN:GB00B4KT9Q30</Identifier>
<Underlying>
<Type>Bond</Type>
<Name>US69007TAB08</Name>
<IdentifierType>ISIN</IdentifierType>
<Weight>0.5</Weight>
<BidAskAdjustment>-0.0025</BidAskAdjustment>

</Underlying>
<Underlying>
<Type>Bond</Type>
<Name>US750236AW16</Name>
<IdentifierType>ISIN</IdentifierType>
<Weight>0.5</Weight>
<BidAskAdjustment>-0.005</BidAskAdjustment>

</Underlying>
</BondBasketData>

</Trade>

8.2.40 Forward Bond

A Forward Bond (or Bond Forward) is a contract that establishes an agreement to buy
or sell (determined by LongInForward) an underlying bond at a future point in time
(the ForwardMaturityDate) at an agreed price (the settlement Amount).

A T-Lock is a Forward Bond with a US Treasury Bond as underlying, whereas a
J-Lock is a Forward Bond with a Japanese Government Bond as underlying. T-Locks
can be specified in terms of a lock-in yield rather then a settlement amount. The cash
settlement amount is given by (bond yield at maturity - lock rate) x DV01 in this case.

Listing 193 shows an example for a physically settled forward bond. Listing 194 shows
an example for a cash settled T-Lock transaction specified by a lock-in yield.

A Forward Bond is set up using a ForwardBondData block as shown below and the
trade type is ForwardBond. The specific elements are

• BondData: A BondData block specifying the underlying bond as described in
section 8.2.38. A long position must be taken in the bond, i.e. (Payer) flag must
be set to (true). The bond data block contains an additional field for forward
bonds

– IncomeCurveId: The benchmark curve to be used for compounding, this
must match a name of a curve in the yield curves or index curve block in
todaysmarket.xml. It is optional to provide this curve. If left out the
market reference yield curve from todaysmarket.xml is used for
compounding.

• SettlementData: The entity defining the terms of settlement:

– ForwardMaturityDate: The date of maturity of the forward contract.

307

Allowable values: See Date in Table 26.

– Settlement [Optional]: Cash or Physical. Option, defaults to Physcial,
except in case the settlement is defined by LockRate, in which case it
defaults to Cash.
Allowable values: Cash, Physical

– Amount [Optional]: The settlement amount (also called strike) transferred
at forward maturity in return for the bond (physical delivery) or a cash
amount equal to the dirty price of the bond (cash settlement). This is
transferred from the party that is long to the party that is short
(determined by LongInForward) and cannot be a negative amount. It is
assumed to be in the same currency as the underlying bond. Exactly one of
the fields Amount, LockRate must be given.
Allowable values: Any non-negative real number.

– LockRate [Optional]: The payoff is given by (yield at forward maturity -
LockRate) x DV01 (LongInForward = true). Exactly one of the fields
Amount, LockRate must be given. In case the LockRate is given, the
Settlement must be set to Cash. If Settlement is not given, it defaults to
Cash in this case.
Allowable values: Any non-negative real number.

– LockRateDayCounter [Optional]: The day counter w.r.t. which the lock
rate is expressed. Optional, defaults to A360.
Allowable values: see table 31

– SettlementDirty [Optional]: A flag that determines whether the settlement
amount (Amount) reflects a clean (false) or dirty (true) price. In either case,
the dirty amount is actually paid on the forward maturity date, i.e. if
SettlementDirty = false, the (forward) accruals are computed internally and
added to the given amount to get the actual settlement amount. Optional,
defaults to true.
Allowable values: true, false

• PremiumData: The entity defining the terms of a potential premium payment.
This node is optional. If left out it is assumed that no premium is paid.

– Date: The date when a premium is paid.
Allowable values: See Date in Table 26.

– Amount: The amount transferred as a premium. This is transferred from
the party that is long to the party that is short (determined by
LongInForward) and cannot be a negative amount. It is assumed to be in
the same currency as the underlying bond.
Allowable values: Any non-negative real number.

• LongInForward: A flag that determines whether the forward contract is entered
in long (true) or short (false) position.
Allowable values: true, false

308

Listing 193: Forward Bond Data

<ForwardBondData>
<BondData>
...
<IncomeCurveId>BENCHMARKINCOME-EUR<IncomeCurveId>

</BondData>
<SettlementData>

<ForwardMaturityDate>20160808</ForwardMaturityDate>
<Settlement>Physcial</Settlement>
<ForwardSettlementDate>20160810</ForwardSettlementDate>
<Amount>1000000.00</Amount>
<SettlementDirty>true</SettlementDirty>

</SettlementData>
<PremiumData>

<Amount>1000.00</Amount>
<Date>20160808</Date>

</PremiumData>
<LongInForward>true</LongInForward>

</ForwardBondData>

Listing 194: Forward Bond Date (T-Lock)

<ForwardBondData>
<BondData>
...

</BondData>
<SettlementData>

<ForwardMaturityDate>20160808</ForwardMaturityDate>
<ForwardSettlementDate>20160810</ForwardSettlementDate>
<LockRate>0.02365</LockRate>

</SettlementData>
<LongInForward>true</LongInForward>

</ForwardBondData>

As for the ordinary bond the forward bond pricing requires a recovery rate that can be
specified in ORE per SecurityId.

Forward Bond - Pricing Engine configuration

The configuration for the pricing engine of the forward bond is identical to the
ordinary bond.The pricing engine called by forward bond products is the
DiscountingForwardBondEngine, see below for a configuration example.

<Product type="ForwardBond">
<Model>DiscountedCashflows</Model>
<ModelParameters></ModelParameters>
<Engine>DiscountingForwardBondEngine</Engine>
<EngineParameters>

309

<Parameter name="TimestepPeriod">3M</Parameter>
</EngineParameters>
</Product>

8.2.41 Bond Forward / T-Lock / J-Lock (using ref. data)

A Forward Bond (or Bond Forward) is a contract that establishes an agreement to buy
or sell (determined by LongInForward) an underlying bond at a future point in time
(the ForwardMaturityDate) at an agreed price (the settlement Amount).

A T-Lock is a Forward Bond with a US Treasury Bond as underlying, whereas a
J-Lock is a Forward Bond with a Japanese Government Bond as underlying. T-Locks
can be specified in terms of a lock-in yield rather then a settlement amount. The cash
settlement amount is given by (bond yield at maturity - lock rate) x DV01 in this case.

Listing 195 shows an example for a physically settled forward bond. Listing 196 shows
an example for a cash settled T-Lock transaction specified by a lock-in yield.

A Forward Bond is set up using a ForwardBondData block as shown below and the
trade type is ForwardBond. The specific elements are

• The BondData block specifies the underlying bond, see below for more details.

– SecurityId: The underlying security identifier
Allowable values: Typically the ISIN of the underlying bond, with the ISIN:
prefix.

– BondNotional: The notional of the underlying bond on which the forward is
written expressed in the currency of the bond
Allowable values: Any positive real number.

– CreditRisk [Optional] Boolean flag indicating whether to show Credit Risk
on the Bond product. If set to false, the product class will be set to
RatesFX instead of Credit, and there will be no credit sensitivities. Note
that if the underlying bond reference is set up without a CreditCurveId -
typically for some highly rated government bonds - the CreditRisk flag will
have no impact on the product class and no credit sensitivities will be
shown even if CreditRisk is set to true.
Allowable Values: true or false Defaults to true if left blank or omitted.

• SettlementData: The entity defining the terms of settlement:

– ForwardMaturityDate: The date of maturity of the forward contract.
Allowable values: See Date in Table 26.

– ForwardSettlementDate [Optional]: Settlement date for forward bond or
cash settlement payment date.
Allowable values: See Date in Table 26.

– Settlement [Optional]: Cash or Physical. Option, defaults to Physcial,
except in case the settlement is defined by LockRate, in which case it
defaults to Cash.
Allowable values: Cash, Physical

310

– Amount [Optional]: The settlement amount (also called strike) transferred
at forward maturity in return for the bond (physical delivery) or a cash
amount equal to the dirty price of the bond (cash settlement). This is
transferred from the party that is long to the party that is short
(determined by LongInForward) and cannot be a negative amount. It is
assumed to be in the same currency as the underlying bond. Exactly one of
the fields Amount, LockRate must be given.
Allowable values: Any non-negative real number.

– LockRate [Optional]: The payoff is given by (yield at forward maturity -
LockRate) x DV01 (LongInForward = true). Exactly one of the fields
Amount, LockRate must be given. In case the LockRate is given, the
Settlement must be set to Cash. If Settlement is not given, it defaults to
Cash in this case.
Allowable values: Any non-negative real number. The LockRate is
expressed in decimal form, eg 0.05 is a rate of 5%

– dv01 [Optional]: When the LockRate is given, it is possible to implement a
contractual DV01 instead of deriving it from the bond price.
Allowable values: Any positive real number. E.G If the dPdY is given then
dv01=10000*dPdY/N.

– LockRateDayCounter [Optional]: The day counter w.r.t. which the lock
rate is expressed. Optional, defaults to A360.
Allowable values: see table 31

– SettlementDirty [Optional]: A flag that determines whether the settlement
amount (Amount) reflects a clean (false) or dirty (true) price. In either case,
the dirty amount is actually paid on the forward maturity date, i.e. if
SettlementDirty = false, the (forward) accruals are computed internally and
added to the given amount to get the actual settlement amount. Optional,
defaults to true.
Allowable values: true, false

• PremiumData: The entity defining the terms of a potential premium payment.
This node is optional. If left out it is assumed that no premium is paid.

– Date: The date when a premium is paid.
Allowable values: See Date in Table 26.

– Amount: The amount transferred as a premium. This is transferred from
the party that is long to the party that is short (determined by
LongInForward) and cannot be a negative amount. It is assumed to be in
the same currency as the underlying bond.
Allowable values: Any non-negative real number.

• LongInForward: A flag that determines whether the forward contract is entered
in long (true) or short (false) position.
Allowable values: true, false

311

Listing 195: Forward Bond Data

<ForwardBondData>
<BondData>

<SecurityId>ISIN:XS1234567890</SecurityId>
<BondNotional>100000</BondNotional>

<BondData>
<SettlementData>

<ForwardMaturityDate>20160808</ForwardMaturityDate>
<Settlement>Physcial</Settlement>
<ForwardSettlementDate>20160810</ForwardSettlementDate>
<Amount>1000000.00</Amount>
<SettlementDirty>true</SettlementDirty>

</SettlementData>
<PremiumData>

<Amount>1000.00</Amount>
<Date>20160808</Date>

</PremiumData>
<LongInForward>true</LongInForward>

</ForwardBondData>

Listing 196: Forward Bond Date (T-Lock)

<ForwardBondData>
<BondData>

<SecurityId>ISIN:XS1234567890</SecurityId>
<BondNotional>100000</BondNotional>

</BondData>
<SettlementData>

<ForwardMaturityDate>20160808</ForwardMaturityDate>
<ForwardSettlementDate>20160810</ForwardSettlementDate>
<LockRate>0.02365</LockRate>

</SettlementData>
<LongInForward>true</LongInForward>

</ForwardBondData>

312

Listing 197: Forward Bond Date (T-Lock) with DV01

<ForwardBondData>
<BondData>

<SecurityId>ISIN:XS1234567890</SecurityId>
<BondNotional>100000</BondNotional>

</BondData>
<SettlementData>

<ForwardMaturityDate>20160808</ForwardMaturityDate>
<ForwardSettlementDate>20160810</ForwardSettlementDate>
<LockRate>0.02365</LockRate>
<dv01>0.8</dv01>

</SettlementData>
<LongInForward>true</LongInForward>
</ForwardBondData>

8.2.42 Bond Repo

A bond repo trade is set up using the trade type BondRepo and a BondRepoData block
as shown in listing 198. The block contains two nodes

• BondData, which specifies the underlying bond and its quantity, and

• RepoData, which specifies the cash leg of the repo

The BondData block contains the following fields

• SecurityId: The identified of the underlying security.
Allowable values: A valid key, usually of the form “ISIN::XY012345679”

• BondNotional: The notional of the underlying bond. This is the effective
notional used as collateral, i.e. it should include hair cuts. Usually the number
Bond Notional x Bond Dirty Price x (1 - Haircut) will correspond to the nominal
on the cash leg at trade inception.
Allowable values: Any positive real number.

• CreditRisk [Optional] Boolean flag indicating whether to show Credit Risk on
the Bond product.
Allowable Values: true or false Defaults to true if left blank or omitted.

In this case the details of the underlying bond is read from the reference data. It is
also possible to inline the details in the trade, see 8.2.38 for more details on this.

The RepoData block contains exactly one LegData subnode that describes the
payments on the cash leg of the repo, see 8.3.3 for details on how to set this up. The
Payer leg determines whether interest is paid (regular repo) or received (reversed repo).

313

Listing 198: Bond Repo Data

<BondRepoData>
<BondData>
<SecurityId>ISIN:US912828X703</SecurityId>
<BondNotional>27807597.777444</BondNotional>

</BondData>
<RepoData>
<LegData>
<LegType>Fixed</LegType>
<Payer>true</Payer>
<Currency>USD</Currency>
<Notionals>
<Notional>28371510.00</Notional>

</Notionals>
<ScheduleData>
<Rules>
<StartDate>2020-01-06</StartDate>
<EndDate>2020-04-07</EndDate>
<Tenor>1Y</Tenor>
<Calendar>US</Calendar>
<Convention>MF</Convention>
<TermConvention>MF</TermConvention>
<Rule>Forward</Rule>
<EndOfMonth/>
<FirstDate/>
<LastDate/>

</Rules>
</ScheduleData>
<DayCounter>A360</DayCounter>
<PaymentConvention>F</PaymentConvention>
<FixedLegData>
<Rates>
<Rate>0.0178</Rate>

</Rates>
</FixedLegData>

</LegData>
</RepoData>

</BondRepoData>

8.2.43 Bond Option

The structure of a trade node representing a BondOption is shown in listing 199:

• The BondOptionData node is the trade data container for the option part of a
bond option trade type. Vanilla bond options are supported, the exercise style
must be European. The BondOptionData node includes one and only one
OptionData trade component sub-node plus elements specific to the bond option.

• The latter also includes the underlying Bond description in the BondData node,
see section 8.2.38, listing 191 for details

314

Listing 199: Bond Option data

<Trade id="...">
<TradeType>BondOption</TradeType>
<Envelope>

...
</Envelope>
<BondOptionData>
<OptionData>

...
</OptionData>
<StrikeData>
<StrikePrice>
<Value>11809123.56</Value>
<Currency>EUR</Currency>

</StrikePrice>
</StrikeData>
<Redemption>100.00</Redemption>
<PriceType>Dirty</PriceType>
<KnocksOut>false</KnocksOut>
<BondData>

<VolatilityCurveId>YieldVols-EUR</VolatilityCurveId>
...

<BondData>
</BondOptionData>

</Trade>

The meanings and allowable values of the elements in the BondOptionData node follow
below.

• OptionData: This is a trade component sub-node outlined in section 8.3.1 Option
Data. Note that the bond option type allows for European option style only.

• StrikeData: A node containing the strike information. Allowable values:
Supports StrikePrice and StrikeYield as described in Section 8.3.30.

• Redemption: Redemption ratio in percent

• PriceType: This node defines which strike should be used for the pricing. If the
node takes the value Dirty, the strike price should be set equal to the value of the
Strike node. If the node takes the value Clean, the strike price should be set
equal to the value of the Strike node plus accrued interest at the expiration date
of the option.
Allowable values: Dirty or Clean.

• KnocksOut: If true the option knocks out if the underlying defaults before the
option expiry, if false the option is written on the recovery value in case of a
default of the bond before the option expiry

The meanings and allowable values of the elements in the BondData are:

• VolatilityCurveId: The yield volatility curve to use for the valuation of this bond
option.

315

8.2.44 Bond Option (using bond reference data)

The structure of a trade node representing a BondOption is shown in listing 200:

• The BondOptionData node is the trade data container for the option part of a
bond option trade type. Vanilla bond options are supported, the exercise style
must be European. The BondOptionData node includes one and only one
OptionData trade component sub-node plus elements specific to the bond option.

• The latter also includes the underlying Bond description in the BondData node,
see below for details

Note that only par redemption vanilla bonds are supported.

Listing 200: Bond Option data using bond reference data

<Trade id="...">
<TradeType>BondOption</TradeType>
<Envelope>

...
</Envelope>
<BondOptionData>
<OptionData>
<LongShort>Long</LongShort>
<OptionType>Call</OptionType>
<Style>European</Style>
<ExerciseDates>
<ExerciseDate>20210203</ExerciseDate>
</ExerciseDates>

...
</OptionData>
<StrikeData>
<StrikePrice>
<Value>1.23</Value>

</StrikePrice>
</StrikeData>
<PriceType>Dirty</PriceType>
<KnocksOut>false</KnocksOut>
<BondData>

<SecurityId>ISIN:XS1234567890</SecurityId>
<BondNotional>100000</BondNotional>

<BondData>
</BondOptionData>

</Trade>

The meanings and allowable values of the elements in the BondOptionData node follow
below.

• OptionData: This is a trade component sub-node outlined in section 8.3.1
Option Data.

The relevant fields in the OptionData node for a BondOption are:

– LongShort The allowable values are Long or Short.

– OptionType The allowable values are Call or Put. For option type Call, the
Bond Option holder has the right to buy the underlying Bond at the strike

316

price. For option type Put, the Bond Option holder has the right to sell the
underlying Bond at the strike price.

– Style The allowable value is European only.

– Settlement [Optional] The allowable values are Cash or Physical, but this
field is currently ignored.

– An ExerciseDates node where exactly one ExerciseDate date element must
be given.

– Premiums [Optional]: Option premium amounts paid by the option buyer
to the option seller.

Allowable values: See section 8.3.2

• StrikeData: A StrikeData node is used as described in Section 8.3.30 to
represent the Bond Option strike price or strike yield. If StrikePrice is used, the
strike price (Value field) is expressed per unit notional. If StrikeYield is used,
the Yield is quoted in decimal form, e.g. 5% should be entered as 0.05.

• PriceType [Mandatory for StrikePrice, no impact for StrikeYield]:
The payoff for a bond option is

max(B - X, 0)

where B is always the dirty NPV of the underlying bond on the exercise
settlement date.
If PriceType is Clean, X is (Strike + Underlying Bond Accruals) x BondNotional
If PriceType is Dirty, X is Strike x BondNotional

Allowable values: Dirty or Clean. If the StrikeData node uses StrikeYield,
PriceType can be omitted as it is not relevant in the yield case.

• KnocksOut: If true the option knocks out if the underlying defaults before the
option expiry, if false the option is written on the recovery value in case of a
default of the bond before the option expiry.

Allowable values: Boolean node, allowing Y, N, 1, 0, true, false etc. The full set
of allowable values is given in Table 42.

The meanings and allowable values of the elements in the BondData are:

• SecurityId: The underlying security identifier

Allowable values: Typically the ISIN of the underlying bond, with the ISIN:
prefix.

• BondNotional: The notional of the underlying bond on which the option is
written expressed in the currency of the bond.

Allowable values: Any positive real number.

• CreditRisk [Optional] Boolean flag indicating whether to show Credit Risk on
the Bond product.

Allowable Values: true or false Defaults to true if left blank or omitted.

317

8.2.45 Bond Total Return Swap

A vanilla Bond Total Return Swap (Trade type: BondTRS) is set up using a
BondTRSData block as shown in listing 202. The block is comprised of three sub-blocks,
which are BondData, TotalReturnData and FundingData.

• The BondData block specifies the underlying bond, usually by specifiying the
security id and the quantity / bond notional and relying on reference data:

– SecurityId: The underlying security identifier
Allowable values: Typically the ISIN of the underlying bond, with the ISIN:
prefix.

– BondNotional: The quantity or number of bonds that is relevant for the
TRS, with the convention that 1 bond always corresponds to a face value of
1 unit of bond currency.
Allowable values: Any positive real number.

– CreditRisk [Optional] Boolean flag indicating whether to show Credit Risk
on the Bond product. If set to true, the product class will be set to Credit
instead of RatesFX, and there will be credit sensitivities. Note that if the
underlying bond reference is set up without a CreditCurveId - typically for
some highly rated government bonds - the CreditRisk flag will have no
impact on the product class and no credit sensitivities will be shown even if
CreditRisk is set to true.
Allowable Values: true or false Defaults to true if left blank or omitted.

Alternatively, the BondData block can be specified fully explicit, as outlined in
8.2.38

• The TotalReturnData block specifies

– Payer: Indicates whether the total return leg is paid.
Allowable values: true or false

– InitialPrice [Optional]: Should be filled if the bond price on the first date of
the total return schedule is contractually given, in which case the price must
correspond to the price type of the total return leg, i.e. if the price type is
Dirty then the InitialPrice must also be a dirty price (as it is usually given
in the term sheet in this case). The price must given in percent, e.g.
101.20.11 If not given, the bond price for the first date of the total return
schedule is read from the price history. Notice that if a bond is quoted in
Currency per Unit the initial price should be given in this format too: If e.g.
one unit is 50.0 USD an initial price of 51.0 would correspond a dirty
amount of 51.0 USD for one unit of the bond.
Allowable values: Any positive real number.

– PriceType: The price type on which these payments are based
Allowable values: Dirty or Clean

– ObservationLag [Optional]: The lag between the valuation date and the
reference schedule period start date.

11as opposed to the bond price in the fixing history, where it must be given as 1.0120 and is always
a clean quotation

318

Allowable values: Any valid period, i.e. a non-negative whole number,
followed by D (days), W (weeks), M (months), Y (years). Defaults to 0D if
left blank or omitted.

– ObservationConvention [Optional]: The roll convention to be used when
applying the observation lag.

Allowable values: A valid roll convention (F, MF, P, MP, U, NEAREST),
see Table 27 Roll Convention. Defaults to U if left blank or omitted.

– ObservationCalendar [Optional]: The calendar to be used when applying
the observation lag.

Allowable values: Any valid calendar, see Table 30 Calendar. Defaults to
the NullCalendar (no holidays) if left blank or omitted.

– PaymentLag [Optional]: The lag between the reference schedule period end
date and the payment date.

Allowable values: Any valid period, i.e. a non-negative whole number,
optionally followed by D (days), W (weeks), M (months), Y (years).
Defaults to 0D if left blank or omitted. If a whole number is given and no
letter, it is assumed that it is a number of D (days).

– PaymentConvention [Optional]: The business day convention to be used
when applying the payment lag.

Allowable values: A valid roll convention (F, MF, P, MP, U, NEAREST),
see Table 27 Roll Convention. Defaults to U if left blank or omitted.

– PaymentCalendar [Optional]: The calendar to be used when applying the
payment lag.

Allowable values: Any valid calendar, see Table 30 Calendar. Defaults to
the NullCalendar (no holidays) if left blank or omitted.

– PaymentDates [Optional]: This node allows for the specification of a list of
explicit payment dates, using PaymentDate elements. The list must contain
exactly n− 1 dates where n is the number of dates in the reference schedule
given in the ScheduleData node. See Listing 201 for an example with an
assumed ScheduleData with 4 dates.

Listing 201: Payment dates

<PaymentDates>
<PaymentDate>2020-01-15</PaymentDate>
<PaymentDate>2021-01-15</PaymentDate>
<PaymentDate>2022-01-17</PaymentDate>

</PaymentDates>

– FXTerms [Mandatory when underlying bond and BondTRS currencies
differ]: Required if the bond currency is different from the return currency,
which is always assumed to be equal to the funding leg currency. This kind
of trade is also known as a “composite trs”. The subnode for the FXTerms
node is:

319

∗ FXIndex: The fx index to use for the conversion, this must contain the
bond currency and the funding leg currency (in the order defined in
table 34, i.e. it does not matter which one is the bond currency and
which is the funding currency)

Allowable values: See Table 34

– ScheduleData: The reference schedule for the return leg, where the
valuation dates are derived from this schedule using the ObservationLag,
ObservationConvention and ObservationCalendar fields. The payment dates
are derived from this schedule using the PaymentLag, PaymentConvention
and PaymentCalendar fields. The payment dates can also be given as an
explicit list in the PaymentDates node. Allowable values: A ScheduleData
block as defined in section 8.3.4

– PayBondCashFlowsImmediately [Optional]: If true, bond cashflows like
coupon or amortisation payments are paid when they occur. If false, these
cashflows are paid together with the next return payment. If omitted, the
default value is false.

Allowable values: true (immediate payment of bond cashflows) or false
(bond cashflows are paid on the next return payment date)

• The FundingData block specifies the funding leg, which can be of any leg type.
The FundingData contains exactly one Leg. The currency of this leg also defines
the currency in which the return is paid. Usually the funding leg’s notional will
be aligned with the return leg’s notional. To achieve this, indexings on the
floating leg can be used, see 8.3.8. In the context of bond total return swaps, the
indexings can be defined in a simplified way by adding an Indexings node with a
subnode FromAssetLeg set to true to the funding leg’s LegData node. The
notionals node is not required either in the funding leg’s LegData in this case.
An example for this setup is shown in 202.

320

Listing 202: Bond Total Return Swap Data with indexed funding leg

<BondTRSData>
<BondData>
<SecurityId>ISIN:NZIIBDT005C5</SecurityId>
<BondNotional>100000</BondNotional>

</BondData>
<TotalReturnData>
<Payer>false</Payer>
<InitialPrice>102.0</InitialPrice>
<PriceType>Clean</PriceType>
<ObservationLag>0D</ObservationLag>
<ObservationConvention>P</ObservationConvention>
<ObservationCalendar>USD</ObservationCalendar>
<PaymentLag>2D</PaymentLag>
<PaymentConvention>F</PaymentConvention>
<PaymentCalendar>TARGET</PaymentCalendar>
<!-- <PaymentDates> -->
<!-- <PaymentDate> ... </PaymentDate> -->
<!-- <PaymentDate> ... </PaymentDate> -->
<!-- </PaymentDates> -->
<FXTerms>
<FXIndex>FX-TR20H-NZD-USD</FXIndex>

</FXTerms>
<ScheduleData>
...
</ScheduleData>
<PayBondCashFlowsImmediately>false</PayBondCashFlowsImmediately>

</TotalReturnData>
<FundingData>
<LegData>
<Payer>true</Payer>
<LegType>Floating</LegType>
<Currency>USD</Currency>
...
<!-- Notionals node is not required, set to 1 internally -->
...
<Indexings>
<!-- derive the indexing information (bond price, FX) from the total return leg -->
<FromAssetLeg>true</FromAssetLeg>
</Indexings>
...

</LegData>
</FundingData>

</BondTRSData>

8.2.46 Convertible Bond

A convertible bond is set up using a ConvertibleBondData block as shown in listing
203. The bond details are read from reference data in this case. The meanings and
allowable values of the elements in the block are as follows:

• SecurityId: The underlying security identifier
Allowable values: Typically the ISIN of the underlying bond, with the ISIN:
prefix.

• BondNotional: The notional of the underlying bond expressed in the currency of

321

the bond.
Allowable values: Any positive real number.

• CreditRisk [Optional] Boolean flag indicating whether to show Credit Risk on
the Bond product.
Allowable Values: true or false Defaults to true if left blank or omitted.

Listing 203: Convertible bond set up using reference data

<Trade id="ConvertibleBond">
<TradeType>ConvertibleBond</TradeType>
<Envelope>...</Envelope>
<ConvertibleBondData>
<BondData>
<SecurityId>ISIN:XS0451905367</SecurityId>
<BondNotional>1000000.00</BondNotional>

</BondData>
</ConvertibleBondData>

</Trade>

Alternatively the bond can be set up with further explicit details using the blocks as
shown in listing 204. All fields that are not given in the trade XML are filled up with
the information from the reference data if available in the reference data. In other
words, if reference data is given, the trade xml can still be used to overwrite the
information partially, if this seems appropriate. The meanings and allowable values of
the elements in the block are as follows:

• BondData: The vanilla part of the bond, see 8.2.38.

• CallData: The call terms of the bond, as described below. Optional, if not given,
no calls are present.

• PutData: The put terms of the bond, as described below. Optional, if not given,
no puts are present.

• ConversionData: The conversion terms of the bond, as described below. This
node must always be given, even if no conversion rights are present (in which
case an empty conversion date list can be used).

• DividendProtectionData: The dividend protection terms of the bond, as
described below. Optional, if not given, no dividend prtection is present.

• Detachable: If true, the trade represents the embedded optionality, i.e. the
difference between the full convertible bond and the bond floor. Optional,
defaults to false.
Allowable values: true, false

The convertible bond trade type supports perpetual schedules, i.e. perpetual
convertible bonds can be represented by omitting the EndDate in the following
schedules to indicate perpetual schedules. Only rule based schedules can be used to
indicate perpetual schedules.

• BondData / LegData: Omitting the EndDate in this schedule indicates that the
underlying bond runs perpetually.

322

• CallData: Omitting the EndDate in this schedule indicates perpetual call dates.
For American call dates, where only two dates have to be specified (start and end
date of the american call window), a rule based schedule with Tenor = 0D, Rule
= Zero and without EndDate can be used to indicate an end date infinitely far
away in the future.

• PutData: Same as CallData.

• ConversionData: Omitting the EndDate in this schedule indicates perpetual
conversion rights. For American rights, the same comment as under CallData
applies.

• ConversionData / ConversionResets: Omitting the EndDate in this schedule
indicates perpetual conversion resets.

• DividendProtectionData: Omitting the EndDate in this schedule indicates a
perpetual dividend protection schedule.

Listing 204: Convertible bond set up using the detail blocks

<Trade id="ConvertibleBond">
<TradeType>ConvertibleBond</TradeType>
<Envelope>...</Envelope>
<ConvertibleBondData>
<BondData> ... </BondData>
<CallData> ... </CallData>
<PutData> ... </PutData>
<ConversionData> ... </ConversionData>
<DividendProtectionData> ... </DividendProtectionData>
<Detachable>false</Detachable>

</ConvertibleBondData>
</Trade>

Specification of CallData / PutData:

All lists specified in subnodes (except the date list itself of course) can be specified as
either an explicit list of values corresponding to the schedule dates list or using the
attribute startDate. An explicit value list can be shorter than the list of dates, in
which case the last value from the list is associated to the remaining dates.

See listings 205,206,207,208,209,210,211 for examples of exercise schedules.

• Styles: A list of the exercise styles. Notice that Bermudan is used to define
European exercises as well, namely as a Bermudan exercise with a single exercise
date. The attribute startDate can be used to specify the list.
Allowable values: American, Bermudan

• ScheduleData: A schedule of exercise dates (for Bermudan exercises) or start /
end dates (for American exercises)
Allowable values: see 8.3.4.

• Prices: A list of exercise prices in relative terms, i.e. if the price is 1.02 then the
amount paid on the exercise is this price times the current notional of the bond
(plus accrued interest, if the price type is clean, see below). The attribute
startDate can be used to specify the list.

323

Allowable values: Any positive real number.

• PriceType: A list of the flavour in which the exercise prices are given. The
attribute startDate can be used to specify the list.
Allowable values: Clean, Dirty.

• IncludeAccrual: A list of flags specifying whether accruals have to be paid on
exercise. This is independent of the quoting style of the exercise prices
(PriceType).
Allowable values: true, false

• Soft: A list of flags specifying whether the call is soft (true) or hard (false). The
attribute startDate can be used to specify the list. Optional, defaults to false.
Only applicable to Calls, not to Puts. Optional, if not given, false is assumed, i.e.
hard calls. If soft calls are specified, at least one conversion exercise date with
corresponding conversion rate must be defined under ConversionData.
Allowable values: true, false

• TriggerRatios: A list of trigger ratios T for soft calls. A soft call can be executed
only if the equity price on the exercise date is above the conversion price times
the trigger ratio, i.e. St > CP

t T . Only applicable to Calls, not to Puts. Required
for soft calls, can be omitted otherwise.
Allowable values: Any positive real number.

• NofMTriggers: A list of n-of-m trigger specifications for calls, i.e. the soft-call
trigger defined by TriggerRatios must be observed on n of the m days before the
exercise dates for the call to be active. Only applicable to Calls, not to Puts.
Optional, defaults to “0-of-0”
Allowable values: x-of-y with x, y non-negative integers, “0-of-0” disables the
trigger

• MakeWhole: A list of make whole conditions. Optional. Possible subnodes are:

– ConversionRatioIncrease: In case of a call exercise, the conversion ratio
(applicable in case of a forced conversion) is adjusted upwards. The
adjustment is additive, i.e. if the current conversion ratio is CR the
conversion ratio applicable in case of a forced conversion will be CR + d
where d is interpolated from a matrix of effective dates (rows) and stock
prices (columns). The conversion rate adjustment might be capped by a
prespecified rate. If the exercise date / stock price lies outside the matrix, d
is zero, i.e. no adjustment is made. Notice that a soft call trigger is checked
w.r.t. CR, i.e. the unadjusted conversion ratio.

∗ Cap: An upper bound for the adjusted conversion ratio. Optional, if
not given, no cap will be applied.
Allowable values: Any non-negative real number.

∗ StockPrices: A comma separated list of stock prices defining the
interpolation grid’s x values. At least two stock prices must be given.
Allowable values: A list of non-negative real numbers.

∗ CrIncreases: A node that contains at least two subnodes CrIncrease.
Each subnode must have an attribute startDate defining the effective

324

date of the adjustment and a list of conversion ratio adjustments d. The
number of adjustments must match the number of prices given in the
StockPrices node.
Allowable values: A list of non-negative real numbers.

Listing 205: Convertible bond call data example 1

<!-- Bermudan issuer call on three dates at a clean price of 100 (hard calls),
accruals are paid on exercise -->

<CallData>
<Styles>
<Style>Bermudan</Style>

</Styles>
<ScheduleData>
<Dates>
<Dates>
<Date>2016-08-03</Date>
<Date>2017-08-03</Date>
<Date>2018-08-03</Date>

</Dates>
</Dates>

</ScheduleData>
<Prices>
<Price>1.00</Price>

</Prices>
<PriceTypes>
<PriceType>Clean</PriceType>

</PriceTypes>
<IncludeAccruals>
<IncludeAccrual>true</IncludeAccrual>

</IncludeAccruals>
<Soft>
<Soft>false</Soft>

</Soft>
<TriggerRatios/>
<NofMTriggers>
<NOfMTrigger>20-of-30</NOfMTrigger>

</NofMTriggers>
</CallData>

325

Listing 206: Convertible bond call data example 2

<!-- Bermudan issuer call on three dates at a clean price of 101, 102 and 103,
soft calls with trigger ratio of 0.8, 0.85, 0.9,
accrual are _not_ paid on exercise -->

<CallData>
<Styles>
<Style>Bermudan</Style>

</Styles>
<ScheduleData>
<Dates>
<Dates>
<Date>2016-08-03</Date>
<Date>2017-08-03</Date>
<Date>2018-08-03</Date>

</Dates>
</Dates>

</ScheduleData>
<Prices>
<Price>1.01</Price>
<Price>1.02</Price>
<Price>1.03</Price>

</Prices>
<PriceTypes>
<PriceType>Clean</PriceType>

</PriceTypes>
<IncludeAccruals>
<IncludeAccrual>false</IncludeAccrual>

</IncludeAccruals>
<Soft>
<Soft>true</Soft>

</Soft>
<TriggerRatios>
<TriggerRatio>0.8</TriggerRatio>
<TriggerRatio>0.85</TriggerRatio>
<TriggerRatio>0.9</TriggerRatio>

</TriggerRatios>
</CallData>

326

Listing 207: Convertible bond call data example 3

<!-- American issuer call between 2016-08-03 and 2018-08-03
at a clean price of 100 (hard calls) -->

<CallData>
<Styles>
<Style>American</Style>

</Styles>
<ScheduleData>
<Dates>
<Dates>
<Date>2016-08-03</Date>
<Date>2018-08-03</Date>

</Dates>
</Dates>

</ScheduleData>
<Prices>
<Price>1.00</Price>

</Prices>
<PriceTypes>
<PriceType>Clean</PriceType>

</PriceTypes>
<IncludeAccruals>
<IncludeAccrual>true</IncludeAccrual>

</IncludeAccruals>
<Soft>
<Soft>false</Soft>

</Soft>
<TriggerRatios/>

</CallData>

327

Listing 208: Convertible bond call data example 4

<!-- American issuer call between 2016-08-03 and 2020-08-03 (excl),
hard calls at 100 between 2016-08-03 and 2018-08-03 (excl),
soft calls at 102 between 2018-08-03 and 2019-08-03 (excl),
soft calls at 103 between 2019-08-03 and 2020-08-03 -->

<CallData>
<Styles>
<Style>American</Style>

</Styles>
<ScheduleData>
<Dates>
<Dates>
<Date>2016-08-03</Date>
<Date>2018-08-03</Date>
<Date>2019-08-03</Date>
<Date>2020-08-03</Date>

</Dates>
</Dates>

</ScheduleData>
<Prices>
<Price>1.00</Price>
<Price startDate="2018-08-03">1.02</Price>
<Price startDate="2019-08-03">1.03</Price>

</Prices>
<PriceTypes>
<PriceType>Clean</PriceType>

</PriceTypes>
<IncludeAccruals>
<IncludeAccrual>true</IncludeAccrual>

</IncludeAccruals>
<Soft>
<Soft>false</Soft>
<Soft startDate="2018-03-03">true</Soft>

</Soft>
<TriggerRatios>
<TriggerRatio>0.8</TriggerRatio>
<TriggerRatio startDate="2019-08-03">0.9</TriggerRatio>

</TriggerRatios>
</CallData>

328

Listing 209: Convertible bond call data example 5

<!-- Bermudan (hard) calls at 100 at 3 dates from 2016 to 2018,
followed by American (soft) calls at 102 between 2018 and 2020 -->

<CallData>
<Styles>
<Style>Bermudan</Style>
<Style startDate="2018-08-03">American</Style>

</Styles>
<ScheduleData>
<Dates>
<Dates>
<Date>2016-08-03</Date>
<Date>2017-08-03</Date>
<Date>2018-08-03</Date>
<Date>2020-08-03</Date>

</Dates>
</Dates>

</ScheduleData>
<Prices>
<Price>1.00</Price>
<Price startDate="2018-08-03">1.02</Price>

</Prices>
<PriceTypes>
<PriceType>Clean</PriceType>

</PriceTypes>
<IncludeAccruals>
<IncludeAccrual>true</IncludeAccrual>

</IncludeAccruals>
<Soft>
<Soft>false</Soft>
<Soft startDate="2018-08-03">true</Soft>

</Soft>
<TriggerRatios>
<TriggerRatio>0.8</TriggerRatio>

</TriggerRatios>
</CallData>

329

Listing 210: Convertible bond put data example 6

<!-- Bermudan puts calls at 100, 101, 102 at 3 dates from 2016 to 2018 -->
<PutData>
<Styles>
<Style>Bermudan</Style>

</Styles>
<ScheduleData>
<Dates>
<Dates>
<Date>2016-08-03</Date>
<Date>2017-08-03</Date>
<Date>2018-08-03</Date>

</Dates>
</Dates>

</ScheduleData>
<Prices>
<Price>1.00</Price>
<Price>1.01</Price>
<Price>1.02</Price>

</Prices>
<PriceTypes>
<PriceType>Clean</PriceType>

</PriceTypes>
<IncludeAccruals>
<IncludeAccrual>true</IncludeAccrual>

</IncludeAccruals>
</PutData>

Listing 211: Convertible bond make whole data (conversion ratio increase)

<CallData>
...

<MakeWhole>
<ConversionRatioIncrease>
<Cap>0.0740740</Cap>
<StockPrices>13.50,15.00,16.20,18.00</StockPrices>
<CrIncreases>
<CrIncrease startDate="2020-06-25">0.0123456,0.0107487,0.0097173,0.0084567</CrIncrease>
<CrIncrease startDate="2021-07-01">0.0123456,0.0096880,0.0086963,0.0075294</CrIncrease>
<CrIncrease startDate="2022-07-01">0.0123456,0.0083927,0.0074222,0.0063383</CrIncrease>
<CrIncrease startDate="2023-07-01">0.0123456,0.0069360,0.0058790,0.0048322</CrIncrease>
<CrIncrease startDate="2024-07-01">0.0123456,0.0054453,0.0040025,0.0028833</CrIncrease>
<CrIncrease startDate="2025-07-01">0.0123456,0.0049380,0.0000000,0.0000000</CrIncrease>

</CrIncreases>
</ConversionRatioIncrease>

</MakeWhole>
</CallData>

Specification of ConversionData:

As in the case of the CallData, all lists can be specified as either an explicit list of
values corresponding to the schedule dates list or using the attribute startDate. The
ConversionRatios element is an expcetion, the given start dates are interpreted
independently of these schedule dates.

330

See listings 212, 213,214,215, 216,217 for examples of conversion schedules.

• Styles: The styles of the conversion rights. Notice that Bermudan is used to
define European conversion rights as well, namely as a Bermudan conversion
right with a single date. The attribute startDate can be used to specify the list.
Can be omitted, if no conversion dates are given.
Allwoable values: American, Bermudan

• ScheduleData: The dates defining when the bond is convertible. For Bermudan
exercises, the conversion can be executed on the single dates given in the list. For
American exercises, the conversion can be executed between a given start and
end date. Can be omitted, if no conversion rights are present.
Allowable values: see 8.3.4.

• ConversionRatios: A list of conversion ratios CR. The attribute startDate can
be used to specify a date from which the ratio is valid. Notice that this date is
always interpreted “as is”, i.e. it is not mapped onto the next date in the defined
schedule. If no startDate is given for a ratio, this ratio is interpreted as the initial
ratio.
Allowable values: Any non-negative real number.

• FixedConversionAmounts: If this node is given, the conversion is specified to be
conversion to fixed cash amounts instead of equity. If the cash amount currency
is different from the bond currency, the FXIndex node must be given. See 217 for
an example. As for ConversionRatios the attribute startDate can be used to
specify a date from which the amount is valid and this date is interpreted “as is”,
i.e. not mapped onto the next date in the defined schedule. The nodes

– ConversionRatios

– ContingentConversion

– MandatoryConversion

– ConversionResets

– Underlying

– Exchangeable

must not be given, if this node is present. Furthermore, the following nodes from
other sections are not applicable if the conversion is specified to be fixed cash
amounts, and must therefore not be given:

– CallData/Soft

– CallData/TriggerRatios

– CallData/NoMTriggers

– CallData/MakeWhole

– DividendProtectionData (including all subnodes)

• ContingentConversion: This adds a condition CR
t St > B on the convertibility for

the periods defined by the conversion dates. Optional.

331

– Observations: A list of observation modes.
Allowable values: Spot (trigger is checked on the conversion date),
StartOfPeriod (trigger is checked on the start of the conversion period
defined by the dates list, for American style conversion only)

– Barriers: A list of barriers B associated to the conversion dates.
Allowable values: Positive real number or zero (conversion is not made
contingent for this date).

• MandatoryConversion: This adds a mandatory conversion obligation at a date
greater than all other conversion dates (if any). Optional.

– Date: The mandatory conversion date.
Allowable values: Any date not earlier than the last otherwise specified
conversion date.

– Type: The type of the mandatory conversion.
Allowable values: PEPS

– PepsData: Details of mandatory conversion type PEPS.

∗ UpperBarrier: upper barrier for PEPS payoff.
Allowable values: A real number.

∗ LowerBarrier: lower barrier for PEPS payoff.
Allowable values: A real number.

∗ UpperConversionRatio: conversion ratio for upper barrier in PEPS
payoff.
Allowable values: A real number.

∗ LowerConversionRatio: conversion ratio for lower barrier in PEPS
payoff.
Allowable values: A real number.

• ConversionResets: This adds a reset schedule for the conversion rate. If a reset
feature is defined, only an initial ConversionRatio can be defined, the future
conversion ratios are determined by the resets. The startDate attribute can be
used to define references, thresholds, gearings, floors, global floors. Optional.

– ScheduleData: The conversion reset dates.
Allowable values: see 8.3.4.

– References: Whether the initial conversion price CP
0 or the current

conversion price CP
t is the reference for the reset.

Allowable values: InitialConversionPrice, CurrentConversionPrice

– Thresholds: The threshold T that triggers a reset (St < TCP
0 or St < TCP

t ,
depending on Reference)
Allowable values: positive number or zero (disables the reset on this date
effectively)

– Gearings: The gearings g for the conversion rate adjustment. Option,
defaults to 0 (= no gearing applicable)

332

Allowable values: positive number or zero (no gearing applicable on this
date).

– Floors: The floors f for the conversion rate adjustment. Optional, defaults
to 0 (= no floor applicable)
Allowable values: positive number or zero (no floor applicable on this date)

– GlobalFloors: The global floors for the conversion rate adjustment. Option,
defaults to 0 (= no global floor applicable)
Allowable values: positive number or zero (no global floor applicable on this
date)

• Underlying: The equity underlying.
Allwoable values: See 8.3.29, the underlying type must be equity.

• FXIndex: If equity ccy is different from bond ccy, an fx index for the two
involved ccy is required.
Allowable values: The format of the FX Index is“FX-SOURCE-CCY1-CCY2” as
described in table 34.

• Exchangeable: Node with data for exchangeables. Option, if omitted, the
structure is considered non-exchangeable. Subnodes are:

– IsExchangeable: indicates whether the convertible bond is exchangeable
Allowable values: true, false

– EquityCreditCurve: the credit curve modeling the equity issuer default,
required if IsExchangeable is true.
Allowable values: A valid credit curve identifier, e.g the ISIN of a reference
bond with the ISIN: prefix: ISIN:XXNNNNNNNNNN

– Secured: Indicates whether the convertible is secured with pledged shares or
not. Optional, defaults to false.
Allowable values: true, false.

333

Listing 212: Convertible bond conversion example 1

<!-- Three conversion dates (Bermudan), conversion ratio is 0.5 -->
<ConversionData>
<Styles>
<Style>Bermudan</Style>

</Styles>
<ScheduleData>
<Dates>
<Dates>
<Date>2016-08-03</Date>
<Date>2017-08-03</Date>
<Date>2018-08-03</Date>

</Dates>
</Dates>

</ScheduleData>
<ConversionRatios>
<ConversionRatio>0.05</ConversionRatio>

</ConversionRatios>
<Underlying>
<Type>Equity</Type>
<Name>RIC:.ABCD</Name>

</Underlying>
<FXIndex>FX-ECB-EUR-USD</FXIndex>
<Exchangeable>
<IsExchangeable>true</IsExchangeable>
<EquityCreditCurve>ISIN:XS0982710740</EquityCreditCurve>
<Secured>true</Secured>

</Exchangeable>
</ConversionData>

334

Listing 213: Convertible bond conversion example 2

<!-- American conversion between 2016-08-03 and 2020-08-03, with
conversion ratio 0.5 for 2016-08-03 through 2018-08-03 (excl) and
conversion ratio 0.6 for 2018-08-03 through 2020-08-03 -->

<ConversionData>
<Styles>
<Style>American</Style>

</Styles>
<ScheduleData>
<Dates>
<Dates>
<Date>2016-08-03</Date>
<Date>2018-08-03</Date>
<Date>2020-08-03</Date>

</Dates>
</Dates>

</ScheduleData>
<ConversionRatios>
<ConversionRatio>0.05</ConversionRatio>
<ConversionRatio startDate="2018-08-03">0.06</ConversionRatio>

</ConversionRatios>
<Underlying>
<Type>Equity</Type>
<Name>RIC:.ABCD</Name>

</Underlying>
</ConversionData>

335

Listing 214: Convertible bond conversion example 3

<!-- American conversion between 2016-08-03 and 2018-08-03, with conversion
ratio 0.5, the conversion is contingent on the parity being above 1.3
on 2016-08-03 for the conversion between 2016-08-03 and 2017-08-03 (excl)
on 2017-08-03 for the conversion between 2017-08-03 and 2018-08-03 -->

<ConversionData>
<Styles>
<Style>American</Style>

</Styles>
<ScheduleData>
<Dates>
<Dates>
<Date>2016-08-03</Date>
<Date>2017-08-03</Date>
<Date>2018-08-03</Date>

</Dates>
</Dates>

</ScheduleData>
<ConversionRatios>
<ConversionRatio>0.05</ConversionRatio>

</ConversionRatios>
<ContingentConversion>
<Observations>
<Observation>StartOfPeriod</Observation>

</Observations>
<Barriers>
<Barrier>1.3</Barrier>

</Barriers>
</ContingentConversion>
<Underlying>
<Type>Equity</Type>
<Name>RIC:.ABCD</Name>

</Underlying>
</ConversionData>

336

Listing 215: Convertible bond conversion example 4

<!-- American converion between 2016-08-03 and 2018-08-03 with CR 0.5.
Mandatory conversion on 2020-08-03:
LowerConversionRatio applies if stock price < LowerBarrier,
UpperConversionRatio applies if stock price > UpperBarrier -->

<ConversionData>
<Styles>
<Style>American</Style>

</Styles>
<ScheduleData>
<Dates>
<Dates>
<Date>2016-08-03</Date>
<Date>2018-08-03</Date>

</Dates>
</Dates>

</ScheduleData>
<ConversionRatios>
<ConversionRatio>0.05</ConversionRatio>

</ConversionRatios>
<MandatoryConversion>
<Date>2020-08-03</Date>
<Type>PEPS</Type>
<PepsData>
<UpperBarrier>32.5</UpperBarrier>
<LowerBarrier>20.5</LowerBarrier>
<UpperConversionRatio>0.08</UpperConversionRatio>
<LowerConversionRatio>0.03</LowerConversionRatio>

</PepsData>
</MandatoryConversion>
<Underlying>
<Type>Equity</Type>
<Name>RIC:.ABCD</Name>

</Underlying>
</ConversionData>

337

Listing 216: Convertible bond conversion example 5

<!-- American conversion between 2016-08-03 and 2018-08-03 with CR 0.5.
The conversion ratio is reset on 2016-11-03, 2017-02-03, 2018-05-03
using T = 0.9, g = 0.8, f = 0.6, F = 0.6. -->

<ConversionData>
<Styles>
<Style>American</Style>

</Styles>
<ScheduleData>
<Dates>
<Dates>
<Date>2016-08-03</Date>
<Date>2018-08-03</Date>

</Dates>
</Dates>

</ScheduleData>
<ConversionRatios>
<ConversionRatio>0.05</ConversionRatio>

</ConversionRatios>
<ConversionResets>
<ScheduleData>
<Dates>
<Dates>
<Date>2016-11-03</Date>
<Date>2017-02-03</Date>
<Date>2018-05-03</Date>

</Dates>
</Dates>

</ScheduleData>
<References>
<Reference>InitialConversionPrice</Reference>

</References>
<Thresholds>
<Threshold>0.9</Threshold>

</Thresholds>
<Gearings>
<Gearing>0.8</Gearing>

</Gearings>
<Floors>
<Floor>0.7</Floor>

</Floors>
<GlobalFloors>
<GlobalFloor>15</GlobalFloor>

</GlobalFloors>
</ConversionResets>
<Underlying>
<Type>Equity</Type>
<Name>RIC:.ABCD</Name>

</Underlying>
</ConversionData>

338

Listing 217: Convertible bond conversion example 6

<!-- American conversion between 2024-08-24 and 2027-05-13, with
conversion to 0.87 GBP cash for 2024-08-24 through 2024-11-23 (excl) and
conversion to 0.75 GBP cash for 2024-11-23 through 2027-05-13 -->

<ConversionData>
<Styles>
<Style>American</Style>

</Styles>
<ScheduleData>
<Dates>
<Dates>
<Date>2024-08-24</Date>
<Date>2024-11-23</Date>
<Date>2027-05-13</Date>

</Dates>
</Dates>

</ScheduleData>
<FixedAmountConversion>
<Currency>GBP</Currency>
<Amounts>
<Amount>0.87</Amount>
<Amount startDate="2024-11-24">0.75</Amount>

</Amounts>
</FixedAmountConversion>

</ConversionData>

Specification of DividendProtectionData:

As for the CallData, all lists can be specified as either an explicit list of values
corresponding to the schedule dates list or using the attribute startDate.

See listings 218, 219 for examples of dividend protection schedules.

• ScheduleData: The dates of the dividend protection schedule. The first date
marks the date when the dividend protection becomes effective, i.e. dividend
payments from this date on are taken into account in conversion ratio
adjustments or passthroughs. The second date is then the first date on which the
accumulated dividends between the first and second date trigger a conversion
ratio reset or passthrough, and similar for all subsequent dates. The last given
date is the last date with a conversion ratio reset or passthrough.
Allowable values: see 8.3.4.

• AdjustmentStyles: Whether the dividend excessing the threshold is passed
through or the conversion ratio is adjusted. In both cases, the adjustment can be
upwards only or up and down.
Allwoable values: CrUpOnly, CrUpDown, CrUpOnly2, CrUpDown2,
PassThroughUpOnly, PassThroughUpDown

• DividendTypes: Whether the conversion ratio adjustment is calculated in terms
of absolute or relative dividends. Does not have an effect for pass through
dividends (should be set to Aboslute in this case).
Allwoable values: Absolute, Relative

• Thresholds: The threshold H. Notice that the threshold applies to each single

339

period of the dividend protection schedule. If the threshold is e.g. provided on an
annual basis in the terms of the convertible bond, but the dividend protection
schedule is quarterly, then the threshold in the trade xml should be the annual
threshold divided by 4.
Allwoable values: Any non-negativee number.

Listing 218: Convertible bond dividend protection example 1

<!-- Divdend protection based on aboslute dividend amounts via adjustment
of the conversion rate, up-only adjustment. -->

<DividendProtectionData>
<ScheduleData>
<Dates>
<Dates>
<Date>2016-08-03</Date>
<Date>2017-08-03</Date>
<Date>2018-08-03</Date>
<Date>2019-08-03</Date>

</Dates>
</Dates>

</ScheduleData>
<AdjustmentStyles>
<AdjustmentStyle>CrUpOnly</AdjustmentStyle>

</AdjustmentStyles>
<DividendTypes>
<DividendType>Absolute</DividendType>

</DividendTypes>
<Thresholds>
<Threshold>1.2</Threshold>

</Thresholds>
</DividendProtectionData>

340

Listing 219: Convertible bond dividend protection example 2

<!-- Dividend protection based on relative dividend amounts via adjustment
of the conversion rate, up-only adjustment. -->

<DividendProtectionData>
<ScheduleData>
<Dates>
<Dates>
<Date>2016-08-03</Date>
<Date>2017-08-03</Date>
<Date>2018-08-03</Date>
<Date>2019-08-03</Date>

</Dates>
</Dates>

</ScheduleData>
<AdjustmentStyles>
<AdjustmentStyle>CrUpOnly</AdjustmentStyle>

</AdjustmentStyles>
<DividendTypes>
<DividendType>Relative</DividendType>

</DividendTypes>
<Thresholds>
<Threshold>0.01</Threshold>

</Thresholds>
</DividendProtectionData>

8.2.47 Ascot

An Ascot is set up using an AscotData block as shown in listing 220. The bond details
are read from reference data in this case.

An Ascot or a Convertible Bond Option is an American style option to buy back a
convertible bond. The buyer of a Call Ascot can exercise the deal and get the
underlying bond in exchange for paying the strike.

The payout formula for a Call Ascot is:

Payout = max(0, convertiblePrice− Strike)

And for a Put Ascot:

Payout = max(0, Strike− convertiblePrice)

where:

Strike = bondQuantity ·(upfrontPayment+assetLeg−redemptionLeg)−fundingLeg

341

Listing 220: Ascot set up using reference data

<Trade id="Ascot">
<TradeType>Ascot</TradeType>
<Envelope>...</Envelope>
<AscotData>
<ConvertibleBondData>
<BondData>
<SecurityId>ISIN:XY1000000000</SecurityId>
<BondNotional>1000000.00</BondNotional>

</BondData>
</ConvertibleBondData>
<OptionData>
<LongShort>Long</LongShort>
<OptionType>Call</OptionType>
<Style>American</Style>
<Settlement>Physical</Settlement>
<ExerciseDates>
<ExerciseDate>2029-02-03</ExerciseDate>

</ExerciseDates>
</OptionData>
<ReferenceSwapData>
<LegData>
<LegType>Floating</LegType>
<Payer>false</Payer>
...

</LegData>
</ReferenceSwapData>

<AscotData>
</Trade>

The meanings and allowable values of the elements in the block are as follows:

• ConvertibleBondData: This describes the underlying convertible bond, see 8.2.46.

• OptionData: This is a trade component sub-node outlined in section 8.3.1
Option Data. The relevant fields in the OptionData node for an Ascot are:

– LongShort The allowable values are Long or Short. The LongShort flag
multiplies the option price with +1 / -1. Call and Put payout formulas
above are from the long perspective

– OptionType The allowable values are Call or Put. See payout formulas
above.

– Style The Ascot type allows for American option exercise style only.

– Settlement The allowable values are Cash or Physical.

– An ExerciseDates node where exactly one ExerciseDate date element
must be given.

– Premiums [Optional]: Option premium amounts paid by the option buyer to
the option seller.

Allowable values: See section 8.3.2

342

• ReferenceSwapData: Contains a single LegData node that describes the trade’s
reference swap funding leg. The asset leg is implied from the bond data. Payer
should always be false i.e. the swap is entered from the viewpoint of the asset
swap buyer.

8.2.48 Collateral Bond Obligation CBO

A Cashflow CDO or Collateral Bond Obligation CBO (trade type CBO) can be set up
in a short version referencing the underlying CBO structure in a static CBO reference
datum or a long version, where the CBO structure is specified explicitly.

The main building block is the CBOData block as shown in listing 221. The CBOData
requires the two components CBOInvestment and CBOStructure. Where the latter
represents the general structure, the former specfies the actual investment. For the
short version, the CBO is fully specified using the component CBOInvestment only, the
component CBOStructure can be omitted.

Listing 221 exhibits the long version:

Listing 221: CBO Data

<CBOData>
<CBOInvestment>
<TrancheName>JuniorNote</TrancheName>
<Notional>4000000.00</Notional>
<StructureId>Constellation</StructureId>

</CBOInvestment>
<CBOStructure>
<DayCounter>ACT/ACT</DayCounter>
<PaymentConvention>F</PaymentConvention>
<Currency>EUR</Currency>
<ReinvestmentEndDate>2019-12-31</ReinvestmentEndDate>
<SeniorFee>0.01</SeniorFee>
<FeeDayCounter>A365</FeeDayCounter>
<SubordinatedFee>0.02</SubordinatedFee>
<EquityKicker>0.25</EquityKicker>
<BondBasketData>
...

</BondBasketData>
<CBOTranches>
...

</CBOTranches>
<ScheduleData>
...

</ScheduleData>
</CBOStructure>

</CBOData>

The meanings of the elements of the CBOData node follow below:

• TrancheName: Specifies of which tranche, results are shown in the report files
(NPV, Sensitivity, ...). The name needs to match one the names specified in
CBOTranches.

343

• Notional: Is the invested amount into the tranche specified above. The value is
used to scale the NPV from the general tranche NPV, so it may be different to
the face amount specified in CBOTranches.

• StructureId: if details of the cbo are read from the reference data, StructureId is
used as a key.

• DayCounter: The day count convention of the tranches. Allowable values: See
table 31.

• PaymentConvention: The payment convention of the tranches. Allowable values:
See Table 27 Roll Convention.

• Currency: Defines the currency of the trade, i.e. the currency of the tranches.
Allowable values: See Table 28 Currency.

• ReinvestmentEndDate: Defines the end of the reinvestment period. During the
reinvestment period, principal proceeds are used to reinvest in eliglible assets
rather than to redeem CBO notes. Currently the model cannot handle
underlying bonds with full amortisation within the reinvestment period. In case
the underlying bonds amortise only parts of their full notional (during that
period), the model will leave outstanding balance constant until the end of the
reinvestment period. Therafter the underyling bonds amortises at a higher speed.

• SeniorFee: The fee, expressed as rate, paid before all other obligations, top of the
waterfall.

• FeeDayCounter: The day count convention for the fees. Allowable values: See
table 31.

• SubordinatedFee: The fee, expressed as rate, paid after all other obligations.

• EquityKicker: Fraction x of the residual payment, that will be split among the
senior fee receiver (x) and the equity piece (1-x).

• BondBasketData: All specifications of the underlying bond basket. Uses the sub
node BondBasketData as described in section 8.3.33.

• CBOTranches: All required instrument data for the tranches of the CBO. Uses
the sub node CBOTranches as described in section 8.3.34.

• ScheduleData: This is a trade component sub-node outlined in section 8.3.4
Schedule Data and Dates.

Listing 222 exhibits the reference data in conjunction with short version of the
CBOData in listing 223. The element meanings are the same as in the long version.

344

Listing 222: CboReferenceData

<ReferenceDatum id="Constellation">
<Type>CBO</Type>
<CboReferenceData>

<Currency>USD</Currency>
<DayCounter>A365</DayCounter>
<PaymentConvention>F</PaymentConvention>
<SeniorFee>0.001</SeniorFee>
<FeeDayCounter>A365</FeeDayCounter>
<SubordinatedFee>0.005</SubordinatedFee>
<EquityKicker>0.01</EquityKicker>
<CBOTranches>

...
</CBOTranches>
<ScheduleData>

...
</ScheduleData>
<BondBasketData>

...
</BondBasketData>

</CboReferenceData>
</ReferenceDatum>

Listing 223: CBOInvestment

<CBOData>
<CBOInvestment>
<TrancheName>JuniorNote</TrancheName>
<Notional>4000000.00</Notional>
<StructureId>Constellation</StructureId>

</CBOInvestment>
</CBOData>

8.2.49 Composite Trade

The CompositeTradeData node is the trade data container for the CompositeTrade
trade type. A composite trade is a hybrid position consisting of multiple component
trades. The structure of an example CompositeTradeData node for a commodity
option is shown in Listing 224.

345

Listing 224: Composite trade data

<CompositeTradeData>
<Currency>USD</Currency>
<NotionalCalculation>Sum</NotionalCalculation>
<Components>
<Trade id="">

<!-- A valid trade xml -->
</Trade>
<Trade id="">

<!-- A valid trade xml -->
</Trade>

</Components>
</CompositeTradeData>

The meanings and allowable values of the elements in the CompositeTradeData node
follow below.

• Currency: Defines the currency the NPV of the composite trade will be
represented in.
Allowable values: See Table 28 Currency.

• NotionalCalculation [Optional]: The method by which the notional of the
composite trade will be calculated.
Allowable values:

Sum: The notional will be calculated as the sum of the notionals of the
constituent trades. This is the default behaviour if the field is omitted
(unless an override is provided).

Mean or Average: The notional will be calculated as the mean of the
notionals of the constituent trades.

First : The notional of the first constituent trade will be used.

Last : The notional of the first constituent trade will be used.

Min: The notional will be calculated as the minimum of the notionals of the
constituent trades.

Max : The notional will be calculated as the minimum of the notionals of
the constituent trades.

Override: the notional will be read directly from the notional override field.

• NotionalOverride [Optional]: The notional which will be used for the trade,
overriding any calculation method specified.
Allowable values: Any non-negative real number.

• Components: The portfolio of trades that make up the composite trade.
Allowable values: These trades should be valid xmls that could otherwise be
entered into the portfolio, with the exception that they can have empty ids.

346

8.2.50 Credit Default Swap / Quanto Credit Default Swap

A credit default swap, trade type CreditDefaultSwap, is set up using a
CreditDefaultSwapData block as shown in listing 225 or 226. The
CreditDefaultSwapData block must include either a CreditCurveId element or a
ReferenceInformation node.

The LegData sub-node must be a fixed leg, and represents the recurring premium
payments. The direction of the fixed leg payments define if the CDS is for bought
(Payer: true) or sold (Payer: false) protection.

The elements have the following meaning:

• IssuerId [Optional]: An identifier for the reference entity of the CDS. For
informational purposes and not used for pricing.

• CreditCurveId: The identifier of the reference entity defining the default curve
used for pricing. For the allowable values, see CreditCurveId for credit trades -
single name in Table 36. A ReferenceInformation node may be used in place of
this CreditCurveId node.

• ReferenceInformation: This node may be used as an alternative to the
CreditCurveId node to specify the reference entity, tier, currency and
documentation clause for the CDS. This in turn defines the credit curve used for
pricing. The ReferenceInformation node is described in further detail in
Section 8.3.27.

• SettlesAccrual [Optional]: Whether or not the accrued coupon is due in the event
of a default. This defaults to true if not provided.

Allowable values: Boolean node, allowing Y, N, 1, 0, true, false etc. The full set
of allowable values is given in Table 42.

• ProtectionPaymentTime [Optional]: Controls the payment time of protection and
premium accrual payments in case of a default event. Defaults to atDefault.

Allowable values: atDefault, atPeriodEnd, atMaturity. Overrides the
PaysAtDefaultTime node

• PaysAtDefaultTime [Deprecated]: true is equivalent to ProtectionPaymentTime
= atDefault, false to ProtectionPaymentTime = atPeriodEnd. Overridden by
the ProtectionPaymentTime node if set

Allowable values: Boolean node, allowing Y, N, 1, 0, true, false etc. The full set
of allowable values is given in Table 42.

• ProtectionStart [Optional]: The first date where a credit event will trigger the
contract. This defaults to the first date in the schedule if it is not provided.
Must be set to a date before or on the first date in the schedule if the LegData
has a rule that is not one of CDS or CDS2015. In general, for standard CDS
traded after the CDS Big Bang in 2009, the protection start date is equal to the
trade date. Therefore, typically the ProtectionStart should be set to the trade
date of the CDS.

• UpfrontDate [Optional]: Settlement date for the UpfrontFee if an UpfrontFee is

347

provided. If an UpfrontFee is provided and it is non-zero, UpfrontDate is
required. The UpfrontDate, if provided, must be on or after the ProtectionStart
date. Typically, it is 3 business days after the CDS contract trade date.

• UpfrontFee [Optional]: The upfront payment, expressed as a percentage in
decimal form, to be multiplied by notional amount. If an UpfrontDate is
provided, an UpfrontFee must also be provided. The UpfrontFee can be omitted
but cannot be left blank. The UpfrontFee can be negative. The UpfrontFee is
treated as an amount payable by the protection buyer to the protection seller. A
negative value for the UpfrontFee indicates that the UpfrontFee is being paid by
the protection seller to the protection buyer.

Allowable values: Any real number, expressed in decimal form as a percentage of
the notional. E.g. an UpfrontFee of 0.045 and a notional of 10M, would imply an
upfront fee amount of 450K.

• FixedRecoveryRate [Optional]: This node holds the fixed recovery rate if the
CDS is a fixed recovery CDS. For a standard CDS, this field should be omitted.

• TradeDate [Optional]: The CDS trade date. If omitted, the trade date is
deduced from the protection start date. If the schedule provided in the LegData
has a rule that is either CDS or CDS2015, the trade date is set equal to the
protection start date. This is the standard for CDS traded after the CDS Big
Bang in 2009. Otherwise, the trade date is set equal to the protection start date
minus 1 day as it was standard before the CDS Big Bang to have protection
starting on the day after the trade date.

• CashSettlementDays [Optional]: The number of business days between the trade
date and the cash settlement date. For standard CDS, this is 3 business days. If
omitted, this defaults to 3.

• RebatesAccrual [Optional]: The protection seller pays the accrued scheduled
current coupon at the start of the contract. The rebate date is not provided but
computed to be two days after protection start. This defaults to true if not
provided.

Allowable values: Boolean node, allowing Y, N, 1, 0, true, false etc. The full set
of allowable values is given in Table 42.

The LegData block then defines the CDS premium leg structure. This premium leg
must be be of type Fixed as described in Section 8.3.5.

348

Listing 225: CreditDefaultSwap Data

<CreditDefaultSwapData>
<IssuerId>CPTY_A</IssuerId>
<CreditCurveId>RED:008CA0|SNRFOR|USD|MR14</CreditCurveId>
<SettlesAccrual>Y</SettlesAccrual>
<ProtectionPaymentTime>atDefault</ProtectionPaymentTime>
<ProtectionStart>20160206</ProtectionStart>
<UpfrontDate>20160208</UpfrontDate>
<UpfrontFee>0.0</UpfrontFee>
<LegData>

<LegType>Fixed</LegType>
<Payer>false</Payer>
...

</LegData>
</CreditDefaultSwapData>

Listing 226: CreditDefaultSwapData with ReferenceInformation

<CreditDefaultSwapData>
<ReferenceInformation>
<ReferenceEntityId>RED:008CA0</ReferenceEntityId>
<Tier>SNRFOR</Tier>
<Currency>USD</Currency>
<DocClause>MR14</DocClause>

</ReferenceInformation>
<LegData>
...

</LegData>
</CreditDefaultSwapData>

A quanto credit default swap is a credit default swap with different denomination and
settlement currencies. Listing 227 shows an Example: The trade has a notional of 50
million BRL and pays a 6% premium. The premuim amounts are converted using the
FX-TR20H-USD-BRL fixing two days before they are settled in USD. The
hypothetical protection amounts computed for pricing purposes are converted to USD
in a similar fashion.

349

Listing 227: Quanto CDS CreditDefaultSwap Data

<LegData>
<LegType>Fixed</LegType>
<Payer>true</Payer>
<!-- This is the settlement currency -->
<Currency>USD</Currency>
<!-- This is the BRL notional -->
<Notionals>
<Notional>50000000</Notional>

</Notionals>
<!-- The FX index used to convert BRL amounts to the settlement ccy USD -->
<Indexings>
<Indexing>
<Index>FX-TR20H-USD-BRL</Index>
<FixingDays>2</FixingDays>
<FixingCalendar>USD,BRL</FixingCalendar>
<IsInArrears>true</IsInArrears>

</Indexing>
</Indexings>
...
<FixedLegData>
<Rates>
<Rate>0.06</Rate>

</Rates>
</FixedLegData>
...
</LegData>

8.2.51 Index Credit Default Swap

An index credit default swap (trade type IndexCreditDefaultSwap) is set up using an
IndexCreditDefaultSwapData block as shown in listing 228 and includes LegData and
BasketData trade component sub-nodes.

The LegData sub-node must be a fixed leg, and represents the recurring premium
payments. The direction of the fixed leg payments define if the Index CDS is for
bought (Payer: true) or sold (Payer: false) protection. The notional on the fixed leg is
the “unfactored notional”, i.e. the notional excluding any defaults. This is opposed to
the “trade date notional” which is reduced by defaults since the series inception until
the trade date and the “current notional” or “factored notional” which is reduced by
defaults between the series inception and the current evaluation date of the trade.

The BasketData sub-node (see section 8.3.28) is optional and specifies the constituent
reference entities of the index. This sub-node is intended for non-standard indices, that
require a bespoke basket. When BasketData is omitted, the index constituents are
derived from the CreditCurveId element in the IndexCreditDefaultSwapData block.

350

Listing 228: Index CreditDefaultSwap Data

<IndexCreditDefaultSwapData>
<CreditCurveId>RED:2I65BRHH6</CreditCurveId>
<SettlesAccrual>Y</SettlesAccrual>
<ProtectionPaymentTime>atDefault</ProtectionPaymentTime>
<ProtectionStart>20160206</ProtectionStart>
<UpfrontDate>20160208</UpfrontDate>
<UpfrontFee>0.0</UpfrontFee>
<LegData>

<LegType>Fixed</LegType>
<Payer>false</Payer>
...

</LegData>
<BasketData>
<Name>
<IssuerId>CPTY_1</IssuerId>
<CreditCurveId>RED:</CreditCurveId>
<Notional>100000.0</Notional>
<Currency>USD</Currency>

</Name>
<Name>
<IssuerId>CPTY_2</IssuerId>
<CreditCurveId>RED:</CreditCurveId>
<Notional>100000.0</Notional>
<Currency>USD</Currency>

</Name>
<Name>
<IssuerId>CPTY_3</IssuerId>
<CreditCurveId>RED:</CreditCurveId>
<Notional>100000.0</Notional>
<Currency>USD</Currency>

</Name>
<!-- ... -->

</BasketData>
</IndexCreditDefaultSwapData>

The meanings of the elements of the IndexCreditDefaultSwapData node follow below:

• CreditCurveId: The identifier of the index defining the default curve used for
pricing. The pricing can be set up to either use the index curve id, or use the
curve id:s of the individual index components defined in BasketData.

Allowable values: See CreditCurveId for credit trades - index in Table 36. Note
that the CreditCurveId cannot be a redcode or other identifier for an ABX or
CMBX. For these underlyings, trade type AssetBackedCreditDefaultSwap is used
instead.

• SettlesAccrual [Optional]: Whether or not the accrued coupon is due in the event
of a default. This defaults to true if not provided.

Allowable values: Boolean node, allowing Y, N, 1, 0, true, false etc. The full set
of allowable values is given in Table 42.

• ProtectionPaymentTime [Optional]: Controls the payment time of protection and
premium accrual payments in case of a default event. Defaults to atDefault.

351

Allowable values: atDefault, atPeriodEnd, atMaturity. Overrides the
PaysAtDefaultTime node

• PaysAtDefaultTime [Deprecated]: true is equivalent to ProtectionPaymentTime
= atDefault, false to ProtectionPaymentTime = atPeriodEnd. Overridden by
the ProtectionPaymentTime node if set

Allowable values: Boolean node, allowing Y, N, 1, 0, true, false etc. The full set
of allowable values is given in Table 42.

• ProtectionStart [Optional]: The first date where a credit event will trigger the
contract. This defaults to the first date in the schedule if it is not provided.
Must be set to a date before or on the first date in the schedule if the LegData
has a rule that is not one of CDS or CDS2015. In general, for standard index CDS,
the protection start date is equal to the trade date. Therefore, typically the
ProtectionStart should be set to the trade date of the index CDS.

Allowable values: See Date in Table 26.

• UpfrontDate [Optional]: Settlement date for the UpfrontFee if an UpfrontFee is
provided. If an UpfrontFee is provided and it is non-zero, UpfrontDate is
required.

Allowable values: See Date in Table 26. The UpfrontDate, if provided, must be
on or after the ProtectionStart date.

• UpfrontFee [Optional]: The upfront payment, expressed in decimal form as a
percentage of the notional. If an UpfrontDate is provided, an UpfrontFee must
also be provided. The UpfrontFee can be omitted but cannot be left blank. The
UpfrontFee can be negative. The UpfrontFee is treated as an amount payable by
the protection buyer to the protection seller. A negative value for the UpfrontFee
indicates that the UpfrontFee is being paid by the protection seller to the
protection buyer.

Allowable values: Any real number, expressed in decimal form as a percentage of
the notional. E.g. an UpfrontFee of 0.045 and a notional of 10M, would imply an
upfront fee amount of 450K.

• TradeDate [Optional]: The index CDS trade date. If omitted, the trade date is
deduced from the protection start date. If the schedule provided in the LegData
has a rule that is either CDS or CDS2015, the trade date is set equal to the
protection start date. Otherwise, the trade date is set equal to the protection
start date minus 1 day.

Allowable values: See Date in Table 26.

• CashSettlementDays [Optional]: The number of business days between the trade
date and the cash settlement date. For standard index CDS, this is generally 3
business days. If omitted, this defaults to 3.

Allowable values: Any non-negative integer.

• RebatesAccrual [Optional]: The protection seller pays the accrued scheduled
current coupon at the start of the contract. The rebate date is not provided but

352

computed to be two days after protection start. This defaults to true if not
provided.

Allowable values: Boolean node, allowing Y, N, 1, 0, true, false etc. The full set
of allowable values is given in Table 42.

The LegData block then defines the Index CDS premium leg structure. This premium
leg must be be of type Fixed as described in Section 8.3.5.

8.2.52 Index Credit Default Swap Option

An index CDS option, trade type IndexCreditDefaultSwapOption, is an option to
enter into an index CDS at a specified strike spread or strike price. The Index CDS
Option is set up using an IndexCreditDefaultSwapOptionData node as shown in
Listing 229. Its child nodes have the following meanings:

• KnockOut: A boolean node that determines whether front end protection is
included or not. When this node evaluates to false, front end protection is
included. When this node evaluates to true, front end protection is not included.

Allowable values: Boolean node, allowing Y, N, 1, 0, true, false etc. The full set
of allowable values is given in Table 42.

• IndexTerm [Optional]: An optional node giving the term of the underlying index
CDS e.g. 3Y, 5Y, 7Y, 10Y etc. The main function of this node is to allow for
different index CDS option volatility structures for different terms of the same
index series e.g. a CDX HY Series 34 5Y volatility structure and a CDX HY
Series 34 10Y volatility structure. If this node is omitted, the market is searched
for a CDS volatility surface with ID equal to the value of the CreditCurveId
node under IndexCreditDefaultSwapData. There will generally be one
CreditCurveId for each index CDS series e.g. CDXHYS34V1 for CDX HY Series
34 Version 1. Consequently, there can only be one CDS volatility surface for this
index CDS series. When IndexTerm is populated with the underlying index term,
the market is searched for a CDS volatility surface with ID equal to the value of
the CreditCurveId node with suffix -[IndexTerm]. For example, if the
CreditCurveId node on an index CDS option trade is CDXHYS34V1 and the
IndexTerm node is populated with 5Y, the market will be searched for a CDS
volatility surface with ID CDXHYS34V1-5Y and this will be used in the trade
valuation. In this way, different volatility surfaces can be used to value different
terms of the same CDS index series.

Allowable values: A string that can be parsed as a term that is a valid term for
the underlying CDS index e.g. 5Y, 10Y, etc.

• OptionData: A node defining the option details as described in Section 8.3.1.
The relevant fields in the OptionData node for an IndexCDSOption are:

– LongShort The allowable values are Long or Short. Long meaning that the
holder has the option to enter into the underlying index CDS.

– OptionType [Optional] Put/Call is optional and not used. The Payer field
in the underlying Index CDS leg determines if the option is to buy or sell
protection.

353

– Style Must be set to European as this is the only supported exercise for
IndexCreditDefaultSwapOption.

– Settlement The allowable values are Cash or Physical.

– PayOffAtExpiry Must be set to false as only payoff at exercise is supported.

– An ExerciseDates node where exactly one ExerciseDate date element must
be given.

– Premiums [Optional]: Option premium amounts paid by the option buyer
(Long) to the option seller (Short). See section 8.3.2

• IndexCreditDefaultSwapData: A node defining the underlying index CDS as
described in Section 8.2.51. Note that the StartDate in the Scheduledata in the
premium leg in the IndexCreditDefaultSwapData should be the date on which
the underlying CDS is entered into if the option is exercised (as opposed to the
inception date of the underlying index CDS series). Under standard terms, the
StartDate would be equal to the ExerciseDate but it can also be on a date
after the ExerciseDate, but not on a date before the ExerciseDate, unless Rule
is CDS2015 or CDS and StartDate is set at the start of the full IMM period
that the ExerciseDate falls into.

The TradeDate and ProtectionStart on the underlying CDS do not need to be
populated. If omitted, which is recommended, the TradeDate and
ProtectionStart on the underlying CDS default as follows:

TradeDate = max (option ExerciseDate, underlying schedule StartDate)
ProtectionStart = max (option ExerciseDate, underl. schedule StartDate)

Note that the cash settlement date for the underlying swap upfront premium is
set to the underlying TradeDate with defaults as above, plus 3 business days.

Also note that for schedules with IMM rules (e.g. CDS2015), if the underlying
schedule StartDate is not falling on an IMM date, it is adjusted to the previous
quarterly IMM date.

Finally, the notional is - as in the case of an Index Credit Default Swap - the
“unfactored notional”, i.e. the notional excluding any defaults between the series
inception and the trade or evaluation date of the trade.

• Strike [Optional]: A real number defining the option strike level. If this is an
empty string or omitted the strike will be determined according to table 19.

Note that if a strike is given, the UpfrontFee on the underlying IndexCDS must
be zero or omitted. The UpfrontFee is interpreted as a price strike.

Allowable values: Any real number. Note that the Strike is expressed in
decimal form when StrikeType is Spread, and in decimal form as percentage of
notional when StrikeType is Price. I.e. a Strike of 1.05 is 105% of the notional
when StrikeType is Price.

• StrikeType [Optional]: Determines the strike type. If Spread is given, the
Strike is interpreted as a strike spread. If Price is given, the Strike is

354

interpreted as a strike price. If omitted or left blank, it will be determined
according to table 19.

Allowable values: Spread or Price. Note that Spread is only supported when the
underlying market data is set up with spread strikes, and Price is only supported
when the market data is set up with price strikes. Typically the market data
convention for Index CDS Options is spread strikes, with the exception of CDX
North America High Yield (CDX NA HY) names, where the convention is to use
price strikes.

• TradeDate [Optional]: The trade date. If not given defaults to the valuation
date. In case of an underlying default the trade date is used to determine
whether the underlying notional before default should be considered part of the
outstanding notional (TradeDate < AuctionDate) or not (TradeDate ≥
AuctionDate).

Allowable values: See Date in Table 26. Can not be later than the valuation date.

• FrontEndProtectionStartDate [Optional]: The date on which the front end
protection kicks in. If not given, it defaults to the TradeDate. In case of an
underlying default this date is used to determine whether the underlying
contributes to the realised front end protection amount
(FrontEndProtectionStartDate < AuctionDate) or not
(FrontEndProtectionStartDate ≥ AcutionDate).

Allowable values: See Date in Table 26. Can not be later than the trade date.

• FixedRecoveryRate[Optional]: If provided, this recovery rate will be used in
palce of the market quoted recovery rate of the underlying.

Listing 229: Example Structure of IndexCreditDefaultSwapOptionData node.

<IndexCreditDefaultSwapOptionData>
<KnockOut>N</KnockOut>
<IndexTerm>5Y</IndexTerm>
<OptionData>

<LongShort>Long</LongShort>
<Style>European</Style>
<Settlement>Cash</Settlement>
<PayOffAtExpiry>false</PayOffAtExpiry>
<ExerciseDates>
<ExerciseDate>2023-05-09</ExerciseDate>

</ExerciseDates>
</OptionData>
<IndexCreditDefaultSwapData>
...

</IndexCreditDefaultSwapData>
<Strike>1.063</Strike>
<StrikeType>Price</StrikeType>

</IndexCreditDefaultSwapOptionData>

355

Strike StrikeType UpfrontFee Effective Strike Effective StrikeType
na na na RunningCoupon Spread
na Spread na RunningCoupon Spread
na Price na 1.0 Price
K na na K Spread
K Spread na K Spread
K Price na K Price
na na U 1.0 - U Price
na Spread U (= 0) RunningCoupon Spread
na Spread U (6= 0) (not allowed) (not allowed)
na Price U 1.0 - U Price
K na U (= 0) K Spread
K na U (6= 0) (not allowed) (not allowed)
K Spread U (= 0) K Spread
K Spread U (6= 0) (not allowed) (not allowed)
K Price U (= 0) K Price
K Price U (6= 0) (not allowed) (not allowed)

Table 19: Effective strike and strike type to be used in an Index CDS Option dependent on the
Strike, StrikeType and UpfrontFee in the underlying Index CDS

8.2.53 Synthetic CDO

A Synthetic Collateralized Debt Obligation (CDO), uses trade type SyntheticCDO and
is set up using a CdoData block as shown in listing 230.

A synthetic CDO is a basket credit derivative, where the protection seller receives a
premium cash flow in exchange for providing (notional) protection against portfolio
losses due to defaults in a specific tranche characterized by the attachment point A
and detachment point D.

CDOs can refer to the constituents of an index such as CDX or iTraxx, or be bespoke,
i.e. refer to a bespoke basket of underlying credit names, using the BasketData
sub-node, (see section 8.3.28)

356

Listing 230: CDO Data

<CdoData>
<Qualifier>RED:2I65BRHH6</Qualifier>
<AttachmentPoint>0.12</AttachmentPoint>
<DetachmentPoint>0.22</DetachmentPoint>
<ProtectionStart> 20140425 </ProtectionStart>
<UpfrontDate/>
<UpfrontFee/>
<SettlesAccrual>Y</SettlesAccrual>
<ProtectionPaymentTime>atDefault</ProtectionPaymentTime>
<!-- Premium leg -->
<LegData>
<LegType>Fixed</LegType>
<Payer>true</Payer>

...
</LegData>
<BasketData>
...

</BasketData>
</CdoData>

The meanings of the elements of the CdoData node follow below:

• Qualifier: The identifier of the credit index defining the default and base
correlation curves used for pricing. In the case of a bespoke basket, i.e. when the
BasketData sub-node is used, the Qualifer should be set to the credit index most
closely matching the bespoke basket.

Allowable values: See CreditCurveId for credit trades - index in Table 36.

• AttachmentPoint: Losses where protection starts, expressed as a fraction of the
basket notional. Note that Attachment- and DetachmentPoints (AP, DP) are
defined as fractions of the current basket notional.

Allowable values: A number between 0 and 1, below the DetachmentPoint.

• DetachmentPoint: Losses where protection end, expressed as a fraction of the
basket notional

Note that Attachment- and DetachmentPoints (AP, DP) are defined as fractions
of the current basket notional.

Allowable values: A number between 0 and 1, above the AttachmentPoint.

• SettlesAccrual: Whether or not the accrued coupon is due in the event of a
default.

Allowable values: Boolean node, allowing Y, N, 1, 0, true, false etc. The full set
of allowable values is given in Table 42.

• ProtectionPaymentTime [Optional]: Controls the payment time of protection and
premium accrual payments in case of a default event. Defaults to atDefault.

Allowable values: atDefault, atPeriodEnd, !atMaturity. Overrides the
PaysAtDefaultTime node

357

• PaysAtDefaultTime [Deprecated]: true is equivalent to ProtectionPaymentTime
= atDefault, false to ProtectionPaymentTime = atPeriodEnd. Overridden by
the ProtectionPaymentTime node if set

Allowable values: Boolean node, allowing Y, N, 1, 0, true, false etc. The full set
of allowable values is given in Table 42.

• ProtectionStart: The first date where a default event will trigger the contract

Allowable values: See Date in Table 26. Must be set to a date before or on the
first date in the premium leg schedule.

• UpfrontDate[Optional]: Settlement date for the UpfrontFee if an UpfrontFee is
provided. If an UpfrontFee is provided and it is non-zero, UpfrontDate is
required.

Allowable values: See Date in Table 26. The UpfrontDate, if provided, must be
on or after the ProtectionStart date.

• UpfrontFee[Optional]: The upfront payment, expressed as a rate, to be
multiplied by the tranche Notional amount. Note that a positive amount
indicates that the UpfrontFee is paid by the protection buyer to the protection
seller, and a negative amount indicates that the UpfrontFee is paid by the
protection seller to the protection buyer. The UpfrontFee cannot be left blank.

Allowable values: Any real number

• FixedRecoveryRate[Optional]: If provided, this recovery rate will be used in
palce of the market quoted recovery rates of the underlying basket or index
constituents, to work out the portfolio loss distribution and expected tranche loss.

Allowable values: Any real number in the range [0, 1]

• LegData: Premium leg description as in an Index CDS (see section 8.2.51) with
Notional corresponding to the initial tranche notional.
Note that the Payer field in LegData determines whereas protection is bought
(true) or sold (false).
The StartDate in LegData is the first accrual start date on the premium leg of
the index tranche. If the date generation Rule is CDS2015, one can enter the
index tranche trade date for StartDate and the correct accrual start date will be
deduced, i.e. the first accrual start date before the trade date using the CDS2015
date generation rules.

• BasketData[Optional]: Underlying basket description for bespoke baskets (see
section 8.3.28). This is analogous to a bespoke basket in an Index CDS (see
section 8.2.51). If omitted, CreditIndex static data, with id Qualifier element
in CdoData, is extracted from ReferenceData.

Note that the sum of notionals of the basket components must add up to the
complete basket notional.

SumofComponentNotionals = CompleteBasketNotional =
InitialTrancheNotional/(DetachmentPoint− AttachmentPoint)
If weights are used instead of notionals in the basket components, the sum of the
weights must add up to 1.

358

8.2.54 Credit Linked Swap

A credit linked swap, trade type CreditLinkedSwap, is set up using a
CreditLinkedSwapData block as shown in listing 231. The elements have the following
meaning:

• CreditCurveId: The referenced CDS credit curve.
Allowable values: See CreditCurveId for credit trades - single name in Table 36.
A ReferenceInformation node may be used in place of this CreditCurveId
node.

• SettlesAccrual [Optional]: A flag indicating whether accrued coupon amounts are
paid in case of a credit event. Optional, defaults to true. Applies to the
payments specified under ContingentPayments.
Allowable values: true, false

• FixedRecoveryRate [Optional]: A fixed (digital) recovery rate to apply. If not
given, the market recovery rate is used. Applies to the payments specified under
DefaultPayments and RecoveryPayments.
Allowable values: Any non-negative real number.

• DefaultPaymentTime [Optional]: Controls the timing of the payments specified
under DefaultPayments and RecoveryPayments. Defaults to atDefault.
Allowable values: atDefault, atPeriodEnd, atMaturity.

• IndependentPayments [Optional]: The legs for which payments are made
independent from credit events. The node contains one or more LegData
subnodes representing these legs. Optional, can be omitted if no such payments
are made.
Allowable values: See 8.3.3 for the LegData subnode structure.

• ContingentPayments [Optional]: The legs for which payments are contingent on
no credit event having occured until the payment date. If no such payments are
made, the node can be omitted.
Allowable values: See 8.3.3 for the LegData subnode structure.

• DefaultPayments [Optional]: The legs for which payments are contingent on a
credit event having occured. If no such payments are made, the node can be
omitted. If a default happens at a date d, the associated payment is the earliest
payment with date greater or equal to d.
Allowable values: See 8.3.3 for the LegData subnode structure.

• RecoveryPayments [Optiopnal]: The legs for which payments are contingent on a
credit event having occured. The node works analogously to the
DefaultPayments node, the only difference is that that payment amounts are
weighted by RR instead of 1−RR.
Allowable values: See 8.3.3 for the LegData subnode structure.

All legs must be given in the same currency.

359

Listing 231: Credit Linked Swap Data

<CreditLinkedSwapData>
<CreditCurveId>RED:46A844|SNRFOR|USD|XR14</CreditCurveId>
<SettlesAccrual>false</SettlesAccrual>
<FixedRecoveryRate>0.4</FixedRecoveryRate>
<DefaultPaymentTime>atDefault</DefaultPaymentTime>
<IndependentPayments>
<LegData> ... </LegData>
<LegData> ... </LegData>
...

</IndependentPayments>
<ContingentPayments>
<LegData> ... </LegData>
<LegData> ... </LegData>
...

</ContingentPayments>
<DefaultPayments>
<LegData> ... </LegData>
<LegData> ... </LegData>
...

</DefaultPayments>
<RecoveryPayments>
<LegData> ... </LegData>
<LegData> ... </LegData>
...

</RecoveryPayments>
</CreditLinkedSwapData>

8.2.55 Commodity Forward

The CommodityForwardData node is the trade data container for the
CommodityForward trade type. The structure of an example CommodityForwardData
node is shown in Listings 232 and 233.

Listing 232: Commodity Forward data

<CommodityForwardData>
<Position>Long</Position>
<Maturity>2018-06-30</Maturity>
<Name>PM:XAUUSD</Name>
<Currency>USD</Currency>
<Strike>1355</Strike>
<Quantity>1000</Quantity>
<IsFuturePrice>...</IsFuturePrice>
<FutureExpiryDate>...</FutureExpiryDate>
<FutureExpiryOffset>...</FutureExpiryOffset>
<FutureExpiryOffsetCalendar>...</FutureExpiryOffsetCalendar>
<PhysicallySettled>...</PhysicallySettled>
<PaymentDate>...</PaymentDate>

</CommodityForwardData>

360

Listing 233: CommodityForwardData for forward on LME Aluminium 3M future.

<CommodityForwardData>
<Position>Long</Position>
<Maturity>2021-08-16</Maturity>
<Name>XLME:AH</Name>
<Currency>USD</Currency>
<Strike>2160</Strike>
<Quantity>1000</Quantity>
<IsFuturePrice>true</IsFuturePrice>
<FutureExpiryDate>2021-11-16</FutureExpiryDate>
<PhysicallySettled>true</PhysicallySettled>

</CommodityForwardData>

The meanings and allowable values of the elements in the CommodityForwardData
node follow below.

• Position: Defines whether the underlying commodity will be bought (long) or
sold (short).
Allowable values: Long, Short

• Maturity: The maturity date of the forward contract, i.e. the date when the
underlying commodity will be bought/sold.
Allowable values: Any date string, see Date in Table 26.

• Name: The name of the underlying commodity.
Allowable values: See Name for commodity trades in Table 38.

• Currency: The currency of the commodity forward.
Allowable values: See Currency in Table 26.

• Strike: The agreed buy/sell price of the commodity forward.
Allowable values: Any positive real number.

• Quantity: The number of units of the underlying commodity to be bought/sold.
Allowable values: Any positive real number.

• IsFuturePrice [Optional]: This should be set to true if the forward contract
underlying is the settlement price of a commodity future contract. If omitted, it
defaults to false.
Allowable values: Any string that evaluates to true or false as outlined in Table
42.

• FutureExpiryDate [Optional]: If IsFuturePrice is set to true, this gives the
expiration date of the underlying commodity future contract. If omitted, the
expiration date of the underlying commodity future contract is set equal to the
value in the Maturity node. If FutureExpiryDate is provided, it takes
precedence over any value provided in the Maturity, FutureExpiryOffset or
FutureExpiryOffsetCalendar fields.
Allowable values: Any date string, see Date in Table 26.

• FutureExpiryOffset [Optional]: If IsFuturePrice is set to true and
FutureExpiryDate is not explicitly specified, this gives the offset period that
should be applied to the Maturity date to generate the underlying commodity

361

future contract expiration date. If omitted, the expiration date of the underlying
commodity future contract is set equal to the value in the Maturity node.
Allowable values: Any string that can be parsed as a period e.g. 2D, 3M, etc.

• FutureExpiryOffsetCalendar [Optional]: If FutureExpiryOffset is provided
and is being used, this gives the calendar that should be used when generating
the underlying commodity future contract expiration date from the Maturity
date. If omitted, all days are considered good business days when generating the
commodity future contract expiration date which is generally not what is desired.
Allowable values: Any calendar string, see Calendar in Table 30.

• PhysicallySettled [Optional]: A value of true indicates that the forward
contract is physically settled e.g. if the underlying is a future contract, that
future contract is entered into on the Maturity date. A value of false indicates
that the forward contract is cash settled e.g. if the underlying is a future
contract, that future contract settlement price is observed on the Maturity date
(or the FutureExpiryDate, when given) and the net amount due is exchanged on
the cash settlement date. If omitted, it defaults to true.
Allowable values: Any string that evaluates to true or false as outlined in Table
42.

• PaymentDate [Optional]: If PhysicallySettled is set to false, this gives the
cash settlement date. It must be greater than or equal to the Maturity date. If
omitted and the forward is cash settled, the Maturity date is used.
Allowable values: Any date string, see Date in Table 26.

• SettlementData [Optional]: This node is used to specify the settlement of the
cash flows for non-deliverable futures.

A SettlementData node is shown in Listing 234, and the meanings and allowable
values of its elements follow below.

• PayCurrency: The settlement currency for the payment cashflow.
Allowable values: See Currency in Table 26.

• FXIndex: The FX reference index for determining the FX fixing at the value
date. This field is required if settlement is Cash and the payment date is greater
than the value date.
Allowable values: The format of the FXIndex is “FX-FixingSource-CCY1-CCY2”
as described in Table 34.

• FixingDate: The date on which the FXIndex is observed. Allowable values: See
Date in Table 26.

Listing 234: Example SettlementData node with Rules sub-node

<SettlementData>
<PayCurrency>EUR</PayCurrency>
<FXIndex>FX-ECB-EUR-USD</FXIndex>
<FixingDate>2021-05-28</FixingDate>

</SettlementData>

Note that a Precious Metal Forward should be represented as an FX Forward using the

362

appropriate commodity “currency” (XAU, XAG, XPT, XPD).

8.2.56 Commodity Swap and Basis Swap

The structure of a CommoditySwap trade node is shown in listing 235. This trade node
can be used to represent commodity swaps and commodity basis swaps. It consists of
the generic Envelope and the specific SwapData section.

The SwapData node may contain two or more LegData nodes. There must be at least
one LegData node of a commodity LegType, i.e. CommodityFixed or
CommodityFloating, but non-commodity leg types are also allowed. The commodity
leg types are described in sections 8.3.20 and 8.3.22 respectively.

Listing 235: Commodity Swap

<Trade id="...">
<TradeType>CommoditySwap</TradeType>
<Envelope>
</Envelope>
<SwapData>
<LegData>
<LegType>CommodityFixed</LegType>
...

</LegData>
<LegData>
<LegType>CommodityFloating</LegType>
...

</LegData>
</SwapData>

</Trade>

8.2.57 Commodity Swaption

The structure of a trade node representing a commodity swaption is shown in listing
236. It consists of the generic Envelope and the specific CommoditySwaptionData
node.

The CommoditySwaptionData node contains an OptionData node described in 8.3.1.
The relevant fields in the OptionData node for a CommoditySwaption are:

• LongShort: The allowable values are Long or Short. Note that the payer and
receiver legs in the underlying swap are always from the perspective of the party
that is Long. E.g. for a Short CommoditySwaption with a fixed leg where the
Payer flag is set to false, it means that the counterparty receives the fixed flows.

• OptionType[Optional]: This flag is optional for CommoditySwaptions, and even
if set, has no impact. The direction of flows is determined entirely by the Payer
flags on the underlying legs (and the LongShort flag above).

• Style: The exercise style of the CommoditySwaption. Only exercise style
European is supported.

• NoticePeriod[Optional]: The notice period defining the date (relative to the
exercise date) on which the exercise decision has to be taken. If not given the

363

notice period defaults to 0D, i.e. the notice date is identical to the exercise date.
Allowable values: A number followed by D, W, M, or Y

• NoticeCalendar[Optional]: The calendar used to compute the notice date from
the exercise date. If not given defaults to the NullCalendar (no holidays,
weekends are no holidays either). Allowable values: See Table 30 Calendar.

• NoticeConvention[Optional]: The roll convention used to compute the notice
date from the exercise date. Defaults to Unadjusted if not given. Allowable
values: See Table 27 Roll Convention.

• Settlement: Delivery Type. The allowable values are Cash or Physical.

• ExerciseFees[Optional]: This node contains child elements of type
ExerciseFee. Similar to a list of notionals (see 8.3.3) the fees can be given either

– as a list where each entry corresponds to an exercise date and the last entry
is used for all remaining exercise dates if there are more exercise dates than
exercise fee entries, or

– using the startDate attribute to specify a change in a fee from a certain
day on (w.r.t. the exercise date schedule)

Fees can either be given as an absolute amount or relative to the current notional
of the period immediately following the exercise date using the type attribute
together with specifiers Absolute resp. Percentage. If not given, the type
defaults to Absolute. Percentage fees are expressed in decimal form, e.g. 0.05 is
a fee of 5% of notional.

If a fee is given as a positive number the option holder has to pay a
corresponding amount if they exercise the option. If the fee is negative on the
other hand, the option holder receives an amount on the option exercise.

• ExerciseFeeSettlementPeriod[Optional]: The settlement lag for exercise fee
payments. Defaults to 0D if not given. This lag is relative to the exercise date
(as opposed to the notice date). Allowable values: A number followed by D, W,
M, or Y

• ExerciseFeeSettlementCalendar[Optional]: The calendar used to compute the
exercise fee settlement date from the exercise date. If not given defaults to the
NullCalendar (no holidays, weekends are no holidays either). Allowable values:
See Table 30 Calendar.

• ExerciseFeeSettlementConvention[Optional]: The roll convention used to
compute the exercise fee settlement date from the exercise date. Defaults to
Unadjusted if not given. Allowable values: See Table 27 Roll Convention.

• An ExerciseDates node where exactly one ExerciseDate date element must be
given for European style CommoditySwaptions. Allowable values: The
ExerciseDate must be on or before the StartDate of the underlying legs, and be
on or after the valuation date. For the format, see Date in Table 26.

• Premiums [Optional]: Option premium node with amounts paid by the option
buyer to the option seller.

364

Allowable values: See section 8.3.2

The CommoditySwaptionData node should contain exactly two LegData nodes. One
LegData node should be of type CommodityFixed described in section 8.3.20 and one
should be of type CommodityFloating described in section 8.3.22. Note that on the
CommodityFloating leg, the Spread must be omitted or set to 0, and the Gearing
must be omitted or set to 1.

Listing 236: Commodity swaption

<Trade id="...">
<TradeType>CommoditySwaption</TradeType>
<Envelope>
...

</Envelope>
<CommoditySwaptionData>
<OptionData>
<LongShort>Long</LongShort>
<Style>European</Style>
<Settlement>Cash</Settlement>
<ExerciseDates>
<ExerciseDate>2023-01-05</ExerciseDate>

</ExerciseDates>
</OptionData>
<LegData>
<LegType>CommodityFixed</LegType>
...

</LegData>
<LegData>
<LegType>CommodityFloating</LegType>
...

</LegData>
</CommoditySwaptionData>

</Trade>

8.2.58 Commodity Option

The CommodityOptionData node is the trade data container for the CommodityOption
trade type. Vanilla commodity options are supported. The exercise style may be
European or American. The CommodityOptionData node includes exactly one
OptionData trade component sub-node plus elements specific to the commodity
option. The structure of a CommodityOptionData node for a commodity option is
shown in Listing 237.

365

Listing 237: Commodity Option data

<CommodityOptionData>
<OptionData>
<LongShort>Short</LongShort>
<OptionType>Put</OptionType>
<Style>European</Style>
<Settlement>Cash</Settlement>
<PayOffAtExpiry>false</PayOffAtExpiry>
<ExerciseDates>
<ExerciseDate>2029-04-28</ExerciseDate>
</ExerciseDates>

</OptionData>
<Name>NYMEX:CL</Name>
<Currency>USD</Currency>
<StrikeData>
<StrikePrice>
<Value>100</Value>
<Currency>USD</Currency>

</StrikePrice>
</StrikeData>
<Quantity>500000</Quantity>
<IsFuturePrice>true<IsFuturePrice>
<FutureExpiryDate>2029-04-28<FutureExpiryDate>

</CommodityOptionData>

The meanings and allowable values of the elements in the CommodityOptionData node
follow below.

• The CommodityOptionData node contains an OptionData node described in
8.3.1. The relevant fields in the OptionData node for a CommodityOption are:

– LongShort: The allowable values are Long or Short.

– OptionType: The allowable values are Call or Put.

– Style: The exercise style of the CommodityOption. The allowable values
are European or American.

– PayOffAtExpiry: This must be set to false as payoff at expiry is not
currently supported.

– An ExerciseDates node where exactly one ExerciseDate date element
must be given for. Allowable values: See Date in Table 26.

– Premiums [Optional]: Option premium node with amounts paid by the
option buyer to the option seller. Allowable values: See section 8.3.2

• Name: The name of the underlying commodity.
Allowable values: See Name for commodity trades in Table 38.

• Currency: The currency of the commodity option.
Allowable values: See Currency in Table 26.

• StrikeData: The option strike price. It uses the price quotation outlined in the
underlying contract specs for the commodity name in question.
Allowable values: Only supports StrikePrice as described in Section 8.3.30.

366

• Quantity: The number of units of the underlying commodity covered by the
transaction. The unit type is defined in the underlying contract specs for the
commodity name in question. For avoidance of doubt, the Quantity is the
number of units of the underlying commodity, not the number of contracts.
Allowable values: Any positive real number.

• IsFuturePrice [Optional]: A boolean indicating if the underlying is a future
contract settlement price, true, or a spot price, false.

Allowable values: A boolean value given in Table 42. If not provided, the default
value is true.

• FutureExpiryDate [Optional]: If IsFuturePrice is true and the underlying is a
future contract settlement price, this node allows the user to specify the expiry
date of the underlying future contract.

Allowable values: This should be a valid date as outlined in Table 26. If not
provided, it is assumed that the future contract’s expiry date is equal to the
option expiry date provided in the OptionData node.

8.2.59 Commodity Digital Option

A commodity digital option is represented with trade type CommodityDigitalOption
and a corresponding CommodityDigitalOptionData node. The latter differs from the
CommodityOptionData node in section 8.2.58 by replacing tag Quantity with tag
Payoff which is the cash amount paid in the Currency of the option from the party
that is short to the party that is long, when the underlying price exceeds the strike at
expiry in case of a Call (or falls below the strike in case of a Put). The digital option is
priced in ORE as a spread of vanilla Commodity options at two slightly different
strikes. For option type Call and Put, respectively, the digital call/put is constructed
as

Digital Call =
Payoff

∆
× (Call(K −∆/2)− Call(K + ∆/2))

Digital Put =
Payoff

∆
× (Put(K + ∆/2)− Put(K −∆/2))

so that the long digital option has positive value in both cases. The strike spread ∆
used here is set to 1% of strike K.

8.2.60 Commodity Spread Option

A commodity Spread Option is represented with trade type CommoditySpreadOption
and a corresponding CommoditySpreadOptionData node.

The CommoditySpreadOptionData node is the trade data container for the
CommoditySpreadOption trade type. The structure of a CommoditySpreadOptionData
node for a commodity option is shown in Listing 238.

The CommoditySpreadOptionData include exactly two LegData nodes of type
CommodityFloating. Details on these are described in 8.3.22. The resulting Legs must
produce the same amount of cashflows (i.e. the number of calculation periods must be
the same for the long and short positions). If the number of cashflows per leg is 1, this

367

trade represents a vanilla commodity spread option. If is greater than 1, it represents a
multi-period commodity spread option. Exactly one payer and one receiver leg are
required, the leg with isPayer setto true is the long (positive) position in the spread
payoff.

Within the two LegData, the Quantity node has must be equal. If the underlying
contracts are quoted using different units (e.g. barrels vs liters), the Gearing node
must be used to account for this difference. The gearing could also be used for the heat
rate factor in spark / heat rate options.

Other than the two legs, the following nodes complete the
CommoditySpreadOptionData container:

• SpreadStrike: The strike value for the spread. Allowable values: Any real
number.

• OptionData: This is a trade component sub-node outlined in section 8.3.1. The
relevant fields in the OptionData node for an CommoditySpreadOption are

– LongShort The allowable values are Long or Short.

– OptionType The allowable values are Call or Put.

– A PaymentData [Optional] node can be added which defines the settlement
date of the option payoff.

– Premiums [Optional]: Option premium amounts paid by the option buyer to
the option seller. See section 8.3.2

• OptionStripPaymentDates [Optional]: If the number of cashflows per leg is
greater than 1, we can group options by their expiry date into strips. All option
in a strip will have the same payment date as defined in this node. The payment
date will be lag business days after the latest expiry date in the strip. The node
has following sub-nodes:

– OptionStripDefinition A schedule node 8.3.4 defining the option strips.
The n dates in the schedule defining n− 1 strips, each strip include the
period’s start date and excludes period’s end date. All options with expiry
within start and end of a period are falling in the same strip. The schedule
has to cover all option expiries. The first date in the schedule has to be
before or on the first expiry date of the options and the last date in the
schedule has to be after last expiry date of the options.

– PaymentCalendar Calendar defining valid business days for the payment
date.

– PaymentLag number of business days.

– PaymentConvention business day convention for the option strip payment
date.

368

Listing 238: Commodity Spread Option data

<CommoditySpreadOptionData>
<LegData>
<LegType>CommodityFloating</LegType>
<IsPayer>true<IsPayer>
...
</LegData>
<LegData>
<LegType>CommodityFloating</LegType>
<IsPayer>false<IsPayer>
...
</LegData>
<OptionData>
<LongShort>Long</LongShort>
<OptionType>Call</OptionType>
<Premiums>
<Premium>
<Amount>10900</Amount>
<Currency>EUR</Currency>
<PayDate>2020-03-01</PayDate>

</Premium>
</Premiums>

</OptionData>
<SpreadStrike>2.3</SpreadStrike>
<OptionStripPaymentDates>

<OptionStripDefinition>
<Rules>
<StartDate>2023-07-01</StartDate>
<EndDate>2023-10-01</EndDate>
<Tenor>1M</Tenor>
<Calendar>NullCalendar</Calendar>
<Convention>Unadjusted</Convention>
<TermConvention>Unadjusted</TermConvention>
<Rule>Backward</Rule>

</Rules>
</OptionStripDefinition>

<PaymentCalendar>ICE_FuturesUS,US-NERC</PaymentCalendar>
<PaymentLag>5</PaymentLag>
<PaymentConvention>MF</PaymentConvention>

</OptionStripPaymentDates>
</CommoditySpreadOptionData>

8.2.61 Commodity Average Price Option

The structure of a trade node representing a commodity average price option (APO) is
shown in listing 239. It consists of the generic Envelope and the specific
CommodityAveragePriceOptionData node. A strip of these options may be booked
using the commodity option strip trade outlined in section 8.2.62. The meanings and
allowable values of the elements in the CommodityAveragePriceOptionData are as
follows:

• OptionData: This node is described in section 8.3.1. The relevant fields in the
OptionData node for a CommodityAveragePriceOption are:

– LongShort: The allowable values are Long or Short.

369

– OptionType: The allowable values are Call or Put, where Call is an option
for the party that is Long to buy the underlying commodity, and Put is an
option to sell the underlying commodity.

– Style: only European exercise style is supported.

– the ExerciseDates node should contain exactly one ExerciseDate, and the
single ExerciseDate should be on or before the payment date. Also, the
single ExerciseDate should be on or after the final date in the calculation
period i.e. the EndDate below.

– Premiums [Optional]: Option premium node with amounts paid by the
option buyer to the option seller. Allowable values: See section 8.3.2

• BarrierData [optional]: If given this node specifies the barrier terms of the
option:

– Type: One of UpAndIn, DownAndIn, UpAndOut, DownAndOut

– Style: One of European, American. A European barrier is observed on the
last relevant pricing date of the APO while an American barrier is observed
on all pricing dates of the APO.

– LevelData: The barrier level. Only single-barrier options are allowed, i.e.
exactly one level must be given.

• Name: An identifier specifying the commodity being referenced. This is described
in section 8.3.24.

Allowable values: See Name for commodity trades in Table 38.

• Currency: The currency of the payoff which must be consistent with either
currency of the market data set up for the commodity or the other currency
specified in FXIndex (see below).

Allowable values: See Currency in Table 26.

• Quantity: The number of units of the underlying commodity covered by the
APO. The unit type is defined in the underlying contract specs for the
commodity name in question. For avoidance of doubt, the Quantity is the
number of units of the underlying commodity, not the number of contracts.

The meaning of the Quantity is influenced by the CommodityQuantityFrequency
value as described in section 8.3.24. If CommodityQuantityFrequency is set to
PerCalculationPeriod, this quantity is used directly in the APO payoff. If
CommodityQuantityFrequency is set to PerCalendarDay, this quantity is
multiplied by the number of calendar days in the APO period to give the final
quantity that is used in the APO payoff.

Allowable values: Any positive real number.

• StrikeData: A StrikeData node is used as described in Section 8.3.30 to
represent the APO strike price and Currency of the Strike.The APO strike price.
The strike uses the price quotation outlined in the underlying contract specs for
the commodity name in question. Note that for CommodityAPOs only
StrikePrice is supported within the StrikeData node, and not StrikeYield.

370

Allowable values: Only supports StrikePrice as described in Section 8.3.30.

• PriceType: The price type is Spot if the APO is referencing a commodity spot
price, and it is FutureSettlement if the APO is referencing a commodity future
contract settlement price.

Allowable values: Spot or FutureSettlement.

• StartDate: The start date of the APO’s calculation period.

Allowable values: See Date in Table 26.

• EndDate: The end date of the APO’s calculation period.

Allowable values: See Date in Table 26.

• PaymentCalendar: The business calendar used to determine the valid payment
date.

Allowable values: See Table 30 Calendar.

• PaymentLag: The payment date is this number of business days after a given
base date. The base date is determined by the value of the
CommodityPayRelativeTo node below which is generally omitted for APOs and
allowed to take its default value of CalculationPeriodEndDate.

Allowable values: Any valid period, i.e. a non-negative whole number, optionally
followed by D (days), W (weeks), M (months), Y (years). Defaults to 0D if left
blank or omitted. If a whole number is given and no letter, it is assumed that it
is a number of D (days).

• PaymentConvention: The roll convention used to adjust the payment date.

Allowable values: See Table 27 Roll Convention. Defaults to Unadjusted if left
blank or omitted.

• PricingCalendar: The business calendar used for determining the Pricing Dates
in the calculation period.

Allowable values: See Table 30 Calendar. Defaults to NullCalendar (no
holidays) if left blank or omitted.

• PaymentDate [Optional]: An explicit payment date for the APO if the
combination of PaymentCalendar, PaymentLag and PaymentConvention is not
sufficient. If PaymentDate is provided, it overrides the values provided in
PaymentCalendar, PaymentLag and PaymentConvention.

• Gearing [Optional]: An optional gearing factor that the average price is
multiplied by in the APO payoff. The default value is 1.0.

• Spread [Optional]: An optional spread that is added to the average price in the
APO payoff. The default value is 0.0.

• CommodityQuantityFrequency [Optional]: This is as described in section 8.3.24.

• CommodityPayRelativeTo [Optional]: This is as described in section 8.3.24.

371

• FutureMonthOffset [Optional]: This is as described in section 8.3.24. Note that
IsAveraged defaults to false as it cannot be used as a tag within the
CommodityAveragePriceOptionData node. Thus, if e.g. FutureMonthOffset is
set to 2, the future contract month and year is taken as the second month
following the base date’s month and year; and so on for all positive values of
FutureMonthOffset.

• DeliveryRollDays [Optional]: This is as described in section 8.3.24.

• IncludePeriodEnd [Optional]: This is as described in section 8.3.24.

• FXIndex [Optional]: This is an FX index used to apply currency conversion daily
in the average. The currencies pair must include the currency used in the
underlying commodity trade and the currency used for settlement.

Allowable values: See Table 34 for supported fx indices.

8.2.62 Commodity Option Strip

The structure of a trade node representing a commodity option strip is shown in listing
240. This node can be used to represent a strip of commodity average price options as
described in section 8.2.61 or a strip of European commodity options as described in
section 8.2.58. It consists of the generic Envelope and the specific
CommodityOptionStripData node.

The CommodityOptionStripData node has a LegData node with LegType set to
CommodityFloating. This LegData node is described in detail in sections 8.3.22 and
8.3.24. Note that the Payer field in CommodityFloatingLegData, while mandatory, has
no impact on flows. The node IsAveraged in CommodityFloatingLegData determines
whether a strip of European commodity options or a strip of APOs are created:

• If IsAveraged is false, a strip of European commodity options is created.
There is a European put and or European call option created for each calculation
period. The exercise date of the option in the calculation period is given by the
Pricing Date in the calculation period using the rules outlined in section 8.3.24.
The quantity is given by the quantity in the calculation period using the rules
outlined in section 8.3.24. If cash settled, the cash settlement date is given by the
payment date for the calculation period using the rules outlined in section 8.3.24.

• If IsAveraged is true, a strip of commodity average price options is created.
There is a put and or call option created for each calculation period. The
exercise date of the option in the calculation period is given by the calculation
period end date. The quantity is given by the quantity in the calculation period
using the rules outlined in section 8.3.24.

Each calculation period may contain a put and a call that may be either bought or
sold. The type of option, whether they are bought or sold and the strike price is
determined by the Calls and Puts nodes. We describe here the settings for the Calls
node with the understanding that analogous descriptions apply to the Puts node. If
the Calls node is omitted, it is assumed that there are no call options in the strip.

The LongShorts node may contain one LongShort node or the same number of
LongShort nodes as calculation periods. Each LongShort node has the allowable

372

Listing 239: Commodity average price option

<Trade id="...">
<TradeType>CommodityAveragePriceOption</TradeType>
<Envelope>
...
</Envelope>
<CommodityAveragePriceOptionData>
<OptionData>
<LongShort>Short</LongShort>
<OptionType>Call</OptionType>
<Style>European</Style>
<ExerciseDates>

<ExerciseDate>2020-01-31</ExerciseDate>
</ExerciseDates>

</OptionData>
<BarrierData>
<Type>UpAndIn</Type>
<Style>American</Style>
<LevelData>
<Level>
<Value>80</Value>

</Level>
</LevelData>

</BarrierData>
<Name>NYMEX:CL</Name>
<Currency>USD</Currency>
<Quantity>6000</Quantity>
<StrikeData>
<StrikePrice>
<Value>80</Value>
<Currency>USD</Currency>

</StrikePrice>
</StrikeData>
<PriceType>FutureSettlement</PriceType>
<StartDate>2022-01-01</StartDate>
<EndDate>2023-01-31</EndDate>
<PaymentCalendar>USD</PaymentCalendar>
<PaymentLag>5</PaymentLag>
<PaymentConvention>Following</PaymentConvention>
<PricingCalendar>USD</PricingCalendar>
<Gearing>1</Gearing>
<Spread>0.0</Spread>
<CommodityQuantityFrequency>PerCalculationPeriod</CommodityQuantityFrequency>
<CommodityPayRelativeTo>CalculationPeriodEndDate</CommodityPayRelativeTo>
<FutureMonthOffset>0</FutureMonthOffset>
<DeliveryRollDays>0</DeliveryRollDays>
<IncludePeriodEnd>true</IncludePeriodEnd>
<FXIndex>FX-ECB-EUR-USD</FXIndex>

</CommodityAveragePriceOptionData>
</Trade>

values Long or Short. If LongShort is Long, then the call option is bought and if
LongShort is Short then the call option is sold. If a single LongShort node is
provided, it is applied to all options in the strip. If the same number of LongShort
nodes as calculation periods are provided, a LongShort node is applied to the option in

373

the corresponding period. The optional BarrierData node specifies the barrier terms
of the options. See section 8.2.61 for details on this. Call and put options can have
different barrier terms, but all call (resp. put) options share the same terms. In listing
240 only the call options have a barrier feature.

Similar to the LongShorts node, the Strikes node may contain one Strike node or
the same number of Strike nodes as calculation periods. If only one is provided, this
strike applies to all options in the strip. If the same number of Strike nodes as
calculation periods are provided, a Strike node is applied to the option in the
corresponding period. In this way, we support varying strikes across options in the
strip. At least one of Calls or Puts needs to be provided for a valid option strip to be
created.

The Premiums node allows for the addition of premiums. If the PremiumAmount is
negative, it is paid and if it is positive, it is received. See 8.3.2.

The optional Style node can be set to European or American to change the exercise
style for the strip of options. If not set, European is assumed. If the strip is a strip of
APOs, European is assumed and a warning is issued if Style is not European.

The optional Settlement node can be set to Cash or Physical to change the
settlement method for the strip of options. If not set, Cash is assumed. If the strip is a
strip of APOs, Cash is assumed and a warning is issued if Settlement is not Cash.

The optional IsDigital node allows the creation of a strip of
CommodityDigitalOptions (see 8.2.59). If set to true the node PayoffPerUnit needs
to be set.

Node PayoffPerUnit [Optional] specifies the payoff per commodity unit, expressed in
leg currency, in case a digital option is exercised. If the trade is a strip of digital
options, this node must be set. It accepts real numbers as input.

8.2.63 Commodity Variance and Volatility Swap

The CommodityVarianceSwapData node is the trade data container for the
CommodityVarianceSwap trade type. The structure of an example
CommodityVarianceSwapData node for a Commodity Variance Swap is the same as for
an Equity Variance Swap in section 8.2.32, with the exception of the underlying node
which is of type ’Commodity’ here. See section 8.3.29 for additional optional elements
of the underlying node and allowable values.

8.2.64 Commodity Position

An commodity position represents a position in a single commodity - using a single
Underlying node, or in a weighted basket of underlying commodities - using multiple
Underlying nodes.

An commodity Position can be used both as a stand alone trade type (TradeType:
CommodityPosition) or as a trade component (CommodityPositionData) used within
the TotalReturnSwap (Generic TRS) trade type, to set up for example Commodity
Basket trades.

374

Listing 240: Commodity option strip

<Trade id="...">
<TradeType>CommodityOptionStrip</TradeType>
<Envelope>
...

</Envelope>
<CommodityOptionStripData>
<LegData>
<LegType>CommodityFloating</LegType>
...

</LegData>
<Calls>
<LongShorts>
<LongShort>Short</LongShort>

</LongShorts>
<Strikes>
<Strike>5.3</Strike>

</Strikes>
<BarrierData>
<Type>UpAndIn</Type>
<Style>American</Style>
<LevelData>
<Level>
<Value>70.0</Value>

</Level>
</LevelData>

</BarrierData>
</Calls>
<Puts>
<LongShorts>
<LongShort>Long</LongShort>

</LongShorts>
<Strikes>
<Strike>8.17</Strike>

</Strikes>
</Puts>
<Premiums> ... </Premiums>
<Style>European</Style>
<Settlement>Cash</Settlement>

</CommodityOptionStripData>
</Trade>

If the PriceType is set to FutureSettlement it will refer by default to today’s prompt
(lead) future. At the moment a generic TRS doesn’t support rolling of the future
contracts. Today’s prompt future could be different from the prompt future at
inception. If the initial price for the basket is not set, it will use the price of today’s
prompt future at trade inception as initial price and the TRS will also ignore the roll
yield caused by rolling from one prompt future to the next contract.

It is set up using an CommodityPositionData block as shown in listing 241. The
meanings and allowable values of the elements in the block are as follows:

• Quantity: The number of shares or units of the weighted basket held.
Allowable values: Any positive real number

375

• Underlying: One or more underlying descriptions. If a basket of commodities is
defined, the Weight field should be populated for each underlyings. The weighted
basket price is then given by

Basket-Price = Quantity×
∑
i

Weighti × Si × FXi

where

– Si is the i-th commodity prompt future or spot price in the basket

– FXi is the FX Spot converting from the ith commodity currency to the first
commodity currency which is by definition the currency in which the npv of
the basket is expressed.

Allowable values: See 8.3.29 for the definition of an underlying. Only commodity
underlyings are allowed.

Listing 241: Commodity position data

<Trade id="CommodityPosition">
<TradeType>CommodityPosition</TradeType>
<Envelope>...</Envelope>
<CommodityPositionData>
<Quantity>1000</Quantity>
<Underlying>
<Type>Commodity</Type>
<Name>NYMEX:CL</Name>
<Weight>0.5</Weight>
<PriceType>FutureSettlement</PriceType>
<FutureMonthOffset>0</FutureMonthOffset>
<DeliveryRollDays>0</DeliveryRollDays>
<DeliveryRollCalendar>TARGET</DeliveryRollCalendar>

</Underlying>
<Underlying>
<Type>Commodity</Type>
<Name>ICE:B</Name>
<Weight>0.5</Weight>
<PriceType>FutureSettlement</PriceType>
<FutureMonthOffset>0</FutureMonthOffset>
<DeliveryRollDays>0</DeliveryRollDays>
<DeliveryRollCalendar>TARGET</DeliveryRollCalendar>

</Underlying>
</CommodityPositionData>

</Trade>

8.2.65 Generic Total Return Swap / Contract for Difference (CFD)

A generic total return swap / CFD (Trade type: TotalReturnSwap or
ContractForDifference) is set up using a TotalReturnSwapData (or
ContractForDifferenceData) block as shown in listing 244 and 249. Both trade types
behave exactly the same.

Usually CFDs are traded without a funding component and captured with only two
dates in the return schedule, namely the start date on which the initial price is fixed
and a fictitious closing date usually set to “tomorrow” or another suitable future date.

376

See listing 249 for the setup of a CFD on STOXX50E with initial price 3399.20 on
2019-09-28.

The generic total return swap is priced using the accrual method as opposed to a full
discounting method as it is used for the equity swap trade type. The accrual method is
common practice when daily unwind rights are present in the trade terms or when the
underlying valuation is too complex to allow for future projection.

The TotalReturnSwapData (ContractForDifferenceData) block is comprised of four
sub-blocks, which are

• UnderlyingData containing one or more Trade subnodes describing the asset
position of the TRS

• ReturnData describing the fixing and payment schedule of the return leg and
specifying indices for FX conversion if applicable

• FundingData (optional) containing one or more funding legs of the TRS, whose
notionals are based on either

– “PeriodReset”: the underlying price on the last valuation date before or on
the accrual start date of the relevant funding coupon, this price is converted
to the funding currency using the FX rate on this same valuation date for
compo / cross currency swaps (see below)

– “DailyReset”: the underlying price on each day of the accrual period, again
converted to the funding currency using the FX rate the the same date for
compo / cross currency swaps. This notional type is only supported for
fixed rate funding legs.

– “Fixed”: a fixed notional given explicitly in the funding leg

• AdditionalCashflowData (optional) a single leg of type Cashflow containing
additional payments

The ReturnData and FundingData schedule periods often match, but this is not a
strict requirement: In general, the funding notional is determined as described above
dependent on the notional types “PeriodReset”, “DailyReset”, “Fixed”.

Notice that in every case, the UnderlyingData schedule (if applicable to the
underlying trade type as e.g. for a bond) is completely independent from the funding /
return schedules: The underlying schedule defines the underlying flows to compute its
NPV, and is not directly related to the return swap itself.

Generic TRS can be used to represent total return swaps on a wide range of underlying
assets including e.g. single bonds or equities, CFDs on an underlying basket of
EquityPositions, proprietary indices on equity options and equity or bond indices.

• The UnderlyingData block specifies on or more underlyings, which can be a
trades of one of the following types. See the trade type specific sections for
details on the setup of these underlyings.

– Bond: See 8.2.38, the trade data is given in a BondData sub node.

– ForwardBond: See 8.2.41, the trade data is given in a ForwardBondData
sub node.

377

– CBO: See 8.2.48, the trade data is given in a CBOData sub node.

– CommodityPosition: See 8.2.64, the trade data is given in a
CommodityPositionData sub node.

– ConvertibleBond: See 8.2.46, the trade data is given in a
ConvertibleBondData sub node. When using reference data, a TRS on a
convertible bond can also be captured as a TRS on a bond, i.e. there is no
need to distinguish between a TRS on a Bond and a TRS on a convertible
Bond in this case, the pricer will figure out which underlying to set up based
on the type of reference data that is set up for the ISIN referenced in the
security id field.

– EquityPosition: See 8.2.34, the trade data is given in a EquityPositionData
sub node. Notice that the equities given in the basket must be available as
quoted market data.

– EquityOptionPosition: See 8.2.35, the trade data is given in a
EquityOptionPositionData sub node.

– BondPosition: See 8.2.39, the trade data is given in a BondBasketData sub
node.

– Derivative: An arbitrary underlying derivative trade (of any type covered by
ORE), allowing the set up of a so called Portfolio Swap with multiple
underlying derivatives. The derivative subnode has exactly two subnodes

∗ Id: A unqiue identifier for the derivative position. Historical prices must
be given under the fixing name “GENERIC-< Id >”.

∗ Trade: The root node of a derivative trade.

Each trade is specified by a TradeType and a trade type dependent data block as
listed above. Listing 244 shows an example for a convertible bond underlying.
Listing 245 shows an example for an equity basket underlying. Listing 246 shows
an example for a bond basket underlying. Listing 247 shows an example for a
derivative underlying (a swaption in this case).

• The ReturnData block specifies the details of the return leg.

– Payer: Indicates whether the return leg is paid.

Allowable values: true, false

– Currency: The currency in which the return is expressed. This can be
different from the underlying currency (“composite” swap) and also from the
funding leg currency (“cross currency” swap). The “composite” and “cross
currency” features can occur alone or in combination.

Allowable values: A valid currency code, see Currency in Table 26, provided
it is the same as on the funding leg.

– ScheduleData: The reference schedule for the return leg, where the
valuation dates are derived from this schedule using the ObservationLag,
ObservationConvention and ObservationCalendar fields. The payment dates
are derived from this schedule using the PaymentLag, PaymentConvention

378

and PaymentCalendar fields. The payment dates can also be given as an
explicit list in the PaymentDates node.

Allowable values: A ScheduleData block as defined in section 8.3.4

– ObservationLag [Optional]: The lag between the valuation date and the
reference schedule period start date.

Allowable values: Any valid period, i.e. a non-negative whole number,
followed by D (days), W (weeks), M (months), Y (years). Defaults to 0D if
left blank or omitted.

– ObservationConvention [Optional]: The roll convention to be used when
applying the observation lag.

Allowable values: A valid roll convention (F, MF, P, MP, U, NEAREST),
see Table 27 Roll Convention. Defaults to U if left blank or omitted.

– ObservationCalendar [Optional]: The calendar to be used when applying
the observation lag.

Allowable values: Any valid calendar, see Table 30 Calendar. Defaults to
the NullCalendar (no holidays) if left blank or omitted.

– PaymentLag [Optional]: The lag between the reference schedule period end
date and the payment date.

Allowable values: Any valid period, i.e. a non-negative whole number,
optionally followed by D (days), W (weeks), M (months), Y (years).
Defaults to 0D if left blank or omitted. If a whole number is given and no
letter, it is assumed that it is a number of D (days).

– PaymentConvention [Optional]: The business day convention to be used
when applying the payment lag.

Allowable values: A valid roll convention (F, MF, P, MP, U, NEAREST),
see Table 27 Roll Convention. Defaults to U if left blank or omitted.

– PaymentCalendar [Optional]: The calendar to be used when applying the
payment lag.

Allowable values: Any valid calendar, see Table 30 Calendar. Defaults to
the NullCalendar (no holidays) if left blank or omitted.

– PaymentDates [Optional]: This node allows for the specification of a list of
explicit payment dates, using PaymentDate elements. The list must contain
exactly n− 1 dates where n is the number of dates in the reference schedule
given in the ScheduleData node. See Listing 242 for an example with an
assumed ScheduleData with 4 dates.

379

Listing 242: Payment dates

<PaymentDates>
<PaymentDate>2020-01-15</PaymentDate>
<PaymentDate>2021-01-15</PaymentDate>
<PaymentDate>2022-01-17</PaymentDate>

</PaymentDates>

– InitialPrice [Optional]: The equity (or bond) price of the underlying on the
valuation date associated with the start date. Commonly contractually
given. The price can be given in the underlying currency or the return
currency as specified by the InitialPriceCurrency field and is given as

∗ a (dirty) price for Bond, ForwardBond and Convertible Bond
underlyings, the format is dependent on the price quotation method of
the referenced bond:

· Percentage of Par: the InitialPrice should be given as e.g. 1.02 for
102% relative dirty price

· Currency per Unit: the InitialPrice should be given as e.g. 0.51 for a
dirty amount of 51 USD per unit of the bond worth (say) 50.0 USD.

∗ the weighted price of one unit of the bond underlying basket, notice
that this is always a “percentage of par” price regardless of the
quotation style of the the single bonds in the basket

∗ the (weighted) price of (one unit of) the equity underlying (basket)

∗ the (weighted) price of (one unit of) the equity option underlying
(basket)

∗ an absolute amount in the initial price ccy (“dollar amount”) if more
than one underlying is specified and if a derivative is specified

∗ absolute NPV if underlying is a CBO

Notice that for an equity basket underlying with several currencies involved,
the initial price is assumed to be given in the return currency in case no
InitialPriceCurrency is given.

Allowable values: A real number. If omitted or left blank it defaults to the
equity (or bond) price of the valuation date associated with the start date.
When this valuation date is in the future there is no fixed price, and in
these cases the InitialPrice defaults to the forward price.

– InitialPriceCurrency [Optional]: Only relevant if InitialPrice is given. This
specifies whether the initial price is given in the asset currency, the return
currency or the funding currency.

Allowable values: One of the currencies in ReturnData / Currency (return
currency), FundingData/ LegData / currency (funding currency) or the
currency of the underlying asset. Defaults to the return currency if omitted.

380

– FXTerms [Mandatory when underlying asset / return / additional cashflow
/ funding currencies differ]: If the underlying asset currency is different from
the return currency, an FXIndex for the conversion underlying / return
currency must be given. The same holds for the funding and additional
cashflow currencies: Whenever one of these currencies are different from the
underlying currency, an FXIndex for the conversion to the underlying
currency must be given. If multiple currencies differ, multiple FXIndex
elements must be given.

∗ FXIndex: The fx index to use for the conversion, this must contain the
funding / return / additional cashflow currency and the underlying
asset currency (in the order defined in table 34, i.e. it does not matter
which one is the funding / return / additional cashflow currency and
which is the underlying currency)

Allowable values: see 34

Notice that for an underlying of type EquityPosition or
EquityOptionPosition additional FXIndex entries are required if there is
more than one equity position in a different currency: Eventually, for each
equity currency there must be a FXIndex specifying the conversion from the
equity currency to the funding currency (or for the return/cashflow vs
funding currency conversion). In this case multiple FXIndex entries are used
within a single FXTerms node, see 243.

Listing 243: FXTerms with multiple FXIndex

<FXTerms>
<FXIndex>FX-TR20H-GBP-SEK</FXIndex>
<FXIndex>FX-TR20H-GBP-EUR</FXIndex>
<FXIndex>FX-TR20H-GBP-USD</FXIndex>

</FXTerms>

– PayUnderlyingCashFlowsImmediately [Optional]: If true, underlying
cashflows like coupon or amortisation payments from bonds or dividend
payments from equities, are paid when they occur. If false, these cashflows
are paid together with the next return payment. If omitted, the default
value is false for trade type TotalReturnSwap and true for trade type
ContractForDifference.

Allowable values: true (immediate payment of underlying cashflwos) or false
(underlying cashflows are paid on the next return payment date)

• The FundingData block specifies the details of the funding leg(s). The block is
optional and can be omitted if no funding legs are present in the swap (e.g. for
CFDs). It contains one or more LegData nodes, see 8.3.3. Allowed leg types are

– Fixed

– Floating

– CMS

381

– CMB

The number of coupons defined by the legs often match the number of periods of
the return schedule, but this is not a strict requirement. All funding legs must
share the same payment currency.

There are several ways to determine the notional of each funding leg, which is
determined by additional, optional NotionalType tags. If given, there must be
exactly one NotionalType tag for each LegData nodes. The types have the
following meanings:

– “PeriodReset”: the notional of a funding period is determined by the
underlying price on the last valuation date before or on the accrual start
date of the relevant funding coupon, this price is converted to the funding
currency using the FX rate on this same valuation date for compo / cross
currency swaps.

– “DailyReset”: the notional of a funding period is determined by the
underlying price on each day of the accrual period, again converted to the
funding currency using the FX rate the the same date for compo / cross
currency swaps. This notional type is only supported for fixed rate funding
legs.

– “Fixed”: The notional is explicitly given in the leg data.

If the NotionalType tags are not given, they default to “PeriodReset” in case no
explicit notional is given on the leg and “Fixed” in case an explicit notional is
given on the leg. See listing 244 for and example with two funding legs, one with
a notional of type DailyReset and one with a notional of type PeriodReset.

If a FundingResetGracePeriod is given, a lag of the given number of calendar
days is applied when determining the relevant return valuation date that
determines the funding notional. For example if FundingResetGracePeriod is set
to 2, a valuation date that lies at most 2 calendar days after the funding accrual
start date will be still considered eligible for this period.

• The AdditionalCashflowData block is optional and specifies unpaid amounts to
be included in the NPV. The type of this leg must be Cashflow. The currency of
the leg must be either the asset currency or the funding currency or the return
currency.

382

Listing 244: Generic Total Return Swap with Convertible Bond underlying

<TotalReturnSwapData>
<UnderlyingData>
<Trade>
<TradeType>Bond</TradeType>
<BondData>
<SecurityId>ISIN:XY1000000000</SecurityId>
<BondNotional>1000000.00</BondNotional>

</BondData>
</Trade>

</UnderlyingData>
<ReturnData>
<Payer>false</Payer>
<Currency>EUR</Currency>
<ScheduleData>...</ScheduleData>
<ObservationLag>0D</ObservationLag>
<ObservationConvention>P</ObservationConvention>
<ObservationCalendar>USD</ObservationCalendar>
<PaymentLag>2D</PaymentLag>
<PaymentConvention>F</PaymentConvention>
<PaymentCalendar>TARGET</PaymentCalendar>
<!-- <PaymentDates> -->
<!-- <PaymentDate> ... </PaymentDate> -->
<!-- <PaymentDate> ... </PaymentDate> -->
<!-- </PaymentDates> -->
<InitialPrice>1.05</InitialPrice>
<InitialPriceCurrency>EUR</InitialPriceCurrency>
<FXTerms>
<FXIndex>FX-ECB-EUR-USD</FXIndex>
<FXIndex>FX-ECB-GBP-USD</FXIndex>

</FXTerms>
<PayUnderlyingCashFlowsImmediately>false</PayUnderlyingCashFlowsImmediately>

</ReturnData>
<FundingData>
<FundingResetGracePeriod>2</FundingResetGracePeriod>
<NotionalType>DailyReset</NotionalType>
<LegData>
<Payer>true</Payer>
<LegType>Fixed</LegType>
...

</LegData>
<NotionalType>PeriodReset</NotionalType>
<LegData>
<Payer>true</Payer>
<LegType>Floating</LegType>
...

</LegData>
</FundingData>
<AdditionalCashflowData>
<LegData>
<Payer>false</Payer>
<LegType>Cashflow</LegType>
...

</LegData>
</AdditionalCashflowData>

</TotalReturnSwapData>

383

Listing 245: Generic Total Return Swap with equity basket underlying

<TotalReturnSwapData>
<UnderlyingData>
<Trade>
<TradeType>EquityPosition</TradeType>
<EquityPositionData>

<!-- basket price = quantity x sum_i (weight_i x equityPrice_i x fx_i) -->
<Quantity>1000</Quantity>
<Underlying>
<Type>Equity</Type>
<Name>BE0003565737</Name>
<Weight>0.5</Weight>
<IdentifierType>ISIN</IdentifierType>
<Currency>EUR</Currency>
<Exchange>XFRA</Exchange>

</Underlying>
<Underlying>
<Type>Equity</Type>
<Name>GB00BH4HKS39</Name>
<Weight>0.5</Weight>
<IdentifierType>ISIN</IdentifierType>
<Currency>GBP</Currency>
<Exchange>XLON</Exchange>

</Underlying>
</EquityPositionData>

</Trade>
</UnderlyingData>
<ReturnData>
...
<InitialPrice>112.0</InitialPrice>
<InitialPriceCurrency>USD</InitialPriceCurrency>
<FXTerms>
<FXIndex>FX-ECB-EUR-USD</FXIndex>
<FXIndex>FX-TR20H-GBP-USD</FXIndex>

</FXTerms>
</ReturnData>
<FundingData>
<LegData>
<Payer>true</Payer>
<LegType>Floating</LegType>
<Currency>USD</Currency>
...

</LegData>
</FundingData>
<AdditionalCashflowData>
<LegData>
<Payer>false</Payer>
<LegType>Cashflow</LegType>
...

</LegData>
</AdditionalCashflowData>

</TotalReturnSwapData>
</Trade>

384

Listing 246: Generic Total Return Swap with bond basket underlying

<TotalReturnSwapData>
<UnderlyingData>
<Trade>
<TradeType>BondPosition</TradeType>
<BondBasketData>
<Quantity>100000000</Quantity>
<Identifier>ISIN:GB00B4KT9Q30</Identifier>

</BondBasketData>
</Trade>

</UnderlyingData>
<!-- omitting ReturnData, FundingData, AdditionalCashflowData -->

</TotalReturnSwapData>
</Trade>

Listing 247: Generic Total Return Swap on a derivative underlying

<TotalReturnSwapData>
<UnderlyingData>
<Derivative>
<Id>DERIV:XR3JF32BFD</Id>
<Trade>
<TradeType>Swaption</TradeType>
<SwaptionData> ... </SwaptionData>

</Trade>
</Derivative>

</UnderlyingData>
<!-- omitting ReturnData, FundingData, AdditionalCashflowData -->

</TotalReturnSwapData>
</Trade>

Listing 248: Generic Total Return Swap on a commodity index underlying

<TotalReturnSwapData>
<UnderlyingData>
<Trade>
<TradeType>CommodityPosition</TradeType>
<CommodityPositionData>

<!-- basket price = quantity x sum_i (weight_i x price_i x fx_i) -->
<Quantity>1000</Quantity>
<Underlying>
<Type>Commodity</Type>
<Name>RIC:.BCOM</Name>
<Weight>1.0</Weight>
<PriceType>Spot</PriceType>

</Underlying>
</CommodityPositionData>

</Trade>
</UnderlyingData>
<!-- omitting ReturnData, FundingData, AdditionalCashflowData -->

</TotalReturnSwapData>
</Trade>

385

Listing 249: CFD on STOXX50E with initial price 3399.20 EUR

<ContractForDifferenceData>
<UnderlyingData>
<Trade>
<TradeType>EquityPosition</TradeType>
<EquityPositionData>
<Quantity>1000</Quantity>
<Underlying>
<Type>Equity</Type>
<Name>.STOXX50E</Name>
<Weight>1.0</Weight>
<IdentifierType>RIC</IdentifierType>

</Underlying>
</EquityPositionData>

</Trade>
</UnderlyingData>
<ReturnData>
<Payer>false</Payer>
<Currency>EUR</Currency>
<ScheduleData>
<Dates>
<Dates>

<!-- the start date of the CFD on which the initial price was set -->
<Date>2018-09-28</Date>
<!-- fictitious closing date, e.g. set to "tomorrow" -->
<Date>2019-01-04</Date>

</Dates>
</Dates>

</ScheduleData>
<InitialPrice>3399.20</InitialPrice>
<InitialPriceCurrency>EUR</InitialPriceCurrency>

</ReturnData>
</ContractForDifferenceData>

8.3 Trade Components

Trade components are XML sub-nodes used within the trade data containers to define
sets of trade data that more than one trade type can have in common, such as a leg or
a schedule. A trade data container can include multiple trade components such as a
swap with multiple legs, and a trade component can itself contain further trade
components in a nested way.

An example of a SwapData trade data container, including two LegData trade
components which in turn include further trade components such as FixedLegData,
ScheduleData and FloatingLegData is shown in Listing 250.

386

Listing 250: Trade Components Example

<SwapData>
<LegData>

<Payer>true</Payer>
<LegType>Fixed</LegType>
<Currency>EUR</Currency>
<PaymentConvention>Following</PaymentConvention>
<DayCounter>30/360</DayCounter>
<Notionals>

<Notional>1000000</Notional>
</Notionals>
<ScheduleData>
...
</ScheduleData>
<FixedLegData>

<Rates>
<Rate>0.035</Rate>

</Rates>
</FixedLegData>

</LegData>
<LegData>

...
<ScheduleData>

...
</ScheduleData>
<FloatingLegData>

...
</FloatingLegData>

</LegData>
</SwapData>

Descriptions of all trade components supported in ORE follow below.

8.3.1 Option Data

This trade component node is used within the SwaptionData and FXOptionData trade
data containers. It contains the ExerciseDates sub-node which includes
ExerciseDate child elements. An example structure of the OptionData trade
component node is shown in Listing 251.

387

Listing 251: Option data

<OptionData>
<LongShort>Long</LongShort>
<OptionType>Call</OptionType>
<Style>Bermudan</Style>
<NoticePeriod>5D</NoticePeriod>
<NoticeCalendar>TARGET</NoticeCalendar>
<NoticeConvention>F</NoticePeriod>
<Settlement>Cash</Settlement>
<SettlementMethod>CollateralizedCashPrice</SettlementMethod>
<PayOffAtExpiry>true</PayOffAtExpiry>
<ExerciseFees>
<ExerciseFee type="Percentage">0.0020</ExerciseFee>
<ExerciseFee type="Absolute" startDate="2020-04-20">25000</ExerciseFee>

</ExerciseFees>
<ExerciseFeeSettlementPeriod>2D</ExerciseFeeSettlementPeriod>
<ExerciseFeeSettlementConvention>F</ExerciseFeeSettlementConvention>
<ExerciseFeeSettlementCalendar>TARGET</ExerciseFeeSettlementCalendar>
<ExerciseDates>
<ExerciseDate>2019-04-20</ExerciseDate>
<ExerciseDate>2020-04-20</ExerciseDate>

</ExerciseDates>
<Premiums>
<Premium>
<Amount>100000</Amount>
<Currency>EUR</Currency>
<PayDate>2018-05-07</PayDate>

</Premium>
</Premiums>
<AutomaticExercise>...</AutomaticExercise>
<ExerciseData>
<Date>...</Date>
<Price>...</Price>

</ExerciseData>
<PaymentData>...</PaymentData>

</OptionData>

The meanings and allowable values of the elements in the OptionData node follow
below.

• LongShort: Specifies whether the option position is long or short. Note that for
Swaptions, Callable Swaps, and Index CDS Options setting LongShort to short
makes the Payer indicator on the underlying Swap / Index CDS to be set from
the perspective of the Counterparty.

Allowable values: Long, L or Short, S

• OptionType: Specifies whether it is a call or a put option. Optional for trade
types Swaption and CallableSwap.

Allowable values: Call or Put

The meaning of Call and Put values depend on the trade type and asset class of
the option, see Table 20.

388

Asset Class and Trade Type Call / Put Specifications
Equity/ Commodity/Bond Op-
tion

Call : The right to buy the underlying equi-
ty/commodity/bond at the strike price.
Put : The right to sell the underlying equi-
ty/commodity/bond at the strike price.

IR Swaption, CallableSwap,
Commodity Swaption

Call/Put values are ignored, and the Option-
Type field is optional. Payer/Receiver swap-
tion is determined by the Payer fields in the
Leg Data nodes of the underlying swap.

FX Options (all variants, except
Touch, Digital, Asian)

Call : Bought and Sold currencies/amounts
stay as determined in the trade data node.
Put : Bought and Sold currencies/amounts
are switched compared to the trade data
node. Note that barriers are not switched
/ unaffected.

Index CDS Option Call/Put values are ignored, and the Option-
Type field is optional. The Payer field in the
underlying Index CDS leg determines if the
option is to buy or sell protection.

Asian FX Options Call : The right to buy/receive the underly-
ing currency at the strike price.
Put : The right to sell/pay the underlying
currency at the strike price.

Digital FX Options Call : The digital payout will occur if the fx
rate at the expiry date is above the given
strike,
Put : The digital payout will occur if the fx
rate at the expiry date is below the given
strike.

FX Single Touch Options Call/Put values are ignored, and are instead
inferred from the BarrierData type, and the
OptionType field is optional.

FX Double Touch Options Call/Put values are ignored, and and the Op-
tionType field is optional.

Ascot Call has payout:

max(0, convertiblePrice− Strike)

Put has payout:

max(0, Strike− convertiblePrice)

Table 20: Specification of Option Type Call / Put

• PayoffType [Optional, except for trade types detailed below]: Specifies a detailed
payoff type for exotic options. Only applicable to specific trade types as
indicated in parentheses:

389

Allowable values:

– Accumulator, Decumulator (applies to trade types EquityAccumulator,
FxAccumulator, CommodityAccumulator only)

– TargetFull, TargetExact, TargetTruncated (applies to trade types
EquityTaRF, FxTaRF, CommodityTaRF only)

– BestOfAssetOrCash, WorstOfAssetOrCash, MaxRainbow, MinRainbow
(applies to trade types EquityRainbowOption, FxRainbowOption,
CommodityRainbowOption only)

– Vanilla, Asian, AverageStrike, LookbackCall, LookbackPut (applies to trade
types EquityBasketOption, FxBasketOption, CommodityBasketOption
only)

– Asian (applies to trade types EquityAsianOption, FxAsianOption only)

– Vanilla, AssetOrNothing, CashOrNothing (applies to trade type
FxGenericBarrierOption, EquityGenericBarrierOption,
CommodityGenericBarrierOption)

• Style: The exercise style of the option.

Allowable values: European or American or Bermudan.

Note that trade types IR Swaption and CallableSwap can have style European or
Bermudan, but not American.

FX, Equity and Commodity vanilla options can have styles European or
American, but not Bermudan.

Exotic FX, Equity and Commodity options can generally only have style
European, see each trade type for details.

Commodity Swaption and Commodity Average Price Options must have style
European.

Index CDS Options must have style European.

Ascots must have style American.

• PayoffType2 [Optional]: Subtype for payoff of exotic options. Only applicable to
specific trade types as indicated in parantheses:

Allowable values:

– Arithmetic, Geometric (applies to trade types EquityAsianOption,
FxAsianOption only, if not given it defaults to Arithmetic)

• NoticePeriod [Optional]: The notice period defining the date (relative to the
exercise date) on which the exercise decision has to be taken. If not given the
notice period defaults to 0D, i.e. the notice date is identical to the exercise date.
Only supported for Swaptions and Callable Swaps currently.

• NoticeCalendar [Optional]: The calendar used to compute the notice date from
the exercise date. If not given defaults to the null calendar (no holidays,
weekends are no holidays either).

390

• NoticeConvention [Optional]: The convention used to compute the notice date
from the exercise date. Defaults to Unadjusted if not given.

• Settlement: Delivery type. Note that Settlement is not required for Asian
options.

Allowable values: Cash or Physical

• SettlementMethod [Optional]: Specifies the method to calculate the settlement
amount for Swaptions and CallableSwaps.

Allowable values: PhysicalOTC, PhysicalCleared, CollateralizedCashPrice,
ParYieldCurve.

Defaults to ParYieldCurve if Settlement is Cash and defaults to PhysicalOTC if
Settlement is Physical.

PhysicalOTC = OTC traded swaptions with physical settlement
PhysicalCleared = Cleared swaptions with physical settlement
CollateralizedCashPrice = Cash settled swaptions with settlement price
calculation using zero coupon curve discounting
ParYieldCurve = Cash settled swaptions with settlement price calculation using
par yield discounting 12 13

• PayOffAtExpiry [Optional]: Relevant for options with early exercise, i.e. the
exercise occurs before expiry; true indicates payoff at expiry, whereas false
indicates payoff at exercise. Defaults to true if left blank or omitted.

Allowable values: true, false .

Note that for IndexCreditDefaultSwapOption PayOffAtExpiry must be set to
false as only payoff at exercise is supported.

• ExerciseFees [Optional]: This node contains child elements of type ExerciseFee.
Similar to a list of notionals (see 8.3.3) the fees can be given either

– as a list where each entry corresponds to an exercise date and the last entry
is used for all remaining exercise dates if there are more exercise dates than
exercise fee entries, or

– using the startDate attribute to specify a change in a fee from a certain
day on (w.r.t. the exercise date schedule)

Fees can either be given as an absolute amount or relative to the current notional
of the period immediately following the exercise date using the type attribute
together with specifiers Absolute resp. Percentage. If not given, the type
defaults to Absolute.

If a fee is given as a positive number the option holder has to pay a
corresponding amount if they exercise the option. If the fee is negative on the
other hand, the option holder receives an amount on the option exercise.

Only supported for Swaptions and Callable Swaps currently.
12https://www.isda.org/book/2006-isda-definitions/
13https://www.isda.org/a/TlAEE/Supplement-No-58-to-ISDA-2006-Definitions.pdf

391

• ExerciseFeeSettlementPeriod [Optional]: The settlement lag for exercise fee
payments. Defaults to 0D if not given. This lag is relative to the exercise date
(as opposed to the notice date).

Allowable values: A number followed by D, W, M, or Y

• ExerciseFeeSettlementCalendar [Optional]: The calendar used to compute the
exercise fee settlement date from the exercise date. If not given defaults to the
NullCalendar (no holidays, weekends are no holidays either).

Allowable values: See Table 30 Calendar.

• ExerciseFeeSettlementConvention [Optional]: The convention used to compute
the exercise fee settlement date from the exercise date. Defaults to Unadjusted if
not given.

Allowable values: See Table 27 Roll Convention.

• ExerciseDates: This node contains child elements of type ExerciseDate.
Options of style European or American require a single exercise date expressed
by one single ExerciseDate child element. Bermudan style options must have
two or more ExerciseDate child elements.

• Premiums [Optional]: Option premium amounts paid by the option buyer to the
option seller.

Allowable values: See section 8.3.2

• AutomaticExercise [Optional]: Used if the option expiry date is on the current
date or in the past, and the payment date is in the future - so that there still is
an outstanding cashflow if the option was in the money on the expiry date. In
this case, if AutomaticExercise is applied, the FX / Commodity / Equity fixing
on the expiry date is used to automatically determine the payoff and thus
whether the option was exercised or not.

Currently, this field is only used for vanilla European cash settled FX, equity and
commodity options. It is a boolean flag indicating if Automatic Exercise is
applicable for the option trade. A value of true indicates that Automatic
Exercise is applicable and a value of false indicates that it is not.

Allowable values: A boolean value given in Table 42. If not provided, the default
value is false.

• ExerciseData [Optional]: Currently, this node is only used for vanilla European
cash settled FX, equity and commodity options where Automatic Exercise is not
applicable. It has the structure shown in Listing 251 i.e. a child Date and Price
node. It is used to supply the price at which an option was exercised and the
date of exercise. For a European option, the supplied date clearly has to match
the single option ExerciseDate. It is needed where the cash settlement date is
after the ExerciseDate. If this node is not supplied, and the ExerciseDate is in
the past relative to the valuation date, the option is assumed to have expired
unexercised.

Allowable values: The Date node should be a valid date as outlined in Table 26
and the Price node should be a valid price as a real number.

392

• PaymentData [Optional]: This node is used to supply the date on which the
option is cash settled if it is exercised. There are two methods in which this data
may be supplied:

1. The first method is an explicit list of dates as shown in Listing 252. The
Date node should be a valid date as outlined in Table 26. Obviously, for
European options, there should be exactly one date supplied.

2. The second method is a set of rules that are used to generate the settlement
date relative to either the exercise date of the option or the expiry date of
the option. The structure of the PaymentData node in this case is given in
Listing 253. The optional RelativeTo node must be either Expiry or
Exercise. If it is Expiry, the expiry date is taken as the base date from
which the rules are applied. If it is Exercise, the exercise date is taken as
the base date from which the rules are applied. These two dates are the
same in the case of a European option. If not provided, Expiry is assumed.
The Lag node is a non-negative integer giving the number of days from the
base date to the cash settlement date. The Calendar gives the business day
calendar for the cash settlement date and should be a valid calendar code as
outlined in Table 30. The Convention gives the roll convention for the cash
settlement date and should be a valid roll convention as outlined in Table 27.

Listing 252: Dates based PaymentData

<PaymentData>
<Dates>
<Date>...</Date>

</Dates>
</PaymentData>

Listing 253: Rules based PaymentData

<PaymentData>
<Rules>
<Lag>...</Lag>
<Calendar>...</Calendar>
<Convention>...</Convention>
<RelativeTo>...</RelativeTo>

</Rules>
</PaymentData>

8.3.2 Premiums

The Premiums node holds data of one or more premiums to be paid. It is used in
different trade types, notably in caps / floors (see section 8.2.3) and more generally in
the option data component (see section 8.3.1). Listing 254 shows an example for a
Premiums data block representing two premiums.

393

Listing 254: Premiums Node

<Premiums>
<Premium>
<Amount>1000</Amount>
<Currency>EUR</Currency>
<PayDate>2021-01-27</PayDate>

</Premium>
<Premium>
<Amount>5000</Amount>
<Currency>USD</Currency>
<PayDate>2023-01-27</PayDate>

</Premium>
</Premiums>

The meanings and allowable values of the elements in the Premium node follow below.

• Amount: Option premium amounts paid by the option buyer to the option seller.
A positive amount is considered to be paid by the option holder to the option
seller and thus results in a negative contribution to the NPV of a long option.
Allowable values: arbitrary number

• Currency: Currency of the premium to be paid
Allowable values: See Table 28 Currency.

• PayDate: Date of the premium payment.
Allowable values: See Date in Table 26.

We support a deprecated schema to represent a single premium as shown in listing 255
for backwards compatibility. The 3 nodes PremiumAmount, PremiumCurrency,
PremiumPayDate can be used on the same level as the new Premiums node to
represent a single premium payment. The deprecated and new schema may not be
mixed.

Listing 255: Deprecated Single Premium Representation

<PremiumAmount>1000</PremiumAmount>
<PremiumCurrency>EUR</PremiumCurrency>
<PremiumPayDate>2021-01-27</PremiumPayDate>

8.3.3 Leg Data and Notionals

The LegData trade component node is used within the CapFloorData, SwapData ,
SwaptionData and EquitySwapData trade data containers. It contains a
ScheduleData trade component sub-node, and a sub-node that depends on the value
of the LegType element, e.g.: FixedLegData for LegType Fixed or FloatingLegData
for LegType Floating. The LegData node also includes a Notionals sub-node with
Notional child elements described below. An example structure of a LegData node of
LegType Floating is shown in Listing 256.

394

Listing 256: Leg data

<LegData>
<Payer>false</Payer>
<LegType>Floating</LegType>
<Currency>EUR</Currency>
<PaymentConvention>Following</PaymentConvention>
<DayCounter>30/360</DayCounter>
<Notionals>

<Notional>1000000</Notional>
</Notionals>
<ScheduleData>

...
</ScheduleData>
<FloatingLegData>

...
</FloatingLegData>

</LegData>

The meanings and allowable values of the elements in the LegData node follow below.

• LegType: Determines which of the available sub-nodes must be used.

Allowable values: Fixed, Floating, Cashflow, CMS, DigitalCMS,
DurationAdjustedCMS, CMSSpread, DigitalCMSSpread, Equity, CPI, YY,
ZeroCouponFixed

• Payer: The flows of the leg are paid to the counterparty if true, and received if
false.

Allowable values: true, false

• Currency: The currency of the leg.

Allowable values: See Table 28 Currency. When LegType is Equity, Minor
Currencies in Table 28 are also allowable.

• PaymentCalendar [Optional]: The payment calendar of the leg coupons. The
PaymentCalendar is used in conjuction with the PaymentConvention and the
PaymentLag to determine the payments dates, unless the PaymentDates node is
used which defines the payment dates explicitly.

Allowable values: See Table 30 Calendar. If left blank or omitted, defaults to the
calendar in the ScheduleData node, unless LegType is Floating and Index is
OIS, in which case this defaults to the index calendar.

The PaymentCalendar calendar field is currently only supported for LegType
Floating (with an IBOR, BMA or OIS underlying index), CMS, CMSSpread,
DigitalCMSSpread, Equity, YY, CPI, Fixed, ZeroCouponFixed, DigitalCMS. For
unsupported legs it defaults to the schedule calendar, and if no calendar is set in
the ScheduleData node (for dates-based schedules the calendar field is optional),
the NullCalendar is used.

• PaymentConvention: The payment convention of the leg coupons.

Allowable values: See Table 27.

395

• PaymentLag [optional]: The payment lag applies to Fixed legs, Equity legs, and
Floating legs with Ibor and OIS indices (but not to BMA/SIFMA indices).
PaymentLag is also not supported for CapFloor Floating legs that have Ibor
coupons with sub periods (HasSubPeriods = true), nor for CapFloor Floating
legs with averaged ON coupons (IsAveraged = true).

Allowable values: Any valid period, i.e. a non-negative whole number, optionally
followed by D (days), W (weeks), M (months), Y (years). Defaults to 0D if left
blank or omitted. If a whole number is given and no letter, it is assumed that it
is a number of D (days).

• DayCounter: The day count convention of the leg coupons. Note that
DayCounter is mandatory for all leg types except Equity.

Allowable values: See DayCount Convention in Table 31. For Equity legs, if left
blank or omitted, it defaults to ACT/365.

• Notionals: This node contains child elements of type Notional. If the notional is
fixed over the life of the leg only one notional value should be entered. If the
notional is amortising or accreting, this is represented by entering multiple
notional values, each represented by a Notional child element. The first notional
value corresponds to the first coupon, the second notional value corresponds to
the second coupon, etc. If the number of coupons exceeds the number of notional
values, the notional will be kept flat at the value of last entered notional for the
remaining coupons. The number of entered notional values cannot exceed the
number of coupons.

Allowable values: Each child element can take any positive real number.

An example of a Notionals element for an amortising leg with four coupons is
shown in Listing 257.

Listing 257: Notional list

<Notionals>
<Notional>65000000</Notional>
<Notional>65000000</Notional>
<Notional>55000000</Notional>
<Notional>45000000</Notional>

</Notionals>

Another allowable specification of the notional schedule is shown in Listing 258.

Listing 258: Notional list with dates

<Notionals>
<Notional>65000000</Notional>
<Notional startDate='2016-01-02'>65000000</Notional>
<Notional startDate='2017-01-02'>55000000</Notional>
<Notional startDate='2021-01-02'>45000000</Notional>

</Notionals>

396

The first notional must not have a start date, it will be associated with the
schedule’s start, The subsequent notionals must either all or none have a start
date specified from which date onwards the new notional is applied. This allows
specifying notionals only for dates where the notional changes.

An initial exchange, a final exchange and an amortising exchange can be
specified using an Exchanges child element with
NotionalInitialExchange, NotionalFinalExchange and
NotionalAmortizingExchange as subelements, see Listing 259. The Exchanges
element is typically used in cross-currency swaps and inflation swaps, but can
also be used in other trade and leg types. Note that for cross-currency swaps, the
NotionalInitialExchange must be set to the same value on both legs. The
NotionalFinalExchange must also be set to the same value on both legs, i.e.
true on both, or false on both.

Allowable values for NotionalInitialExchange, NotionalFinalExchange and
NotionalAmortizingExchange: true, false. Defaults to false if omitted, or if the
entire Exchanges block is omitted.

Listing 259: Notional list with exchange

<Notionals>
<Notional>65000000</Notional>
<Exchanges>
<NotionalInitialExchange>true</NotionalInitialExchange>
<NotionalFinalExchange>true</NotionalFinalExchange>
<NotionalAmortizingExchange>true</NotionalAmortizingExchange>

</Exchanges>
</Notionals>

FX Resets, used for Rebalancing Cross-currency swaps, can be specified using an
FXReset child element with the following subelements: See Listing 260 for an
example.

• ForeignCurrency: The foreign currency the notional of the leg resets to.

Allowable values: See Table 28 Currency.

• ForeignAmount: The notional amount in the foreign currency that the notional
of the leg resets to.

Allowable values: Any positive real number.

• FXIndex: A reference to an FX Index source for the FX reset fixing.

Allowable values: A string on the form FX-SOURCE-CCY1-CCY2.

397

Listing 260: Notional list with fx reset

<Currency>USD</Currency>
<Notionals>

<Notional>65000000</Notional> <!-- in USD -->
<FXReset>
<ForeignCurrency> EUR </ForeignCurrency>
<ForeignAmount> 60000000 </ForeignAmount>
<FXIndex> FX-ECB-USD-EUR </FXIndex>

</FXReset>
</Notionals>

• StrictNotionalDates [Optional]: If given and set to true, notional changes
specified by startDate will be interpreted as taking place on the exact given date,
even if that date falls into a calculation (accrual) period. Otherwise the notional
change is applied for the next calculation period. Supported only for fixed and
floating legs with IBOR / RFR term rate coupons.

• ScheduleData: This is a trade component sub-node outlined in section 8.3.4
Schedule Data and Dates.

• PaymentSchedule [Optional]: This node allows for the specification of an explicit
payment schedule, see 8.3.4. Supported in commodity trades, fixed legs and
floating legs with underlying OIS and IBOR indices.

• PaymentDates [Deprecated]: This node allows for the specification of a list of
explicit payment dates. The usage is deprecated, use PaymentSchedule instead.

• FixedLegData: This trade component sub-node is required if LegType is set to
Fixed It is outlined in section 8.3.5.

• FloatingLegData: This trade component sub-node is required if LegType is set to
Floating It is outlined in section 8.3.6 Floating Leg Data and Spreads.

• CashflowLegData: This trade component sub-node is required if LegType is set
to Cashflow. It is outlined in section 8.3.9.

• CMSLegData: This trade component sub-node is required if LegType is set to
CMS (Constant Maturity Swap). It is outlined in section 8.3.10.

• DigitalCMSLegData: This trade component sub-node is required if LegType is
set to DigitalCMS. It is outlined in section 8.3.12.

• DurationAdjustedCMSLegData: This trade component sub-node is required if
LegType is set to DurationAdjustedCMS. It is outlined in section 8.3.13.

• CMSSpreadLegData: This trade component sub-node is required if LegType is
set to CMSSpread. It is outlined in section 8.3.14.

• DigitalCMSSpreadLegData: This trade component sub-node is required if
LegType is set to DigitalCMSSpread. It is outlined in section 8.3.15.

• EquityLegData: This trade component sub-node is required if LegType is set to
Equity. It is outlined in section 8.3.16.

398

• CPILegData: This trade component sub-node is required if LegType is set to
CPI. It is outlined in section 8.3.17.

• YYLegData: This trade component sub-node is required if LegType is set to YY.
It is outlined in section 8.3.18.

• ZeroCouponFixedLegData: This trade component sub-node is required if
LegType is set to ZeroCouponFixed. It is outlined in section 8.3.19.

8.3.4 Schedule Data (Rules, Dates and Derived)

The ScheduleData trade component node is used within the LegData trade
component. The Schedule can be rules based (at least one Rules sub-node exists),
dates based (at least one Dates sub-node exists, where the schedule is determined
directly by Date child elements), or derived from another schedule in the same leg (at
least one Derived sub-node exists). In rules based schedules, the schedule dates are
generated from a set of rules based on the entries of the sub-node Rules, having the
elements StartDate, EndDate, Tenor, Calendar, Convention, TermConvention, and
Rule. Example structures of ScheduleData nodes based on rules, dates and derived
from a base schedule are shown in Listing 261, Listing 262, and Listing 263 respectively.

Listing 261: Schedule data, rules based

<ScheduleData>
<Rules>
<StartDate>2013-02-01</StartDate>
<EndDate>2030-02-01</EndDate>
<Tenor>1Y</Tenor>
<Calendar>UK</Calendar>
<Convention>MF</Convention>
<TermConvention>MF</TermConvention>
<Rule>Forward</Rule>

</Rules>
</ScheduleData>

Listing 262: Schedule data, date based

<ScheduleData>
<Dates>
<Calendar>NYB</Calendar>
<Convention>Following</Convention>
<Tenor>3M</Tenor>
<EndOfMonth>false</EndOfMonth>
<Dates>
<Date>2012-01-06</Date>
<Date>2012-04-10</Date>
<Date>2012-07-06</Date>
<Date>2012-10-08</Date>
<Date>2013-01-07</Date>
<Date>2013-04-08</Date>

</Dates>
</Dates>

</ScheduleData>

399

Listing 263: Schedule data, derived

<ScheduleData>
<Derived>
<BaseSchedule>ScheduleData</BaseSchedule>
<Shift>3M</Shift>
<Calendar>GBP</Calendar>
<Convention>Following</Convention>

</Derived>
</ScheduleData>

The ScheduleData section can contain any number and combination of <Dates>,
<Rules> and <Derived> sections. The resulting schedule will then be an ordered
concatenation of individual schedules.

The meanings and allowable values of the elements in a <Rules> based section of the
ScheduleData node follow below.

• Rules: a sub-node that determines whether the schedule is set by specifying
rules that generate the schedule. If existing, the following entries are required:
StartDate, EndDate, Tenor, Calendar, Convention, and Rule.
EndDateConvention is optional. If not existing, a Dates or Derived sub-node is
required.

• StartDate: The schedule start date.

Allowable values: See Date in Table 26.

• EndDate: The schedule end date. This can be omitted to indicate a perpetual
schedule. Notice that perpetual schedule are only supported by specific trade
types (e.g. Bond).

Allowable values: See Date in Table 26.

• AdjustEndDateToPreviousMonthEnd [Optional]: Only relevant for commodity
legs. Allows for the EndDate to be on a date other than the end of the month. If
set to true the given EndDate is restated to the end date of the previous month.

Allowable values: true or false. Defaults to false if left blank or omitted.

• Tenor: The tenor used to generate schedule dates.

Allowable values: A string where the last character must be D or W or M or Y.
The characters before that must be a positive integer.
D = Day, W = Week, M = Month, Y = Year

Note that 0D is a valid value, and causes there to be no intermediate dates
between StartDate and EndDate.

• Calendar: The calendar used to generate schedule dates. Also used to determine
payment dates (except for compounding OIS index legs, which use the index
calendar to determine payment dates).

Allowable values: See Table 30 Calendar.

400

• Convention: Determines the adjustment of the schedule dates with regards to
the selected calendar, i.e. the roll convention.

Allowable values: See Table 27 Roll Convention.

• TermConvention [Optional]: Determines the adjustment of the final schedule
date with regards to the selected calendar. If left blank or omitted, defaults to
the value of Convention.

Allowable values: See Table 27 Roll Convention.

• Rule [Optional]: Rule for the generation of the schedule using given start and
end dates, tenor, calendar and roll conventions.

Allowable values and descriptions: See Table 29 Rule. Defaults to Forward if
omitted. Cannot be left blank.

• EndOfMonth [Optional]: Specifies whether the date generation rule is different for
end of month, so that the last date of each month is generated, regardless of
number of days in the month.

Allowable values: Boolean node, allowing Y, N, 1, 0, true, false etc. The full set
of allowable values is given in Table 42. Defaults to false if left blank or omitted.
Must be set to false or omitted if the date generation Rule is set to CDS or
CDS2015.

• FirstDate [Optional]: Date for initial stub period. For date generation rules
CDS and CDS2015, if given, this overwrites the first date of the schedule that is
otherwise built from IMM dates.

Allowable values: See Date in Table 26.

• LastDate [Optional]: Date for final stub period. For date generation rules CDS
and CDS2015, if given, this overwrites the last date of the schedule that is
otherwise built from IMM dates.

Allowable values: See Date in Table 26.

• RemoveFirstDate [Optional]: If true the first date will be removed from the
schedule. Useful to define a payment schedule using the rules for a calculation
schedule.

Allowable values: true, false

• RemoveLastDate [Optional]: If true the last date will be removed from the
schedule. Useful to define a fixing or reset schedule using the rules for a
calculation schedule.

Allowable values: true, false

The meanings and allowable values of the elements in a <Dates> based section of the
ScheduleData node follow below.

• Dates: a sub-node that determines that the schedule is set by specifying schedule
dates explicitly.

401

• Calendar [Optional]: Calendar used to determine the accrual schedule dates.
Also used to determine payment dates (except for compounding OIS index legs,
which use the index calendar), and also to compute day count fractions for
irregular periods when day count convention is ActActISMA and the schedule is
dates based.

Allowable values: See Table 30 Calendar. Defaults to NullCalendar if omitted,
i.e. no holidays at all, not even on weekends.

• Convention [Optional]: Roll Convention to determine the accrual schedule dates,
and also used to compute day count fractions for irregular periods when day
count convention is ActActISMA and the schedule is dates based.

Allowable values: See Table 27 Roll Convention. Defaults to Unadjusted if
omitted.

• Tenor [Optional]: Tenor used to compute day count fractions for irregular periods
when day count convention is ActActISMA and the schedule is dates based.

Allowable values: A string where the last character must be D or W or M or Y.
The characters before that must be a positive integer.
D = Day, W = Week, M = Month, Y = Year

Defaults to null if omitted.

• EndOfMonth [Optional]: Specifies whether the end of month convention is applied
when calculating reference periods for irregular periods when the day count
convention is ActActICMA and the schedule is dates based.

Allowable values: Boolean node, allowing Y, N, 1, 0, true, false etc. The full set
of allowable values is given in Table 42. Defaults to false if left blank or omitted.

• Dates: This is a sub-sub-node and contains child elements of type Date. In this
case the schedule dates are determined directly by the Date child elements. At
least two Date child elements must be provided. Dates must be provided in
chronological order. Note that if no calendar and roll convention is given, the
specified dates must be given as adjusted dates.

Allowable values: Each Date child element can take the allowable values listed in
Date in Table 26.

The meanings and allowable values of the elements in a <Derived> section of the
ScheduleData node follow below.

• BaseSchedule: The schedule from which the derived schedule will be deduced.

Allowable values: Must be the node name of another schedule in a given leg data
node.

• Shift [Optional]: The tenor/period offset to be applied to each date in the base
schedule in order to obtain the derived schedule.

Allowable values: A string where the last character must be D or W or M or Y.
The characters before that must be a positive integer.
D = Day, W = Week, M = Month, Y = Year. If left blank or omitted, defaults
to 0D.

402

• Calendar [Optional]: The calendar adjustment to be applied to each date in the
base schedule in order to obtain the derived schedule.

Allowable values: See Table 30 Calendar. Defaults to NullCalendar if left blank
or omitted, i.e. no holidays at all, not even on weekends.

• Convention [Optional]: The roll convention to be applied to each date in the
base schedule in order to obtain the derived schedule.

Allowable values: See Table 27 Roll Convention. Defaults to Unadjusted if left
blank or omitted.

• RemoveFirstDate [Optional]: If true the first date will be removed from the
schedule. Useful to define a payment schedule based on a calculation schedule.

Allowable values: true, false

• RemoveLastDate [Optional]: If true the last date will be removed from the
schedule. Useful to define a fixing or reset schedule based on a calculation
schedule.

Allowable values: true, false

8.3.5 Fixed Leg Data and Rates

The FixedLegData trade component node is used within the LegData trade component
when the LegType element is set to Fixed. The FixedLegData node only includes the
Rates sub-node which contains the rates of the fixed leg as child elements of type Rate.

An example of a FixedLegData node for a fixed leg with constant notional is shown in
Listing 264.

Listing 264: Fixed leg data

<FixedLegData>
<Rates>

<Rate>0.05</Rate>
</Rates>

</FixedLegData>

The meanings and allowable values of the elements in the FixedLegData node follow
below.

• Rates: This node contains child elements of type Rate. If the rate is constant
over the life of the fixed leg, only one rate value should be entered. If two or
more coupons have different rates, multiple rate values are required, each
represented by a Rate child element. The first rate value corresponds to the first
coupon, the second rate value corresponds to the second coupon, etc. If the
number of coupons exceeds the number of rate values, the rate will be kept flat
at the value of last entered rate for the remaining coupons. The number of
entered rate values cannot exceed the number of coupons.

Allowable values: Each child element can take any real number. The rate is
expressed in decimal form, e.g. 0.05 is a rate of 5%.

403

As in the case of notionals, the rate schedule can be specified with dates as
shown in Listing 265.

Listing 265: Fixed leg data with ’dated’ rates

<FixedLegData>
<Rates>

<Rate>0.05</Rate>
<Rate startDate='2016-02-04'>0.05</Rate>
<Rate startDate='2019-02-05'>0.05</Rate>

</Rates>
</FixedLegData>

8.3.6 Floating Leg Data, Spreads, Gearings, Caps and Floors

The FloatingLegData trade component node is used within the LegData trade
component when the LegType element is set to Floating. It is also used directly within
the CapFloor trade data container. The FloatingLegData node includes elements
specific to a floating leg.

An example of a FloatingLegData node is shown in Listing 266.

Listing 266: Floating leg data

<FloatingLegData>
<Index>USD-LIBOR-3M</Index>
<IsInArrears>false</IsInArrears>
<IsAveraged>false</IsAveraged>
<HasSubPeriods>false</HasSubPeriods>
<IncludeSpread>false</IncludeSpread>
<FixingDays>2</FixingDays>
<Spreads>

<Spread>0.005</Spread>
</Spreads>
<Gearings>

<Gearing>2.0</Gearing>
</Gearings>
<Caps>

<Cap>0.05</Cap>
</Caps>
<Floors>

<Floor>0.01</Floor>
</Floors>
<NakedOption>false</NakedOption>
<LocalCapFloor>false</LocalCapFloor>
<HistoricalFixings>

<Fixing fixingDate="2016-02-01">0.2</Fixing>
</HistoricalFixings>

</FloatingLegData>

The meanings and allowable values of the elements in the FloatingLegData node
follow below.

404

• Index: The combination of currency, index and term that identifies the relevant
fixings and yield curve of the floating leg.

Allowable values: An alphanumeric string of the form CCY-INDEX-TENOR.
CCY, INDEX and TENOR must be separated by dashes (-). CCY and INDEX
must be among the supported currency and index combinations. TENOR must
be an integer followed by D, W, M or Y. See Table 32. TENOR is not required
for Overnight indices, but can be set to 1D.

• IsAveraged [Optional]: For cases where there are multiple index fixings over a
period true indicates that the average of the fixings is used to calculate the
coupon. false indicates that the coupon is calculated by compounding the
fixings. IsAveraged only applies to Overnight indices and Sub Periods Coupons.

Allowable values: true, false. Defaults to false if left blank or omitted.

• HasSubPeriods [Optional]: For cases where several Ibor fixings result in a single
payment for a period, e.g. if the Ibor tenor is 3M and the schedule tenor is 6M,
two fixings are used to compute the amount of the semiannual coupon payments.
true indicates that an average (IsAveraged = true) or a compounded
(IsAveraged=false) value of the fixings is used to determine the payment rate.
false indicates that the initial index period fixing determines the payment rate
for the full tenor, i.e. no further fixings, no averaging and no compounding.
IsAveraged is ignored for Ibor legs when HasSubPeriods is set to false.
HasSubPeriods does not apply to Overnight indices.

Allowable values: true, false. Defaults to false if left blank or omitted.

• IncludeSpread [Optional]: Only applies to Sub Periods and (compounded) OIS
Coupons. If true the spread is included in the compounding, otherwise it is
excluded.

Allowable values: true, false. Defaults to false if left blank or omitted.

A Zero Coupon Floating leg with compounding that includes spread can be set
up using a rules-based schedule as shown in Listing 267. Note that the Tenor in
the rules-based schedule is not used when Rule is set to Zero.

405

Listing 267: Zero Coupon Floating Leg - Rules-based

<LegData>
<LegType>Floating</LegType>
<Payer>false</Payer>
<Currency>USD</Currency>
<Notionals>

<Notional>200000.0000</Notional>
</Notionals>
<DayCounter>A360</DayCounter>
<PaymentConvention>MF</PaymentConvention>
<ScheduleData>

<Rules>
<StartDate>2020-01-14</StartDate>
<EndDate>2020-07-14</EndDate>
<Tenor>3M</Tenor>
<Calendar>USD</Calendar>
<Convention>MF</Convention>
<TermConvention>MF</TermConvention>
<Rule>Zero</Rule>

</Rules>
</ScheduleData>
<FloatingLegData>

<Index>USD-LIBOR-3M</Index>
<IsAveraged>false</IsAveraged>
<HasSubPeriods>true</HasSubPeriods>
<IncludeSpread>true</IncludeSpread>
<Spreads>

<Spread>0.006500</Spread>
</Spreads>
<IsInArrears>false</IsInArrears>
<FixingDays>2</FixingDays>

</FloatingLegData>
</LegData>

A Zero Coupon Floating leg with compounding that includes spread can also be
set up using a dates-based schedule with two dates (start and end) as shown in
Listing 268.

406

Listing 268: Zero Coupon Floating Leg - Dates-based

<LegData>
<LegType>Floating</LegType>
<Payer>false</Payer>
<Currency>USD</Currency>
<Notionals>

<Notional>200000.0000</Notional>
</Notionals>
<DayCounter>A360</DayCounter>
<PaymentConvention>MF</PaymentConvention>
<ScheduleData>

<Dates>
<Calendar>USD</Calendar>
<Convention>MF</Convention>
<Dates>

<Date>2020-01-14</Date>
<Date>2020-07-14</Date>

</Dates>
</Dates>

</ScheduleData>
<FloatingLegData>

<Index>USD-LIBOR-3M</Index>
<IsAveraged>false</IsAveraged>
<HasSubPeriods>true</HasSubPeriods>
<IncludeSpread>true</IncludeSpread>
<Spreads>

<Spread>0.006500</Spread>
</Spreads>
<IsInArrears>false</IsInArrears>
<FixingDays>2</FixingDays>

</FloatingLegData>
</LegData>

• IsInArrears [Optional]: true indicates that fixing is in arrears, false indicates that
fixing is in advance.

– For Ibor coupons, “in arrears” means that the fixing gap is calculated in
relation to the current period end date, while “in advance” means that the
fixing gap is calculated in relation to the period start date.

– For OIS coupons, “in arrears” means that the compounding (or averaging)
of ON rates is done over the current period, while “in advance” means that
the compounding (averaging) is done over the previous period. For the first
period, a virtual previous period will be constructed based on the schedule
construction rules. In the context of RFRs there are two common “in
advance” variants:

∗ “Last Recent” which means the length of the period used for
compounding / averaging is independent of the original period. This
former period is specified in the LastRecentPeriod field.

∗ “Last Reset” which means the original period will be used for
compounding / averaging. This variant is indicated by omitting the
LastRecentPeriod field.

407

Notice that the use of the LastRecentPeriod field is not restricted to “in
advance” OIS coupons, i.e. it can also be used in combination with “in
arrears”.

Allowable values: true, false. Defaults to false for Ibor and to true for OIS
coupons, if left blank or omitted.

• LastRecentPeriod [Optional]: Only applies to OIS coupons. If given, the
compounding / averaging of ON rates will not be done over the usual reference
period derived from the accrual period and the Lookback, FixingDays and
IsInArrears parameters, but instead over a period determined by the end date of
this usual period and the LastRecentPeriod parameter as [EndDate -
LastRecentPeriod, EndDate]. The calendar used to compute EndDate -
LastRecentPeriod is the schedule calendar unless a specific
LastRecentPeriodCalendar is specified. To represent SOFR 30D, 90D, 180D
average indices, the LastRecentPeriodCalendar should be set to NullCalendar,
since these averages refer to rolling averages over 30, 90, 180 calendar days.
Allowable values: any valid period, e.g. 30D, 90D, 180D, 1M, 2M, 6M

• LastRecentPeriodCalendar [Optional]: The calendar used to compute the
LastRecentPeriod, see this field for more details. If not given, defaults to the
schedule calendar.
Allowable values: See Table 30 Calendar.

• FixingDays [Optional]: The fixing gap. For Ibor coupons this is the number of
business days before the accrual period’s reference date to observe the index
fixing. Here, the accrual period reference date is the accrual start date for an in
advanced fixed coupon and the accrual end date for in arrears fixed coupon.
For overnight coupons this is the number of business days by which the value
dates are shifted into the past to get the fixing observation dates. In the context
of RFRs the FixingDays parameter is sometimes also called “obervation lag”.

The calendar used for the fixing gap, is the calendar associated with the floating
index, as defined in the conventions for the index.

Allowable values: A non-negative whole number. Defaults to the index’s fixing
days if blank or omitted. See defaults per index in Table 33.

• Lookback [Optional]: Only applicable to OIS legs. A period by which the value
dates schedule of (averaged, compounded) OIS legs is shifted into the past. On
top of this the gap defined by the FixingDays is applied to get the final fixing
date for an original date in the OIS value dates schedule. In the context of RFRs
the Lookback parameter is sometimes also called “shift”. With this terminology,
first the shift and then the observation lag is applied to get the fixing date for an
original value date of an overnight coupon.

Allowable values: any valid period, e.g. 2D, 3M, 1Y

• RateCutoff [Optional]: Only applicable to OIS legs. The number of fixing dates
at the end of the fixing period for which the fixing value is held constant and set
to the previous value. Defaults to 0.

Allowable values: any non-negative whole number

408

• Spreads [Optional]: This node contains child elements of type Spread. If the
spread is constant over the life of the floating leg, only one spread value should
be entered. If two or more coupons have different spreads, multiple spread values
are required, each represented by a Spread child element. The first spread value
corresponds to the first coupon, the second spread value corresponds to the
second coupon, etc. If the number of coupons exceeds the number of spread
values, the spread will be kept flat at the value of last entered spread for the
remaining coupons. The number of entered spread values cannot exceed the
number of coupons.

Allowable values: Each child element can take any real number. The spread is
expressed in decimal form, e.g. 0.005 is a spread of 0.5% or 50 bp.

For the <Spreads> section, the same applies as for notionals and rates - a list of
changing spreads can be specified without or with individual start dates as shown
in Listing 269.

Listing 269: ’Dated’ spreads

<Spreads>
<Spread>0.005</Spread>
<Spread startDate='2017-03-05'>0.007</Spread>
<Spread startDate='2019-03-05'>0.009</Spread>

</Spreads>

If the entire <Spreads> section is omitted, it defaults to a spread of 0%.

• Gearings [Optional]: This node contains child elements of type Gearing
indicating that the coupon rate is multiplied by the given factors. The mode of
specification is analogous to spreads, see above.

If the entire <Gearings> section is omitted, it defaults to a gearing of 1.

• Caps [Optional]: This node contains child elements of type Cap indicating that
the coupon rate is capped at the given rate (after applying gearing and spread, if
any). The mode of specification is analogous to spreads, see above. Caps /
Floors are supported for Ibor, SIFMA, compounded / averaged OIS coupons, but
not for coupons with subperiods.

For OIS coupons notice how the gearing g and spread s enter the calculation of
the coupon amount A dependent on the IncludeSpread and LocalCapFloor flags
and the cap rate C, floor rate F , daily rates fi, daily accrual fractions τi and the
coupon accrual fraction τ . Notice that the gearing must be 1 if include spread is
set to true for capped / floored coupons. The cases for compounded coupons are:

– IncludeSpread = false, LocalCapFloor = false:

A = min

(
max

(
g ·
∏

(1 + τifi)− 1

τ
+ s, F

)
, C

)
– IncludeSpread = true, LocalCapFloor = false:

409

A = min

(
max

(
·
∏

(1 + τi(fi + s))− 1

τ
, F

)
, C

)
– IncludeSpread = false, LocalCapFloor = true:

A = g ·
∏

(1 + τi min(max(fi, F), C))− 1

τ
+ s

– IncludeSpread = true, LocalCapFloor = true:

A = ·
∏

(1 + τi min(max(fi + s, F), C))− 1

τ

The cases for Averaged coupons are:

– IncludeSpread = false, LocalCapFloor = false:

A = min

(
max

(
g ·
∑

(τifi)

τ
+ s, F

)
, C

)
– IncludeSpread = true, LocalCapFloor = false:

A = min

(
max

(∑
(τifi)

τ
+ s, F

)
, C

)
– IncludeSpread = false, LocalCapFloor = true:

A = g ·
∑

(τi min(max(fi, F), C))

τ
+ s

– IncludeSpread = true, LocalCapFloor = true:

A = ·
∑

(τi min(max(fi + s, F), C))

τ

• Floors [Optional]: This node contains child elements of type Floor indicating
that the coupon rate is floored at the given rate (after applying gearing and
spread, if any). The mode of specification is analogous to spreads, see above.

• NakedOption [Optional]: Optional node, if true the leg represents only the
embedded floor, cap or collar. By convention the embedded floor (or cap) are
considered long if the leg is a receiver leg, otherwise short. For a collar the floor
is long and the cap is short if the leg is a receiver leg. Notice that this is opposite
to the definition of a collar in 8.2.3.

Allowable values: true, false . Defaults to false if left blank or omitted.

• LocalCapFloor [Optional]: Optional node, if true a cap (floor) will be applied to
the daily rates of a compounded / averaged overnight coupon. If false the
effective period rate will be capped (floored). The flag is ignored for coupons
other than overnight coupons.

Allowable values: true, false . Defaults to false if left blank or omitted.

410

• FixingSchedule [Optional]: This node allows for the specification of an explicit
fixing schedule, see 8.3.4. Supported for underlying IBOR / term rate index. A
given fixing will become effective as specified by FixingDays relative to the fixing
schedule or by an explicit ResetSchedule.

• ResetSchedule [Optional]: This node allows for the specification of an explicit
reset schedule, see 8.3.4, i.e. the dates on which fixings become effective.
Supported for underlying IBOR / term rate index. Can be given together with
FixingSchedule or FixingDays. In the latter case, the fixing dates are derived
from the reset schedule.

• HistoricalFixings [Optional]: This node allows for the specification of an
custom trade specific fixings. Supported for underlying OIS / IBOR / term rate
index. If a historical fixing for date in the provided list is needed for pricing, the
custom fixings will be used instead of an exisiting global index fixings.

8.3.7 Leg Data with Amortisation Structures

Amortisation structures can (optionally) be added to a leg as indicated in the following
listing 270, within a block of information enclosed by <Amortizations> and
</Amortizations> tags. Note that <Amortizations> structures are not supported for
trade type CapFloor.

Listing 270: Amortisation data

<LegData>
<LegType> ... </LegType>
<Payer> ... </Payer>
<Currency> ... </Currency>
<Notionals>
<Notional>10000000</Notional>

</Notionals>
<Amortizations>
<AmortizationData>
<Type>FixedAmount</Type>
<Value>1000000</Value>
<StartDate>20170203</StartDate>
<Frequency>1Y</Frequency>
<Underflow>false</Underflow>

</AmortizationData>
<AmortizationData>
...

</AmortizationData>
</Amortizations>
...

</LegData>

The user can specify a sequence of AmortizationData items in order to switch from
one kind of amortisation to another etc. Within each AmortisationData block the
meaning of elements is

• Type: Amortisation type with allowable values FixedAmount,
RelativeToInitialNotional, RelativeToPreviousNotional, Annuity,
LinearToMaturity.

411

• Value [optional]: Interpreted depending on Type, see below. Required for all
types except LinearToMaturity.

• StartDate [optional]: Amortisation starts on first schedule date on or beyond
StartDate. If not given, amortisation starts in first schedule period. If more than
one AmortizationData block is specified, the StartDate is mandatory for all
blocks except the first.

• EndDate [optional]: Amortization is applied for schedule periods with start date
before EndDate. If more than one AmortizationData block is specified, the
EndDate is mandatory for all blocks except the last.

• Frequency, entered as a period [optional]: Frequency of amortisations. If not
given, an amortization is applied in each schedule period, otherwise in each nth
period, where n is determined from Frequency. Amortizations are always applied
to whole periods though, i.e. not within a period. The frequency is ignored for
type Annuity, in which case an amortisation is applied in each period.

• Underflow [optional]: Allow amortisation below zero notional if true, otherwise
amortisation stops at zero notional. Defaults to false;

The amortisation data block’s Value element is interpreted depending on the chosen
Type:

• FixedAmount: The value is interpreted as a notional amount to be subtracted
from the current notional on each amortisation date.

• RelativeToInitialNotional: The value is interpreted as a fraction of the initial
notional to be subtraced from the current notional on each amortisation date.

• RelativeToPreviousNotional: The value is interpreted as a fraction of the
previous notional to be subtraced from the previous notional to get the current
notional on each amortisation date.

• Annuity: The value is interpreted as annuity amount (redemption plus coupon).

• LinearToMaturity: The value is not relevant, and does not need to be provided.

Annuity type amortisation is supported for fixed rate legs as well as floating (ibor) legs.

Note:

• Floating annuities require at least one previous vanilla coupon in order to work
out the first amortisation amount.

• Floating legs with annuity amortisation currently do not allow switching the
amortisation type, i.e. only a single block of AmortizationData.

8.3.8 Indexings

This trade component can be used as an optional node within the LegData component
to scale the notional of the coupons of a leg by one or several index prices. This
feature is typically used within equity swaps with notional reset to align the notional
of the funding leg with the one from the equity leg for all return periods. See 8.2.23 for
the specific usage in equity swaps. Notice that typically it is sufficient to set the
FromAssetLeg flag to true in the Indexings node definition, i.e.

412

<LegData>
<LegType>Floating</LegType>
<!-- no notionals node required -->
<ScheduleData> ... </ScheduleData>
<Indexings>

<FromAssetLeg>true</FromAssetLeg>
</Indexings>
<FloatingLegData> ... </FloatingLegData>

</LegData>

which will cause the trade builder to pull all the indexing details from the asset leg
(the equity leg in an equity swap) and populate the indexing data on the funding leg
accordingly. Notice that no definition of a Notionals node is required in this case, this
will also generated automatically.

In what follows we will describe the full syntax of the Indexings node below for
reference. The Indexing component can be used in combination with the following leg
types:

• Fixed

• Floating

• CMS

• DigitalCMS

• CMSSpread

• DigitalCMSSpread

If specified the notional of the single coupons in the leg is scaled by one or several
index prices and a quantity. The indices can be equity or FX indices. Notice that if
notional exchanges are enabled on a leg with the FromAssetLeg flag set to true, the
notional exchanges are not influenced by the indexing definitions. In general we
assume that notional exchanges are not enabled in combination with FromAssetLeg
true, but it is not forbidden technically. Listing 271 shows an example of a Floating leg
indexed by both an equity price and a FX rate.

Another use case for Indexings is for non-deliverable IR and Cross Currency Swaps. A
non-deliverable IR Swap has Currency set to the deliverable currency on both legs,
Notional in the non-deliverable currency on both legs, and Indexings with an FX Index
between the deliverable and non-deliverable currency on both legs. See the Swap
section for an example non-deliverable IR swap where USD is the payment currency
and CLP is the non-deliverable currency.

A non-deliverable Cross Currency Swap has Settlement set to Cash, and one leg is a
regular leg in the deliverable currency without Indexings. The other leg has Currency
set to the deliverable currency, Notional in the non-deliverable currency and Indexings
with an FX Index between the deliverable and non-deliverable currency. See the Swap
section for an example USD-CLP non-deliverable cross currency swap where CLP is
the non-deliverable currency.

413

Listing 271: Indexings node

<LegData>
<LegType>Floating</LegType>
<Notionals> ... </Notionals>
<ScheduleData> ... </ScheduleData>
<Indexings>

<FromAssetLeg>false</FromAssetLeg>
<Indexing>

<Quantity>1000</Quantity>
<Index>EQ-RIC:.STOXX50E</Index>
<InitialFixing>2937.36</InitialFixing>
<ValuationSchedule>
<Dates>...</Dates>
<Rules>...</Rules>

</ValuationSchedule>
<FixingDays>0</FixingDays>
<FixingCalendar/>
<FixingConvention>U</FixingConvention>
<IsInArrears>false</IsInArrears>

</Indexing>
<Indexing>

<Index>FX-ECB-EUR-USD</Index>
<InitialFixing>1.1469</InitialFixing>
<ValuationSchedule> ... </ValuationSchedule>
<FixingDays>0</FixingDays>
<FixingCalendar/>
<FixingConvention>U</FixingConvention>
<IsInArrears>false</IsInArrears>

</Indexing>
</Indexings>
<FloatingLegData> ... </FloatingLegData>

</LegData>

The Indexings node contains the following elements:

• FromAssetLeg [Optional]: If true, and the trade type supports this, the notionals
on the funding leg (i.e. the leg with the FromAssetLeg field) will be derived from
the respective asset leg. Internally, the trade builder will add Indexing blocks
automatically reflecting the necessary indexings (equity price and FX in the case
of an equity swap) from the notional reset feature of the asset leg. Also, the
Notionals node of the funding leg will internally be set to a single notional 1.
The actual Notionals node in the XML on the funding leg is not required and
can be omitted.

FromAssetLeg is supported for the following trade types:

– EquitySwap: Setting FromAssetLeg to true, aligns the notionals for all
return periods on the non-equity funding leg, to the equity leg by deriving
equity price, quantity and FX from the equity leg.
Note that FromAssetLeg is only supported if NotionalReset is true on the
equity leg - FromAssetLeg is ignored otherwise. Also FromAssetLeg is only
supported when Quantity is given on the equity leg, not InitialPrice and
Notional.

414

– BondTRS: Setting FromAssetLeg to true, aligns the notionals for all return
periods on the funding leg (in the FundingData block), to the total return
leg (in the TotalReturnData block) by deriving bond price, bond notional
and FX from the total return leg, bond data and the reference bond.

Allowable values: true, false. Defaults to false if left blank or omitted.

• Indexing [Optional, an arbitrary number can be given]: Each Indexing node
describes one indexing as follows:

– Quantity [Optional]: The quantity that applies. For equity that should be
the number of shares, for FX it should be 1, i.e. for FX this field can be
omitted. The notional of each coupon is in general determined as
Original Coupon Notional x Quantity x Equity Price x FX Rate
depending on which indexing types are given. Typically, the original coupon
notional will be set to 1.

Allowable values: Any number. Defaults to 1 if left blank or omitted.

– Index: The relevant index. This is either an equity or FX index. For an FX
index, one of the currencies of the index must match the leg currency. It is
then ensured that the FX conversion is applied using the correct direction,
i.e. if the foreign currency of the index matches the leg currency, the
reciprocals of the index fixings are used as a multiplier.

Allowable values: This is “FX-SOURCE-CCY1-CCY” for FX, see 8.3.29 and
34 for details, or “EQ-NAME” for Equity with “Name” being the general
string representation for equity underlyings
IdentifierType:Name:Currency:Exchange, see 8.3.29.

– Dirty [Optional]: Only used for bond indices. Indicates whether to use dirty
(true) or clean (false) prices.

Allowable values: true, false. Defaults to true if left blank or omitted.

– Relative [Optional]: Only used for bond indices. Indicates whether to use
relative (true) or absolute prices (false). The absolute price is the dirty or
clean npv as of the settlement date of the bond in absolute “dollar” terms
using the bond details (in particular the notional) from the reference data.
The relative price is the absolute price divided by the current notional as of
the settlement date.

Allowable values: true, false. Defaults to true if left blank or omitted.

– ConditionalOnSurvival [Optional]: Only used for bond indices. Indicates
whether to forecast bond prices conditional on survival (true) or including
the default probability from today until the fixing date (false).

Allowable values: true, false. Defaults to true if left blank or omitted.

– InitialFixing [Optional]: If given the index fixing value to apply on the
fixing date of the first coupon. If not given the value is read from the
relevant fixing history.

Allowable values: any number

415

– InitialNotionalFixing [Optional]: If given the index fixing value to apply on
the fixing date of the first notional exchange flow. This is used in
non-deliverable XCCY swaps. If not given the value is read from the
relevant fixing history.

Allowable values: any number

– ValuationSchedule [Optional]: If given the schedule from which the fixing
dates are deduced. If not given, it defaults to the original leg’s schedule.

If the valuation schedule has the same size as the original leg’s schedule, it is
assumed that the periods correspond one to one, i.e. the ith fixing date is
derived from the ith (inArrears = false) or i+ 1th (inArrears = true) date
in the valuation schedule using the FixingDays, FixingCalendar and
FixingConvention.

If the valuation schedule has a different size than the original leg’s schedule,
the relevant valuation date for the ith original leg’s coupon is determined as
the latest valuation date that is less or equal to accrual start date
(inArrears = false) resp. accrual end date (inArrears = true) of that
coupon. The fixing date is derived from the relevant valuation date as
above, i.e. using the FixingDays, FixingCalendar and FixingConvention.

Allowable values: a valid schedule definition, see 8.3.4

– FixingDays [Optional]: If given defines the number of fixing days to apply
when deriving the fixing dates from the valuation schedule (see above).

Allowable values: Any non-negative whole number. Defaults to 0 if left
blank or omitted.

– FixingCalendar [Optional, defaults to NullCalendar (no holidays): If given
defines the fixing calendar to use when deriving the fixing dates from the
valuation schedule (see above).

Allowable values: Allowable values: See Table 30 Calendar. Defaults to the
NullCalendar (no holidays) if left blank or omitted.

– FixingConvention [Optional]: If given defines the business day convention to
use when deriving the fixing dates from the valuation schedule (see above).
Defaults to Preceding if left blank or omitted.

Allowable values: Any valid roll convention, e.g. (F, MF, P, MP, U). See
Table 27.

– IsInArrears [Optional]: If true, the fixing dates are derived from the period
end dates, otherwise from the period start dates as described for
ValuationSchedule above.

Allowable values: true, false. Defaults to false if left blank or omitted.

8.3.9 Cashflow Leg Data

A Cashflow leg is used to represent one or more custom cashflows, with specified dates
and amounts. Listing 272 shows an example for a leg of type Cashflow.

416

Listing 272: Cashflow leg data

<LegData>
<Payer>false</Payer>
<LegType>Cashflow</LegType>
<Currency>EUR</Currency>
<PaymentConvention>ModifiedFollowing</PaymentConvention>
<CashflowData>
<Cashflow>
<Amount date="2024-12-15">105000</Amount>

</Cashflow>
</CashflowData>

</LegData>

The CashflowData block contains the following elements:

• Cashflow: This node contains child elements of type Amount, each representing a
cashflow. Each child element should include the date of the cashflow using the
form:

<Amount date="YYYY-MM-DD">[amount]</Amount>

Allowable values: Each child element can take any real number.

8.3.10 CMS Leg Data

Listing 273 shows an example for a leg of type CMS.

417

Listing 273: CMS leg data

<LegData>
<LegType>CMS</LegType>
<Payer>false</Payer>
<Currency>EUR</Currency>
<Notionals>
<Notional>10000000</Notional>

</Notionals>
<DayCounter>ACT/ACT</DayCounter>
<PaymentConvention>Following</PaymentConvention>
<ScheduleData>
...

</ScheduleData>
<CMSLegData>
<Index>EUR-CMS-10Y</Index>
<Spreads>
<Spread>0.0010</Spread>

</Spreads>
<Gearings>
<Gearing>2.0</Gearing>

</Gearings>
<Caps>
<Cap>0.05</Cap>

</Caps>
<Floors>
<Floor>0.01</Floor>

</Floors>
<NakedOption>false</NakedOption>

</CMSLegData>
</LegData>

The CMSLegData block contains the following elements:

• Index: The underlying CMS index.

Allowable values: See 32, a string on the form CCY-CMS-TENOR, where the
CMS part stays constant and TENOR is an integer followed by Y.

• Spreads [Optional]: The spreads applied to index fixings. As usual, this can be a
single value, a vector of values or a dated vector of values.

Allowable values: Each child spread element can take any real number. The
spread is expressed in decimal form, e.g. 0.005 is a spread of 0.5% or 50 bp.

• IsInArrears [Optional]: true indicates that fixing is in arrears, i.e. the fixing gap
is calculated in relation to the current period end date.
false indicates that fixing is in advance, i.e. the fixing gap is calculated in
relation to the previous period end date.

Allowable values: true, false. Defaults to false if left blank or omitted.

• FixingDays [Optional]: This is the fixing gap, i.e. the number of days before the
period end date an index fixing is taken. Defaults to the index’s fixing gap.

Allowable values: A non-negative whole number. Defaults to the fixing days of
the Ibor index the swap references if blank or omitted. See defaults per index in

418

Table 33.

• Gearings [Optional]: This node contains child elements of type Gearing
indicating that the coupon rate is multiplied by the given factors. The mode of
specification is analogous to spreads, see above.

If the entire <Gearings> section is omitted, it defaults to a gearing of 1.

• Caps [Optional]: This node contains child elements of type Cap indicating that
the coupon rate is capped at the given rate (after applying gearing and spread, if
any). The mode of specification is analogous to spreads, see above.

• Floors [Optional]: This node contains child elements of type Floor indicating
that the coupon rate is floored at the given rate (after applying gearing and
spread, if any). The mode of specification is analogous to spreads, see above.

• NakedOption [Optional]: If true the leg represents only the embedded floor, cap
or collar. By convention the embedded floor (or cap) are considered long if the
leg is a receiver leg, otherwise short. For a collar the floor is long and the cap is
short if the leg is a receiver leg.

Allowable values: true, false . Defaults to false if left blank or omitted.

8.3.11 Constant Maturity Bond Leg Data

In close analogy to the CMS leg one can create a leg that is linked to a Constant
Maturity Bond yield index. The associated leg type is CMB.

Listing 274 shows an example for a leg of type CMB.

Listing 274: CMB leg data

<LegData>
<LegType>CMB</LegType>
<Payer>false</Payer>
<Currency>EUR</Currency>
<Notionals>
<Notional>10000000</Notional>

</Notionals>
<DayCounter>ACT/ACT</DayCounter>
<PaymentConvention>Following</PaymentConvention>
<ScheduleData>
...

</ScheduleData>
<CMBLegData>
<Index>CMB-US-TBILL-13W</Index>
<FixingDays>2</FixingDays>
<Spreads>
<Spread>0.0010</Spread>

</Spreads>
<Gearings>
<Gearing>2.0</Gearing>

</Gearings>
</CMBLegData>

</LegData>

419

The CMBLegData block contains the following elements:

• Index: The underlying CMB index.

Allowable values: A string of the form CMB-FAMILY-TENOR, where FAMILY
might consist of several tokens separated by “-” as e.g. in CMB-US-TBILL-HD or
CMB-DE-BUND, and TENOR is a valid period.

• Spreads [Optional]: The spreads applied to index fixings. As usual, this can be a
single value, a vector of values or a dated vector of values.

Allowable values: Each child spread element can take any real number. The
spread is expressed in decimal form, e.g. 0.005 is a spread of 0.5% or 50 bp.
Defaults to zero if left blank or omitted.

• FixingDays: This is the fixing gap, i.e. the number of days before the period end
date an index fixing is taken. Defaults to the index’s fixing gap.

Allowable values: A non-negative whole number. Defaults to the fixing days of
the Ibor index the swap references if blank or omitted. See defaults per index in
Table 33.

• IsInArrears [Optional]: true indicates that fixing is in arrears, i.e. the fixing gap
is calculated in relation to the current period end date.
false indicates that fixing is in advance, i.e. the fixing gap is calculated in
relation to the previous period end date.

Allowable values: true, false. Defaults to false if left blank or omitted.

• Gearings [Optional]: This node contains child elements of type Gearing
indicating that the coupon rate is multiplied by the given factors. The mode of
specification is analogous to spreads, see above.

If the entire <Gearings> section is omitted, it defaults to a gearing of 1.

Note:

• For each CMB index name one needs to maintain bond reference data with ID
equal to the index name. This reference data is used to project the CMB index
fixings as follows: For a future index period (from future date to future date +
index tenor), a forward starting bond is constructed using the schedule frequency
defined in the reference data and with constant maturity (future date + tenor).
The forward bond is priced using the reference yield curve and credit curve
defined in the reference data. And the bond price is then converted into a bond
yield using the bond yield conventions (compounding, frequncy, price type)
maintained for that same ID. If the conventions are not set up, then default
values are used (compounded, annual, clean).

• For periods with start dates in the past, historical index fixings need to be
provided, as for interest rate indices.

• No convexity adjustment is applied here yet, in contrast to CMS index
projections.

• The CMB leg does not support Caps or Floors yet, in contrast to the CMS leg.

420

8.3.12 Digital CMS Leg Data

Listing 275 shows an example for a leg of type DigitalCMS.

Listing 275: Digital CMS leg data

<LegData>
<LegType>DigitalCMS</LegType>
<Payer>false</Payer>
<Currency>GBP</Currency>
<Notionals>
<Notional>10000000</Notional>

</Notionals>
<DayCounter>ACT/ACT</DayCounter>
<PaymentConvention>Following</PaymentConvention>
<ScheduleData>
...

</ScheduleData>
<DigitalCMSLegData>
<CMSLegData>
<Index>EUR-CMS-10Y</Index>
<FixingDays>2</FixingDays>
<Gearings>
<Gearing>3.0</Gearing>

</Gearings>
<Spreads>
<Spread>0.0010</Spread>

</Spreads>
<NakedOption>false</NakedOption>

</CMSLegData>
<CallPosition>Long</CallPosition>
<IsCallATMIncluded>false</IsCallATMIncluded>
<CallStrikes>
<Strike>0.003</Strike>

</CallStrikes>
<CallPayoffs>
<Payoff>0.003</Payoff>

</CallPayoffs>
<PutPosition>Short</PutPosition>
<IsPutATMIncluded>false</IsPutATMIncluded>
<PutStrikes>
<Strike>0.05</Strike>

</PutStrikes>
<PutPayoffs>
<Payoff>0.05</Payoff>

</PutPayoffs>
</DigitalCMSLegData>

</LegData>

The DigitalCMSLegData block contains the following elements:

• CMSLegData: a CMSLegData block describing the underlying Digital CMS leg
(see 8.3.10). Caps and floors in the underlying CMS leg are not supported for
Digital CMS Options. The NakedOption flag in the CMSLegData block is
supported and can be used to separate the digital option payoff from the
underlying CMS coupon.

421

• CallPosition: Specifies whether the call option position is long or short.

• IsCallATMIncluded: inclusion flag on the call payoff if the call option ends
at-the-money

• CallStrikes: strike rate for the the call option

• CallPayoffs: digital call option payoff rate. If included the option is
cash-or-nothing, if excluded the option is asset-or-nothing

• PutPosition: Specifies whether the put option position is long or short.

• IsPutATMIncluded: inclusion flag on the put payoff if the put option ends
at-the-money

• PutStrikes: strike rate for the the put option

• PutPayoffs: digital put option payoff rate. If included the option is
cash-or-nothing, if excluded the option is asset-or-nothing

8.3.13 Duration Adjusted CMS Leg Data

Listing 276 shows an example for a leg of type DurationAdjustedCMS.

422

Listing 276: Duration Adjusted CMS leg data

<LegData>
<LegType>DurationAdjustedCMS</LegType>
<Payer>false</Payer>
<Currency>EUR</Currency>
<Notionals>
<Notional>21000000</Notional>

</Notionals>
<DayCounter>Simple</DayCounter>
<PaymentConvention>Following</PaymentConvention>
<PaymentLag>0</PaymentLag>
<PaymentCalendar>TARGET</PaymentCalendar>
<DurationAdjustedCMSLegData>
<Index>EUR-CMS-20Y</Index>
<Duration>10</Duration>
<Spreads>
<Spread>0</Spread>

</Spreads>
<Gearings>
<Gearing>1</Gearing>

</Gearings>
<IsInArrears>false</IsInArrears>
<FixingDays>2</FixingDays>
<Caps>
<Cap>0.015</Cap>

</Caps>
<NakedOption>true</NakedOption>

</DurationAdjustedCMSLegData>
<ScheduleData>
<Rules>
<StartDate>2019-12-31</StartDate>
<EndDate>2023-12-31</EndDate>
<Tenor>3M</Tenor>
<Calendar>EUR</Calendar>
<Convention>ModifiedFollowing</Convention>
<TermConvention>ModifiedFollowing</TermConvention>
<Rule>Backward</Rule>

</Rules>
</ScheduleData>

</LegData>

The DurationAdjustedCMSLegData is identical to the CMSLegData block (see 8.3.10).
In addition to this it contains a field defining the duration adjustment:

• Duration [Optional]: A non-negative whole number n that defines the duration
adjustment for the coupons. If γ is the underlying CMS index fixing for a coupon
the duration adjustment δ is defined as

δ =
n∑
i=1

1

(1 + γ)i

If n is zero or the duration is not given, δ is defined as 1, i.e. no adjustment is
applied in this case and the coupon will be an ordinary CMS coupon. The
coupon amount A for a duration adjusted coupon with a spread s, a gearing g, a

423

cap c, a floor f and with nominal N and accrual fraction τ is given by:

A = δ ·N · τ ·max(min(g · γ + s, c), f)

Allowable values: A non-negative whole number.

8.3.14 CMS Spread Leg Data

Listing 277 shows an example for a leg of type CMSSpread.

Listing 277: CMS Spread leg data

<LegData>
<LegType>CMSSpread</LegType>
<Payer>false</Payer>
<Currency>GBP</Currency>
<Notionals>
<Notional>10000000</Notional>

</Notionals>
<DayCounter>ACT/ACT</DayCounter>
<PaymentConvention>Following</PaymentConvention>
<ScheduleData>
...

</ScheduleData>
<CMSSpreadLegData>
<Index1>EUR-CMS-10Y</Index1>
<Index2>EUR-CMS-2Y</Index2>
<Spreads>
<Spread>0.0010</Spread>

</Spreads>
<Gearings>
<Gearing>8.0</Gearing>

</Gearings>
<Caps>
<Cap>0.05</Cap>

</Caps>
<Floors>
<Floor>0.01</Floor>

</Floors>
<NakedOption>false</NakedOption>

</CMSSpreadLegData>
</LegData>

The elements of the CMSSpreadLegData block are identical to those of the
CMSLegData (see 8.3.10), except for the index which is defined by two CMS indices as
the difference between Index1 and Index2.

The payout for each coupon is thus:

N · (gearing · (Index1− Index2) + Spread) · daycountfraction

Adding a cap, and assuming no spread, a gearing of 1, a daycount fraction of 1, and a
notional of 1, the payout becomes:

min(Cap; Index1− Index2)

424

If there is a floor instead of a cap, the payout is:

max(Floor; Index1− Index2)

Note that a CMS Spread Option can be created by setting NakedOption to true. With
this setting, the payout for the CMS Spread leg with a cap becomes an option with the
cap rate as strike:

max(0; (Index1− Index2)− Cap)

And the payout for a CMS Spread leg with a floor, and with NakedOption set to true
is :

max(0;Floor − (Index1− Index2))

8.3.15 Digital CMS Spread Leg Data

Listing 278 shows an example for a leg of type DigitalCMSSpread.

425

Listing 278: Digital CMS Spread leg data

<LegData>
<LegType>DigitalCMSSpread</LegType>
<Payer>false</Payer>
<Currency>GBP</Currency>
<Notionals>
<Notional>10000000</Notional>

</Notionals>
<DayCounter>ACT/ACT</DayCounter>
<PaymentConvention>Following</PaymentConvention>
<ScheduleData>
...

</ScheduleData>
<DigitalCMSSpreadLegData>

<CMSSpreadLegData>
<Index1>EUR-CMS-10Y</Index1>
<Index2>EUR-CMS-2Y</Index2>
<Spreads>
<Spread>0.0010</Spread>

</Spreads>
<Gearings>
<Gearing>8.0</Gearing>

</Gearings>
<NakedOption>false</NakedOption>

</CMSSpreadLegData>
<CallPosition>Long</CallPosition>
<IsCallATMIncluded>false</IsCallATMIncluded>
<CallStrikes>

<Strike>0.0001</Strike>
</CallStrikes>
<CallPayoffs>

<Payoff>0.0001</Payoff>
</CallPayoffs>
<PutPosition>Long</PutPosition>
<IsPutATMIncluded>false</IsPutATMIncluded>
<PutStrikes>

<Strike>0.001</Strike>
</PutStrikes>
<PutPayoffs>

<Payoff>0.001</Payoff>
</PutPayoffs>

</DigitalCMSSpreadLegData>
</LegData>

The DigitalCMSSpreadLegData block contains the following elements:

• CMSSpreadLegData: a CMSSpreadLegData block describing the underlying
Digital CMS Spread leg (see 8.3.14). Caps and floors in the underlying CMS
Spread leg are not supported for Digital CMS Spread Options. The NakedOption
flag in the CMSSpreadLegData block is supported and can be used to separate the
digital option payoff from the underlying CMS Spread coupon.

• CallPosition: Specifies whether the call option position is long or short.

• IsCallATMIncluded: inclusion flag on the call payoff if the call option ends
at-the-money

426

• CallStrikes: strike rate for the the call option

• CallPayoffs: digital call option payoff rate. If included the option is
cash-or-nothing, if excluded the option is asset-or-nothing

• PutPosition: Specifies whether the put option position is long or short.

• IsPutATMIncluded: inclusion flag on the put payoff if the put option ends
at-the-money

• PutStrikes: strike rate for the the put option

• PutPayoffs: digital put option payoff rate. If included the option is
cash-or-nothing, if excluded the option is asset-or-nothing

8.3.16 Equity Leg Data

Listing 279 shows an example of a leg of type Equity. Note that a resetting Equity Leg
(NotionalReset set to true) must have either:
a) a Quantity, or
b) an InitialPrice and a Notional in the leg

The EquityLegData block contains the following elements:

• Quantity[Optional with one exception]: The number of shares. Either a Notional
or the Quantity must be given for the leg, but not both at the same time.

Quantity is optional with the exception that when FXTerms is used and
NotionalReset is set to true, and the InitialPriceCurrency differs from the leg
currency, Quantity must be given, and Notional cannot be used.

Allowable values: Any positive real number

• ReturnType: Price indicates that the coupons on the equity leg are determined
by the price movement of the underlying equity, i.e.:
Notional · FinalPrice−InitialPrice

InitialPrice
,

Total indicates that coupons are determined by the total return of the underlying
equity including dividends, i.e.:
Notional · (FinalPrice+dividends∗DividendFactor)−InitialPrice

InitialPrice
,

Dividend indicates that the coupons are determined by the dividened paid on the
underlying equity.

Allowable values: Price, PRICE, Total, TOTAL, Dividend, DIVIDEND

• Name: The identifier of the underlying equity or equity index.

Allowable values: See Name for equity trades in Table 37.

• Underlying: This node may be used as an alternative to the Name node to specify
the underlying equity. This in turn defines the equity curve used for pricing. The
Underlying node is described in further detail in Section 8.3.29.

• InitialPrice [Optional]: Initial Price of the equity, if not present, the first
valuation date is used to determine the initial price. If InitialPrice is zero then
each coupon’s price is just the discounted fixing from the coupon’s
FixingEndDate. For any divisions we assume the value is one, i.e. when

427

NotionalReset = true we have instead Quantity = Notional. The Initial price can
be either given in the currency of the equity or in the leg currency, see
InitialPriceCurrency.

Allowable values: Any positive real number. If omitted or left blank it defaults
to the equity price of the fixing at the valuation date associated with the start
date. Note that when this valuation date is in the future the forward equity price
is used.

• InitialPriceCurrency [Optional]: If an initial price is given, it can be either given
in the original equity ccy or the leg currency (if these are different). This field
determines in which currency the initial price is given. If omitted, it is assumed
that the initial price is given in equity currency.

Allowable values: A valid currency code, See Fiat Currencies and Minor
Currencies in Table 28.

• NotionalReset [Optional]: Defaults to true. Notional resets only affect the equity
leg. If NotionalReset is set to true the quantity or number of shares of the
underlying equity is fixed for all the coupons on the equity leg and the Notional
for a period is computed as

Notional = Quantity x (share price at valuation date for period) x (FX
conversion rate at valuation date for period)

Notice that either a) the Quantity or b) a Notional and an explicit InitialPrice
must be given in the leg data for a resettable leg. In the latter case the Quantity
is computed as

Quantity = Notional / InitialPrice

No FX conversion is allowed if the Quantity has to be derived from the Notional
and the InitialPrice.

If NotionalReset is set to false the quantity of the underlying equity varies per
period, as per:

Quantity = Notional / (Equity Price at valuation date for the period)

For the first period, the InitialPrice is the Equity Price at valuation date. Here,
the Notional is taken to be the Notional specified in the leg or - if the Quantity is
given - to be

Notional = Quantity x InitialPrice

where again the InitialPrice must be explicitly given in the leg data and no FX
conversion is allowed in this case.

Allowable values: true or false

• DividendFactor [Optional]: Factor of dividend to be included in return. Note
that the DividendFactor is only relevant when the ReturnType is set to Total. It
is not used if the ReturnType is set to Price.

Allowable values: 0 < DividendFactor ≤ 1. Defaults to 1 if left blank or omitted.

• ValuationSchedule [Optional]: Schedule of dates for equity valuation.

428

Allowable values: A node of the same form as ScheduleData, (see 8.3.4). Note
that the number of dates (and periods) in the ValuationSchedule must be the
same as in the ScheduleData. If omitted, equity valuation dates follow the
schedule of the equity leg adjusted for FixingDays.

• FixingDays [Optional]: The number of days before payment date for equity
valuation. N.B. Only used when no valuation schedule present. Defaults to 0.

Allowable values: Any non-negative integer.

• FXTerms [Mandatory when leg and equity currencies differ]: For the case when
the currency the underlying equity is quoted in, is different from the leg currency.
The FXTerm node contains the following elements:

– EquityCurrency [Mandatory within FXTerms]: Currency underlying equity
is quoted in. Required if FXTerms is present.

Allowable values: See Fiat Currencies and Minor Currencies in Table 28.

– FXIndex [Mandatory within FXTerms]: Name of the index for FX fixings for
the leg vs equity currency pair, e.g. FX-TR20H-EUR-USD for Thomson
Reuters 20:00 EURUSD FX fixing. Required if FXTerms present.

Allowable values: See Table 34

429

Listing 279: Equity leg data

<LegData>
<LegType>Equity</LegType>
<Payer>false</Payer>
<Currency>EUR</Currency>
<DayCounter>ACT/ACT</DayCounter>
<PaymentConvention>Following</PaymentConvention>
<ScheduleData>
<Rules>
<StartDate>2016-03-01</StartDate>
<EndDate>2018-03-01</EndDate>
<Tenor>3M</Tenor>
<Calendar>TARGET</Calendar>
<Convention>ModifiedFollowing</Convention>
<TermConvention>ModifiedFollowing</TermConvention>
<Rule>Forward</Rule>
<EndOfMonth/>
<FirstDate/>
<LastDate/>

</Rules>
</ScheduleData>
<EquityLegData>
<Quantity>1000.0</Quantity>
<ReturnType>Price</ReturnType>
<Underlying>
<Type>Equity</Type>
<Name>.SPX</Name>
<IdentifierType>RIC</IdentifierType>

</Underlying>
<InitialPrice>100</InitialPrice>
<NotionalReset>true</NotionalReset>
<DividendFactor>1</DividendFactor>
<ValuationSchedule>
<Dates>
<Calendar>USD</Calendar>
<Convention>ModifiedFollowing</Convention>
<Dates>
<Date>2016-03-01</Date>
<Date>2016-06-01</Date>
<Date>2016-09-01</Date>
<Date>2016-12-01</Date>
<Date>2017-03-01</Date>
<Date>2017-06-01</Date>
<Date>2017-09-01</Date>
<Date>2017-12-01</Date>
<Date>2018-03-01</Date>

</Dates>
</Dates>
</ValuationSchedule>
<FixingDays>0</FixingDays>
<FXTerms>
<EquityCurrency>USD</EquityCurrency>
<FXIndex>FX-TR20H-EUR-USD</FXIndex>

<FXTerms>
</EquityLegData>

</LegData>

430

8.3.17 CPI Leg Data

A CPI leg contains a series of CPI-linked coupon payments N r (I(t)/I0) δ and, if
NotionalFinalExchange is set to true, a final inflation-linked redemption (I(t)/I0)N .
Each coupon and the final redemption can be subtracting the (un-inflated) notional N ,
i.e. (I(t)/I0 − 1)N , see below.

Note that CPI legs with just a final redemption and no coupons, can be set up with a
dates-based Schedule containing just a single date - representing the date of the final
redemption flow. In this case NotionalFinalExchange must be set to true, otherwise
the whole leg is empty, and the Rate is not used and can be set to any value.

Listing 280 shows an example for a leg of type CPI with annual coupons, and 281
shows an example for a leg of type CPI with just the final redemption.

The CPILegData block contains the following elements:

• Index: The underlying zero inflation index.

Allowable values: See Inflation CPI Index in Table 35.

• Rates: The contractual fixed real rate(s) of the leg, r. As usual, this can be a
single value, a vector of values or a dated vector of values.

Note that a CPI leg coupon payment at time t is:

N r
I(t)

I0

δ

where:

– N : notional

– r: the contractual fixed real rate

– I(t): the relevant CPI fixing for time t

– I0: the BaseCPI

– δ: the day count fraction for the accrual period up to time t

Allowable values: Each rate element can take any real number. The rate is
expressed in decimal form, e.g. 0.05 is a rate of 5%.

• BaseCPI [Optional]: The base CPI value I0 used to determine the lifting factor
for the fixed coupons. If omitted it will take the observed CPI fixing on
startDate - observationLag.

Allowable values: Any positive real number.

• StartDate [Optional]: The start date needs to be provided in case the schedule
comprises only a single date. If the schedule has at least two dates and a start
date is given at the same time, the first schedule date is taken as the start date
and the supplied StartDate is ignored.

Allowable values: See Date in Table 26.

• ObservationLag [Optional]: The observation lag to be applied. It’s the amount of
time from the fixing at the start or end of the period, moving backward in time,

431

to the inflation index observation date (the inflation fixing). Fallback to the
index observation lag as specified in the inflation swap conventions of the
underlying index, if not specified.

Allowable values: An integer followed by D, W, M or Y. Interpolation lags are
typically expressed in a positive number of M, months. Note that negative values
are allowed, but mean that the inflation is observed forward in time from the
period start/end date, which is unusual.

• Interpolation [Optional]: The type of interpolation that is applied to inflation
fixings. Linear interpolation means that the inflation fixing for a given date is
interpolated linearly between the surrounding - usually monthly - actual fixings,
whereas with Flat interpoltion the inflation fixings are constant for each day at
the value of the previous/latest actual fixing (flat forward interpolation).
Fallback to the Interpolation as specified in the inflation swap conventions of the
underlying index, if not specified.

Allowable values: Linear, Flat

• SubtractInflationNotional [Optional]: A flag indicating whether the non-inflation
adjusted notional amount should be subtracted from the the final
inflation-adjusted notional exchange at maturity. Note that the final coupon
payment is not affected by this flag.
Final notional payment if true: N (I(T)/I0 − 1).
Final notional payment if false: N I(T)/I0

Allowable values: Boolean node, allowing Y, N, 1, 0, true, false etc. The full set
of allowable values is given in Table 42.
Defaults to false if left blank or omitted.

• SubtractInflationNotionalAllCoupons [Optional]: A flag indicating whether the
non-inflation adjusted notional amount should be subtracted from all coupons.
Note that the final redemption payment is not affected by this flag.
Coupon payment if true: N (I(T)/I0 − 1).
Coupon payment if false: N I(T)/I0

Allowable values: Boolean node, allowing Y, N, 1, 0, true, false etc. The full set
of allowable values is given in Table 42.
Defaults to false if left blank or omitted.

• Caps [Optional]: This node contains child elements of type Cap indicating that
the inflation indexed payment is capped; the cap is applied to the inflation index
and expressed as an inflation rate, see CPI Cap/Floor in the Product Description.
If the cap is constant over the life of the cpi leg, only one cap value should be
entered. If two or more coupons have different caps, multiple cap values are
required, each represented by a Cap child element. The first cap value
corresponds to the first coupon, the second cap value corresponds to the second
coupon, etc. If the number of coupons exceeds the number of cap values, the cap
will be kept at at the value of last entered spread for the remaining coupons. The
number of entered cap values cannot exceed the number of coupons. Notice that
the caps defined under this node only apply to the cpi coupons, but not a final
notional flow (if present). A cap for the final notional flow can be defined under

432

the FinalFlowCap node.

Allowable values: Each child element can take any real number. The cap is
expressed in decimal form, e.g. 0.03 is a cap of 3%.

• Floors [Optional]: This node contains child elements of type Floor indicating
that the inflation indexed payment is floored; the floor is applied to the inflation
index and expressed as an inflation rate. The mode of specification is analogous
to caps, see above. Notice that the floors defined under this node only apply to
the cpi coupons, but not a final notional flow (if present). A floor for the final
notional flow can be defined under the FinalFlowFloor node.

Allowable values: Each child element can take any real number. The floor is
expressed in decimal form, e.g. 0.01 is a cap of 1%.

• FinalFlowCap [Optional]: The cap to be applied to the final notional flow of the
cpi leg. If not given, no cap is applied.

Note that final and non-final inflation cap/floor strikes are quoted as a number K
and converted to a price via:

(1 +K)t

where

K = the cap/floor rate

t = time to expiry.

So inflation caps/floors are caps/floors on the inflation rate and not the inflation
index ratio. For example, to cap the final flow at the initial notional it should be
K=0, i.e. FinalFlowCap should be 0.

Allowable values: A real number. The FinalFlowCap is expressed in decimal
form, e.g. 0.01 is a cap on the final flow at 1% of the inflation rate over the life of
the trade.

• FinalFlowFloor [Optional]: The floor to be applied to the final notional flow of
the cpi leg. If not given, no floor is applied.

Allowable values: A real number. The FinalFlowFloor is expressed in decimal
form, e.g. 0.01 is a floor on the final flow at 1% of the inflation rate over the life
of the trade.

• NakedOption [Optional]: Optional node, if true the leg represents only the
embedded floor, cap or collar. By convention these embedded options are
considered long if the leg is a receiver leg, otherwise short.

Allowable values: true, false. Defaults to false if left blank or omitted.

Whether the leg cotains a final redemption flow at all or not depends on the notional
exchange setting, see section 8.3.3 and listing 259.

433

Listing 280: CPI leg data with capped annual coupons

<LegData>
<LegType>CPI</LegType>
<Payer>false</Payer>
<Currency>GBP</Currency>
<Notionals>
<Notional>10000000</Notional>
<Exchanges>
<NotionalInitialExchange>false</NotionalInitialExchange>
<NotionalFinalExchange>true</NotionalFinalExchange>

</Exchanges>
</Notionals>
<DayCounter>ACT/ACT</DayCounter>
<PaymentConvention>Following</PaymentConvention>
<ScheduleData>
<Rules>
<StartDate>2016-07-18</StartDate>
<EndDate>2021-07-18</EndDate>
<Tenor>1Y</Tenor>
<Calendar>UK</Calendar>
<Convention>ModifiedFollowing</Convention>
<TermConvention>ModifiedFollowing</TermConvention>
<Rule>Forward</Rule>
<EndOfMonth/>
<FirstDate/>
<LastDate/>

</Rules>
</ScheduleData>
<CPILegData>
<Index>UKRPI</Index>
<Rates>
<Rate>0.02</Rate>

</Rates>
<BaseCPI>210</BaseCPI>
<StartDate>2016-07-18</StartDate>
<ObservationLag>2M</ObservationLag>
<Interpolation>Linear</Interpolation>
<Caps>

<Cap>0.03</Cap>
</Caps>
<Floors>
<Floor>0.0</Floor>

<Floors>
<FinalFlowCap>0.03</FinalFlowCap>
<FinalFlowFloor>0.0</FinalFlowFloor>
<NakedOption>false</NakedOption>
<SubtractInflationNotionalAllCoupons>false</SubtractInflationNotionalAllCoupons>

</CPILegData>
</LegData>

434

Listing 281: CPI leg data with just the final redemption

<LegData>
<Payer>false</Payer>
<LegType>CPI</LegType>
<Currency>GBP</Currency>
<PaymentConvention>ModifiedFollowing</PaymentConvention>
<DayCounter>ActActISDA</DayCounter>
<Notionals>
<Notional>25000000.0</Notional>
<Exchanges>
<NotionalInitialExchange>false</NotionalInitialExchange>
<NotionalFinalExchange>true</NotionalFinalExchange>

</Exchanges>
</Notionals>
<ScheduleData>
<Dates>
<Calendar>GBP</Calendar>
<Dates>
<Date>2020-08-17</Date>

</Dates>
</Dates>

</ScheduleData>
<CPILegData>
<Index>UKRPI</Index>
<Rates>
<Rate>1.0</Rate>

</Rates>
<BaseCPI>280.64</BaseCPI>
<StartDate>2018-08-19</StartDate>
<ObservationLag>2M</ObservationLag>
<Interpolation>Linear</Interpolation>
<SubtractInflationNotional>true</SubtractInflationNotional>
<SubtractInflationNotionalAllCoupons>false</SubtractInflationNotionalAllCoupons>

</CPILegData>
</LegData>

8.3.18 YY Leg Data

Listing 282 shows an example for a leg of type YY. The YYLegData block contains the
following elements:

• Index: The underlying zero inflation index.

Allowable values: Any string (provided it is the ID of an inflation index in the
market configuration).

• FixingDays: The number of fixing days.

Allowable values: An integer followed by D,

• ObservationLag [Optional]: The observation lag to be applied. Fallback to the
index observation lag as specified in the inflation swap conventions of the
underlying index, if not specified.

Allowable values: An integer followed by D, W, M or Y. Interpolation lags are
typically expressed in M, months.

435

• Spreads [Optional]: The spreads applied to index fixings. As usual, this can be a
single value, a vector of values or a dated vector of values.

• Gearings [Optional]: This node contains child elements of type Gearing
indicating that the coupon rate is multiplied by the given factors. The mode of
specification is analogous to spreads, see above.

• Caps [Optional]: This node contains child elements of type Cap indicating that
the coupon rate is capped at the given rate (after applying gearing and spread, if
any).

• Floors [Optional]: This node contains child elements of type Floor indicating
that the coupon rate is floored at the given rate (after applying gearing and
spread, if any).

• NakedOption [Optional]: Optional node (defaults to N), if Y the leg represents
only the embedded floor, cap or collar. By convention these embedded options
are considered long if the leg is a receiver leg, otherwise short.

• AddInflationNotional [Optional]: If true, the payoff will include the notional of
the coupon N τ It

It−1Y
.

• IrregularYoY [Optional]: If true, instead of using a YoY inflation rate the coupon
is based on the inflation rate during the actual coupon period, e.g. for a 6M
coupon the inflation rate will be computed as It

It−6m
− 1.

436

Listing 282: YY leg data

<LegData>
<LegType>YY</LegType>
<Payer>false</Payer>
<Currency>EUR</Currency>
<Notionals>
<Notional>10000000</Notional>

</Notionals>
<DayCounter>ACT/ACT</DayCounter>
<PaymentConvention>Following</PaymentConvention>
<ScheduleData>
<Rules>
<StartDate>2016-07-18</StartDate>
<EndDate>2021-07-18</EndDate>
<Tenor>1Y</Tenor>
<Calendar>UK</Calendar>
<Convention>ModifiedFollowing</Convention>
<TermConvention>ModifiedFollowing</TermConvention>
<Rule>Forward</Rule>
<EndOfMonth/>
<FirstDate/>
<LastDate/>

</Rules>
</ScheduleData>
<YYLegData>
<Index>EUHICPXT</Index>
<FixingDays>2</FixingDays>
<ObservationLag>2M</ObservationLag>
<Interpolated>true</Interpolated>
<Spreads>
<Spread>0.0010</Spread>

</Spreads>
<Gearings>
<Gearing>2.0</Gearing>

</Gearings>
<Caps>
<Cap>0.05</Cap>

</Caps>
<Floors>
<Floor>0.01</Floor>

</Floors>
<NakedOption>N</NakedOption>
<AddInflationNotional>false</AddInflationNotional>

<IrregularYoY>false</IrregularYoY>
</YYLegData>

</LegData>

8.3.19 ZeroCouponFixed Leg Data

A Zero Coupon Fixed leg contains a series of Zero Coupon payments, i.e (1 + r)tN for
a compounded coupon. The uninflated notional N can be subtracted from the
payment , i.e ((1 + r)t − 1)N , see SubtractNotional below.

Listing 283 shows an example for a leg of type Zero Coupon Fixed.

To create a leg with only one payment, the schedule must only contain the start and

437

end date. Note that this can be achieved by setting the Tenor to 0D in a rules based
Schedule.

Note that the DayCounter in a Zero Coupon Fixed leg is used to compute t in (1 + r)t

so that the series of zero coupon payments are calculated as (1 + r)tN . For all other
leg types, the DayCounter is used to compute the “Accrual” (i.e. the accrual time
period of a coupon) in a coupon payment calculated as: N ∗ Accrual ∗ r. However, the
“Accrual” in the coupon formula is defaulted to 1 for the Zero Coupon Fixed leg type.

• Rates: The fixed real rate(s) of the leg. While this can be a single value, a vector
of values or a dated vector of values.

Allowable values: Each rate element can take any real number. The rate is
expressed in decimal form, e.g. 0.05 is a rate of 5%.

• Compounding [Optional]: The method of compounding applied to the rate.

Allowable values: Simple i.e. (1 + r ∗ t), or Compounded i.e. (1 + r)t. Defaults to
Compounded if left blank or omitted.

• SubtractNotional [Optional]: Decides whether the notional is subtracted from the
compounding factor, i.e. (1 + r ∗ t)− 1 respectively (1 + r)t − 1, or not, i.e.
(1 + r ∗ t) respectively (1 + r)t

Note that if NotionalFinalExchange is set to true an additional final uninflated
notional flow N is added. So if NotionalFinalExchange is set to true, and
SubtractNotional is set to false, there will be two final notional flows. It is
recommended to omit NotionalFinalExchange causing it to default to false, and
solely use SubtractNotional to determine the final notional flow.

Allowable values: true, Y or false, N, defaults to true if left blank or omitted.

438

Listing 283: ZeroCouponFixed leg data

<LegData>
<LegType>ZeroCouponFixed</LegType>
<Payer>false</Payer>
<Currency>EUR</Currency>
<Notionals>
<Notional>10000000</Notional>

</Notionals>
<DayCounter>Year</DayCounter>
<PaymentConvention>Following</PaymentConvention>
<ScheduleData>
<Rules>
<StartDate>2016-07-18</StartDate>
<EndDate>2021-07-18</EndDate>
<Tenor>0D</Tenor>
<Calendar>UK</Calendar>
<Convention>ModifiedFollowing</Convention>
<TermConvention>ModifiedFollowing</TermConvention>
<Rule>Forward</Rule>
<EndOfMonth/>
<FirstDate/>
<LastDate/>

</Rules>
</ScheduleData>
<ZeroCouponFixedLegData>

<Rates>
<Rate>0.02</Rate>

</Rates>
<Compounding>Simple</Compounding>
<SubtractNotional>false</SubtractNotional>

</ZeroCouponFixedLegData>
</LegData>

8.3.20 Commodity Fixed Leg

A commodity fixed leg is specified in a LegData node with LegType set to
CommodityFixed. It is used to define a sequence of cashflows that are linked to a fixed
price in a commodity derivative contract. Each cashflow has an associated Calculation
Period. The outline of a commodity fixed leg is given in listing 284. It has the usual
LegData elements described in section 8.3.3 and a CommodityFixedLegData node that
is described in section 8.3.21 below. The section 8.3.23 describes some aspects of the
ScheduleData node in the context of commodity derivatives.

8.3.21 Commodity Fixed Leg Data

The CommodityFixedLegData node outline is shown in listing 285. The meaning and
allowable values for each node are as follows:

• Quantities [Optional]: this node is used to specify a constant quantity or a
quantity that varies over the calculation periods. The usage of this node is
analagous to the usage of the Notionals node as outlined in section 8.3.3. For
convenience, this node can be omitted if the quantities are identical to those on a
commodity floating leg, outlined in Section 8.3.22, on the same trade. In this

439

Listing 284: Commodity fixed leg outline.

<LegData>
<LegType>CommodityFixed</LegType>
<Payer>...</Payer>
<Currency>...</Currency>
<PaymentConvention>...</PaymentConvention>
<PaymentLag>...</PaymentLag>
<PaymentCalendar>...</PaymentCalendar>
<ScheduleData>
...

</ScheduleData>
<PaymentDates>
<PaymentDate>...</PaymentDate>

</PaymentDates>
<CommodityFixedLegData>
...

</CommodityFixedLegData>
</LegData>

case, the quantities from the floating leg are used. If there is only a single
commodity floating leg, as is the case in a standard swap, the quantities are
taken from that leg. If there are multiple commodity floating legs on the trade, a
specific commodity floating leg can be picked using the Tag node specified below.
In other words, a Tag can be specified on the fixed leg and the same Tag specified
on the floating leg from which the quantities should be taken.

• Prices: this node is used to specify a constant price or a price that varies over
the calculation periods. The usage of this node is analagous to the usage of the
Notionals node as outlined in section 8.3.3.

• CommodityPayRelativeTo [Optional]: the allowable values for this node are
CalculationPeriodStartDate, CalculationPeriodEndDate,
TerminationDate, FutureExpiryDate. They specify whether payment is relative
to the calculation period start date, calculation period end date, leg maturity
date or the future expiry date (of the corresponding cashflow on the floating leg
with the same Tag as the fixed leg) respectively. The default is
CalculationPeriodEndDate. The payment date is then further adjusted by the
payment conventions outlined in section 8.3.3 i.e. PaymentConvention and
PaymentLag. If explicit payment dates are given via the PaymentDates node
described in section 8.3.3, then those explicit payment dates are used instead and
adjusted by the PaymentCalendar and PaymentConvention.

• Tag [Optional]: The use of this node is explained in the Quantities resp.
CommodityPayRelativeTo piece above.

8.3.22 Commodity Floating Leg

A commodity floating leg is specified in a LegData node with LegType set to
CommodityFloating. It is used to define a sequence of cashflows that are linked to the
price of a given commodity. Each cashflow has an associated Calculation Period. The
price that is being referenced may be a commodity spot price or a commodity future
contract settlement price. The cashflow may depend on the price observed on a single

440

Listing 285: Commodity fixed leg data outline.

<CommodityFixedLegData>
<Quantities>
<Quantity>...</Quantity>

</Quantities>
<Prices>
<Price>...</Price>

</Prices>
<CommodityPayRelativeTo>...</CommodityPayRelativeTo>
<Tag>...</Tag>

</CommodityFixedLegData>

Pricing Date in the Calculation Period or it may depend on the arithmetic average of
the prices over some or all of the business days in the Calculation Period.

The outline of a commodity floating leg is given in listing 286. It has the usual
LegData elements described in section 8.3.3 and a CommodityFloatingLegData node
that is described in section 8.3.24 below. Before describing the
CommodityFloatingLegData node, we devote section 8.3.23 to the ScheduleData node
in the context of commodity derivatives.

Listing 286: Commodity floating leg outline.

<LegData>
<LegType>CommodityFloating</LegType>
<Payer>...</Payer>
<Currency>...</Currency>
<PaymentConvention>...</PaymentConvention>
<PaymentLag>...</PaymentLag>
<PaymentCalendar>...</PaymentCalendar>
<ScheduleData>
...

</ScheduleData>
<PaymentDates>
<PaymentDate>...</PaymentDate>

</PaymentDates>
<CommodityFloatingLegData>
...

</CommodityFloatingLegData>
</LegData>

8.3.23 Commodity Schedules

The Calculation Period in a commodity derivative contract is in general specified as a
period from and including a given Start Date to and including a given End Date. A
commodity trade leg consists of a sequence of these Calculation Periods. It is
important to set up the ScheduleData in the trade XML such that these periods are
correctly represented in the ORE instrument. The ScheduleData allows for the
creation of a list of dates that define the boundaries of the periods from the trade
Effective Date to the trade Termination Date. When the ScheduleData is used on a
commodity leg in the ORE trade XML, the StartDate is included in the first period
and the EndDate is included in the final period. Each intervening date generated by

441

the ScheduleData is understood to be the included end date of a period with the
subsequent period beginning on the day after the intervening date. The following two
examples illustrate the set up of the ScheduleData.

A common commodity derivative schedule is one that has monthly periods running
from and including the first calendar day in the month to and including the last
calendar day in the month. For example, the contract periods may be specified as
shown in table 21. The corresponding ScheduleData node that should be used to
represent this in ORE XML is shown in listing 287. Note that Convention and
TermConvention are set to Unadjusted and EndOfMonth is set to true to place all
dates at the end of the month when generating the dates Backward from 30 Apr 2020.
In general, these values should be used when generating monthly periods for
commodity derivatives.

Start Date End Date
2020-01-01 2020-01-31
2020-02-01 2020-02-29
2020-03-01 2020-03-31
2020-04-01 2020-04-30

Table 21: Commodity derivative monthly schedule.

Listing 287: ScheduleData node for monthly periods.

<ScheduleData>
<Rules>
<StartDate>2020-01-01</StartDate>
<EndDate>2020-04-30</EndDate>
<Tenor>1M</Tenor>
<Calendar>NullCalendar</Calendar>
<Convention>Unadjusted</Convention>
<TermConvention>Unadjusted</TermConvention>
<Rule>Backward</Rule>
<EndOfMonth>true</EndOfMonth>
<AdjustEndDateToPreviousMonthEnd>false</AdjustEndDateToPreviousMonthEnd>

</Rules>
</ScheduleData>

Note that for fixed and floating commodity legs, the
AdjustEndDateToPreviousMonthEnd field can be added to automatically adjust the
end date to the end of the previous month:

AdjustEndDateToPreviousMonthEnd [Optional]: Only relevant for commodity legs.
Allows for the EndDate to be on a date other than the end of the month. If set to true
the given EndDate is restated to the end date to the end of previous month.

Allowable values: true or false. Defaults to false if left blank or omitted.

In certain cases, a sequence of periods may be provided which do not fit within the
Rules provided by ScheduleData. In this case, one may use the Dates node provided
by ScheduleData. As an example of such a case, consider table 22 which shows the
periods for a commodity swap leg on the arithmetic average of the nearby month
NYMEX WTI future contract settlement price. In this example, the Calculation

442

Period runs from the day after the previous future contract expiry to and including the
nearby month’s contract expiry. In this case, we need to use explicit dates as shown in
listing 288.

Start Date End Date
2019-11-21 2019-12-19
2019-12-20 2020-01-21
2020-01-22 2020-02-20
2020-02-21 2020-03-20

Table 22: Commodity derivative explicit schedule.

Listing 288: ScheduleData node for explicit periods.

<ScheduleData>
<Dates>
<Calendar>NullCalendar</Calendar>
<Convention>Unadjusted</Convention>
<Dates>
<Date>2019-11-21</Date>
<Date>2019-12-19</Date>
<Date>2020-01-21</Date>
<Date>2020-02-20</Date>
<Date>2020-03-20</Date>

</Dates>
</Dates>

</ScheduleData>

8.3.24 Commodity Floating Leg Data

The CommodityFloatingLegData node outline is shown in listing 289. The meaning
and allowable values for each node are as follows:

• Name: An identifier specifying the commodity being referenced in the leg. Table
38 lists the allowable values for Name and gives a description.

• PriceType: It is Spot if the leg is referencing a commodity spot price. It is
FutureSettlement if the leg is referencing a commodity future contract settlement
price.

Allowable values: Spot, FutureSettlement

• Quantities: This node is used to specify a constant quantity or a quantity that
varies over the calculation periods. The usage of this node is analogous to the
usage of the Notionals node as outlined in section 8.3.3.

Each Quantity is the number of units of the underlying commodity covered by
the transaction or calculation period. The unit type is defined in the underlying
contract specs for the commodity name in question. For avoidance of doubt, the
Quantity is the number of units of the underlying commodity, not the number of
contracts.

• CommodityQuantityFrequency [Optional]: In some cases, the quantity in a
commodity derivatives contract is given as a quantity per time period. This

443

quantity is then multiplied by the number of such time periods in each
calculation period to give the quantity relevant for that full calculation period.
The CommodityQuantityFrequency can be set to

– PerCalculationPeriod : This indicates that quantitie(s) as given are for the
full calculation period and that no multiplication or alteration is required.
This is the default setting if this node is omitted.

– PerPricingDay : This indicates that the quantitie(s) are to be considered
per pricing date. In general, this can be seen on averaging contracts where
the quantity provided must be multiplied by the number of pricing dates in
the averaging period to give the quantity applicable for the full calculation
period i.e. the quantity to which the average price over the period is applied.

– PerHour : This indicates that quantitie(s) are to be considered per hour.
This is common in the electricity markets. The quantity then must be
multiplied by the hours per day to give the quantity for a given pricing
date. Also, if the contract is averaging, the resulting daily amount is
multiplied by the number of pricing dates in the period to give the quantity
for the full calculation period. Note that the hours per day may be specified
in the the HoursPerDay node directly. If it is omitted, it is looked up in the
conventions associated with the commodity. If it is not found there and
PerHour is used, an exception is thrown during trade building.

– PerCalendarDay : This indicates that quantitie(s) are to be considered per
calendar day in the period. In other words, the quantity provided is
multiplied by the number of calendar days in the period to give the quantity
applicable for the full calculation period.

– PerHourAndCalendarDay : This indicates that quantitie(s) are to be
considered per hour and per calendar day in the period. In other words, the
quantity provided is multiplied by the number of calendar days and number
of hours per day in the period to give the quantity applicable for the full
calculation period. The number of hours per period is corrected by daylight
saving hours as specified in the conventions of the commodity.

Allowable values: PerCalculationPeriod, PerPricingDay, PerHour,
PerCalendarDay, PerHourAndCalendarDay. Defaults to PerCalculationPeriod if
omitted.

• CommodityPayRelativeTo [Optional]: The allowable values for this node are
CalculationPeriodStartDate, CalculationPeriodEndDate, TerminationDate,
FutureExpiryDate. They specify whether payment is relative to the calculation
period start date, calculation period end date, leg maturity date or the future
expiry date (not allowed for averaging legs) respectively. The default is
CalculationPeriodEndDate. The payment date is then further adjusted by the
payment conventions outlined in section 8.3.3 i.e. PaymentConvention and
PaymentLag. If explicit payment dates are given via the PaymentDates node
described in section 8.3.3, then those explicit payment dates are used instead and
adjusted by the PaymentCalendar and PaymentConvention.

Allowable values: CalculationPeriodStartDate, CalculationPeriodEndDate,

444

TerminationDate. Defaults to CalculationPeriodEndDate if omitted.

• Spreads [Optional]: This node allows for the addition of an optional spread to
the referenced commodity price in each calculation period. The usage of this
node is exactly as described in section 8.3.6, except that for a Commodity leg,
the Spread is not a percentage but an amount in the currency the commodity is
quoted in.

Allowable values: Each child Spread element can take any real number. Defaults
to zero spread in each calculation period if the Spreads node is omitted.

• Gearings [Optional]: This node allows for the multiplication of the referenced
commodity price in each calculation period by an optional gearing factor. The
usage of this node is exactly as described in section 8.3.6. If the Gearings node
is omitted, the gearing is one in each calculation period. Note that any spread is
added to the referenced price before the gearing is applied.

• PricingDateRule [Optional]: The allowable values are FutureExpiryDate and
None. This setting is ignored when IsAveraged is true or when PriceType is
Spot. In particular, when there is no averaging and the leg is referencing a
commodity future contract price, setting PricingDateRule to FutureExpiryDate
ensures that the future contract price is observed on its expiry date i.e. that the
Pricing Date is the future contract expiry date. The particular future contract
being referenced is determined by the IsInArrears node and the
FutureMonthOffset node. If IsInArrears is true, a base date is set as the
calculation period end date. If IsInArrears is false a base date is set as the
calculation period start date. The base date’s month and year is then possibly
moved forward by an integral number of months using the FutureMonthOffset
node value. If this node value is zero, the base date’s month and year are
unchanged. The Pricing Date is then the expiry date of the future contract with
base date month and base date year. Setting PricingDateRule to None allows
the Pricing Date to be determined using the PricingCalendar and PricingLag
below.

Allowable values: FutureExpiryDate, None. Defaults to FutureExpiryDate if
omitted.

• PricingCalendar [Optional]: This is the business day calendar used to
determine pricing date(s) and in the application of the PricingLag if provided.
If it is omitted, the calendar that has been set up for the reference commodity
future contract or referenced commodity spot price will be used.

• PricingLag [Optional]: Any non-negative integer is allowed here. This node
indicates that the Pricing Date is this number of business days before a given
base date. The base date is the period start date if IsInArrears is true and it is
the period end date if IsInArrears is false. This setting is not used when
IsAveraged is true.

Allowable values: Any non-negative integer. Defaults to zero if omitted.

• PricingDates [Optional]: This node is not used when IsAveraged is true. When
IsAveraged is false, this node allows the Pricing Date in each period to be given
an explicit value. If this node is included, it must contain the same number of

445

PricingDate nodes as calculation periods. In general, this node is omitted but is
used when the other options do not give the desired Pricing Date as specified in
the trade’s contractual terms.

• IsAveraged [Optional]: This node is set to true if the Floating Price is the
arithmetic average of the commodity reference price over each business day in
the calculation period. This node is set to false if there is no averaging of the
underlying commodity price. Note that IsAveraged must be set to true if the
Name given references a future contract that is averaging itself. There is more on
this below.

Allowable values: true, false. Defaults to false if omitted.

• IsInArrears [Optional]: This node is not used when IsAveraged is true.
Although, if the observed underlying is averaging itself, having IsAveraged set
to true would be ignored with regards this node. As noted above, this setting
determines a base date from which the Pricing Date is determined. The base
date is the period end date if IsInArrears is true and it is the period start date
if IsInArrears is false. How the Pricing Date is then determined from this
base date is determined by the PricingDateRule node or the PricingCalendar
and PricingLag nodes.

Allowable values: true, false. Defaults to true if omitted.

• FutureMonthOffset [Optional]: This node allows any non-negative integer value.
If this node is omitted, it is set to zero. The node has a different usage depending
on whether IsAveraged is true or false:

– If IsAveraged is true, this node indicates which future contract is being
referenced on each Pricing Date in the calculation period by acting as an
offset from the next available expiry date. If FutureMonthOffset is zero,
the settlement price of the next available monthly contract that has not
expired with respect to the Pricing Date is used as the price on that Pricing
Date. If FutureMonthOffset is one, the settlement price of the second
available monthly contract that has not expired with respect to the Pricing
Date is used as the price on that Pricing Date. Similarly for other positive
values of FutureMonthOffset.

– If IsAveraged is false, this node acts as an offset for the contract month
and is used in conjunction with the IsInArrears setting to determine the
future contract being referenced. If IsInArrears is true, a base date is set
as the calculation period end date. If IsInArrears is false, a base date is
set as the calculation period start date. If FutureMonthOffset is zero, the
future contract month and year is taken as the base date’s month and year.
If FutureMonthOffset is one, the future contract month and year is taken
as the month following the base date’s month and year and so on for all
positive values of FutureMonthOffset.

• DeliveryRollDays [Optional]: This node allows any non-negative integer value
and is only applicable when IsAveraged is true. When averaging a commodity
future contract price during a calculation period, where the calculation period
includes the contract expiry date, this node’s value indicates when we should

446

begin using the next future contract prices in the averaging. If the value is zero,
we should include the contract prices up to and including the contract expiry. If
the value is one, we should include the contract prices up to and including the
day that is one business day before the contract expiry and then switch to using
the next contract prices thereafter. Similarly for other non-negative integer
values.

Allowable values: Any non-negative integer. Defaults to zero if omitted.

• IncludePeriodEnd [Optional]: If this node is set to true, the period end date is
included in the calculation period. If it is set to false, the period end date is
excluded from the calculation period. There is more about this in the section
8.3.23. If this node is omitted, it is set to true. In general, this node should be
omitted and allowed to take its default value.

• ExcludePeriodStart [Optional]: If this node is set to true, the period start date
is excluded from the calculation period. If it is set to false, the period start date
is included from the calculation period. There is more about this in the section
8.3.23. If this node is omitted, it is set to true. In general, this node should be
omitted and allowed to take its default value.

• HoursPerDay [Optional]: This node is used if CommodityQuantityFrequency is
set to PerHour or PerHourAndCalendarDay. It is described above under
CommodityQuantityFrequency.

Allowable values: A number between 0 and 24. If omitted it defaults to the value
of the HoursPerDay node in the conventions for the referenced commodity.

• UseBusinessDays [Optional]: A boolean flag that defaults to true if omitted. It
is not applicable if IsAveraged is false. When set to true, the pricing dates in
the averaging period are the set of PricingCalendar good business days. When
set to false, the pricing dates in the averaging period are the complement of the
set of PricingCalendar good business days. This may be useful in certain
situations. For example, the contract ICE PW2 with specifications here averages
the PJM Western Hub locational marginal prices over each day in the averaging
period that is a Saturday, Sunday or NERC holiday. So, in this case,
UseBusinessDays would be false and PricingCalendar would be US-NERC to
generate the correct pricing dates in the averaging period.

Allowable values: true, false. Defaults to true if omitted.

• UnrealisedQuantity [Optional]: A boolean flag that defaults to false if omitted.
This is a rarely used flag. When set to true, it allows the user, on a given
valuation date, to enter the current period quantity as an amount remaining in
the current period after the valuation date i.e. the unrealised portion of the
current period’s quantity. This unrealised quantity is then scaled up internally to
give the quantity over the full period.

Allowable values: true, false. Defaults to false if omitted.

• LastNDays [Optional]: This node allows a positive integer value less than or
equal to 31 and is currently only supported when PriceType is
FutureSettlement. When included, instead of the commodity future price being

447

https://www.theice.com/products/71090520/PJM-Western-Hub-Real-Time-Peak-2x16-Fixed-Price-Future

observed on the single Pricing Date in the period, it is observed on the
LastNDays Pricing Dates, up to and including the original Pricing Date, for
which future settlement prices are available.

• Tag [Optional]: This node takes any string and can be used to link the floating
leg with a fixed leg that has not explicitly provided its own quantities. This can
be useful in situations where the quantities on the floating leg are specified with
a CommodityQuantityFrequency that is not simply PerCalculationPeriod.
The fixed leg does not have the CommodityQuantityFrequency field. In these
cases, the fixed leg can omit its Quantities node and take the quantities from
the floating leg. This Tag node allows the fixed leg to link to a specific floating
leg if there is more than one floating leg on the trade i.e. the fixed leg must just
have the same Tag. The link is also used to set the payment dates of the fixed leg
if CommodityPayRelativeTo is set to FutureExpiryDate.

• DailyExpiryOffset [Optional]: This node allows any non-negative integer value.
It only has effect the underlying commodity Name is not being averaged and has a
daily contract frequency.

If this node is omitted, it defaults to zero. This node indicates which future
contract is being referenced on each Pricing Date by acting as a business day
offset, using the commodity Name’s expiry calendar, from the Pricing Date. It is
useful e.g. in the base metals market where a future contract on each Pricing
Date is the cash contract on that Pricing Date i.e. the contract with expiry date
two business days after the Pricing Date. In this case, the DailyExpiryOffset
would be set to 2.

• FXIndex [Optional]: If IsAveraged is true this node allows the fx conversion to
be applied daily in the computation of averaged cash flows. It cannot be used
with the Indexing node.

Allowable values: See Table 34 for supported fx indices.

We note above that IsAveraged must be set to true if the Name given references a
future contract that is averaging itself. For the avoidance of doubt, this does not lead
to the prices of the averaging future contract being averaged in each calculation period.
Instead, a check is performed in the code if the contract defined by Name is averaging,
and if the leg itself is averaging we switch to observing the averaging future contract
price on the single Pricing Date determined by the PricingDateRule node or the
PricingCalendar and PricingLag nodes or the PricingDates node. This is best
illustrated using an example. Suppose that we have a commodity swap with the
schedule shown in table 23. Suppose that the Floating Price for the swap is specified
as For each Calculation Period, the arithmetic average of the Commodity Reference
Price, for each Commodity Business Day in the Calculation Period and that the
Commodity Reference Price is specified as OIL-WTI-NYMEX with Delivery Date of
First Nearby Month. There are two approaches to setting up the XML for this
commodity floating leg:

1. The first approach is shown in listing 290. Note that the Name is NYMEX:CL to
indicate the NYMEX WTI future contract, IsAveraged is true and
FutureMonthOffset is 0 to indicate that we are using the nearby month contract
price in the averaging. This approach is clear.

448

Listing 289: Commodity floating leg data outline.

<CommodityFloatingLegData>
<Name>...</Name>
<PriceType>...</PriceType>
<Quantities>
<Quantity>...</Quantity>

</Quantities>
<CommodityQuantityFrequency>...</CommodityQuantityFrequency>
<CommodityPayRelativeTo>...</CommodityPayRelativeTo>
<Spreads>
<Spread>...</Spread>

</Spreads>
<Gearings>
<Gearing>...</Gearing>

</Gearings>
<PricingDateRule>...</PricingDateRule>
<PricingCalendar>...</PricingCalendar>
<PricingLag>...</PricingLag>
<PricingDates>
<PricingDate>...</PricingDate>

</PricingDates>
<IsAveraged>...</IsAveraged>
<IsInArrears>...</IsInArrears>
<FutureMonthOffset>...</FutureMonthOffset>
<DeliveryRollDays>...</DeliveryRollDays>
<IncludePeriodEnd>...</IncludePeriodEnd>
<ExcludePeriodStart>...</ExcludePeriodStart>
<HoursPerDay>...</HoursPerDay>
<UseBusinessDays>...</UseBusinessDays>
<Tag>...</Tag>
<DailyExpiryOffset>...</DailyExpiryOffset>

</CommodityFloatingLegData>

2. The second approach is to use the CommodityFloatingLegData shown in listing
291. Note that we have changed the Name to NYMEX:CSX to reference the
NYMEX WTI Financial Futures contract. This future contract settlement price
at expiry is the exact payoff of the swap leg in that it is the arithmetic average of
the nearby month NYMEX WTI future contract settlement prices over the
calendar month. The contract details are given here. We keep IsAveraged set to
true. If we set IsAveraged to false, an error will be thrown. When
IsAveraged is set to true and the Name references a future contract that is
averaging, it is understood that the commodity leg is to use the same averaging
as the future contract. In this case, we switch to a non-averaging cashflow in the
code and read the averaged price directly off the price curve that we have set up
using the averaging future contract prices.

In some cases, we will only have an averaging future contract available as an allowable
Name value. For example, NYMEX:A7Q is one such instance. The contract details are
given here. This future contract’s price at the end of each contract month is the
arithmetic average of the OPIS Mt. Belvieu Natural Gasoline (non-LDH) price for
each business day during the contract month. The corresponding commodity floating
leg would be set up with Name set to NYMEX:A7Q and IsAveraged set to true. Again,
for the avoidance of doubt, we are not averaging the averaging future contract price.

449

https://www.cmegroup.com/trading/energy/crude-oil/west-texas-intermediate-wti-crude-oil-calendar-swap-futures_contract_specifications.html
https://www.cmegroup.com/trading/energy/petrochemicals/mont-belvieu-natural-gasoline-5-decimal-opis-swap_contract_specifications.html

Instead, we switch to a non-averaging cashflow in the code and read the averaged price
directly off the price curve that we have built out of NYMEX:A7Q future contract prices.
We are pricing a leg that has the same payoff as the future contract.

If we have an averaging coupon and the valuation date is during the coupon period,
the choice between the first and second approach above will have an effect on the
sensitivities that are generated for that one single coupon. It should not affect the
NPV of the coupon. The effect becomes more pronounced as the number of days
remaining in the coupon period reduce. In the first approach, the coupon is priced by
reading the expected future prices on future Pricing Dates off the non-averaging future
price curve and fetching past fixed settlement prices on past Pricing Dates. All of
these prices are then averaged. It is clear that as the valuation date approaches the
final date in the coupon period, the sensitivity decreases because any bump in the
curve used for pricing is only affecting the values on the remaining future Pricing
Dates. In the second approach, the average price relevant for the full coupon period is
read directly off the averaging future price curve. Any bump to the averaging future
price curve affects the full coupon regardless of the position of the valuation date in
the coupon period. The sensitivity will therefore be larger than using the first
approach and the difference will become more noticeable as the valuation date moves
towards the end of the coupon period. This subtlety can lead to differences that are
larger than expected on basis swaps with averaging coupons and short maturities. If
one commodity floating leg references a non-averaging price curve and the other leg
references an averaging price curve, the differing effects of the bump outlined above on
each leg can lead to a larger than expected net sensitivity.

Start Date End Date Quantity Per Period
2019-09-01 2019-09-30 5,000
2019-10-01 2019-10-31 5,000

Table 23: Example commodity swap schedule.

8.3.25 Equity Margin Leg

An equity margin leg is specified in a LegData node with LegType set to
EquityMargin. It is used to define a sequence of cashflows that are linked to an equity
price and it’s associated margin factor. Each cashflow has an associated Calculation
Period. This leg is typically used to represent a part of a Total Return Swap (TRS) on
an Equity Index Future. The full TRS on the Equity Index Future uses TradeType
Swap, and one leg of type Equity, and the other leg of type EquityMargin. Note that
the equity identifier on both legs (the Name field) should be for the Equity Index, and
not the Future.

The outline of a equity margin leg is given in listing 292. It has the usual LegData
elements described in section 8.3.3 and a EquityMarginLegData node that is described
in section 8.3.26 below.

8.3.26 Equity Margin Leg Data

The EquityMarginLegData node outline is shown in listing 292. The meaning and
allowable values for each node are as follows:

450

Listing 290: Example WTI averaging floating leg, first approach.

<LegData>
<LegType>CommodityFloating</LegType>
<Payer>true</Payer>
<Currency>USD</Currency>
<PaymentLag>2</PaymentLag>
<PaymentConvention>Following</PaymentConvention>
<PaymentCalendar>US-NYSE</PaymentCalendar>
<CommodityFloatingLegData>
<Name>NYMEX:CL</Name>
<PriceType>FutureSettlement</PriceType>
<Quantities>
<Quantity>5000</Quantity>

</Quantities>
<IsAveraged>true</IsAveraged>
<FutureMonthOffset>0</FutureMonthOffset>

</CommodityFloatingLegData>
<ScheduleData>
<Rules>
<StartDate>2019-09-01</StartDate>
<EndDate>2019-10-31</EndDate>
<Tenor>1M</Tenor>
<Calendar>NullCalendar</Calendar>
<Convention>Unadjusted</Convention>
<TermConvention>Unadjusted</TermConvention>
<Rule>Backward</Rule>
<EndOfMonth>true</EndOfMonth>

</Rules>
</ScheduleData>

</LegData>

Listing 291: Example WTI averaging floating leg, second approach.

<CommodityFloatingLegData>
<Name>NYMEX:CSX</Name>
<PriceType>FutureSettlement</PriceType>
<Quantities>
<Quantity>5000</Quantity>

</Quantities>
<IsAveraged>true</IsAveraged>
<FutureMonthOffset>0</FutureMonthOffset>
</CommodityFloatingLegData>

• Rates: The fixed real rate(s) of the leg. While this can be a single value, a vector
of values or a dated vector of values. Allowable values: Each rate element can
take any real number. The rate is expressed in decimal form, e.g. 0.05 is a rate
of 5%..

• InitialMarginFactor: this node is used to specify the equity margin factor for
the first period of the trade. It’s a percentage that reflecting the current
applicable official Exchange initial margin requirement. It is expressed in decimal
form, e.g. 0.05 is a rate of 5%..

• EquityLegData: this node is used to specify the underlying equity details. It’s

451

Listing 292: Equity Margin leg outline.

<LegData>
<LegType>EquityMargin</LegType>
<Payer>true</Payer>
<Currency>EUR</Currency>
<PaymentConvention>Following</PaymentConvention>
<PaymentLag>2D</PaymentLag>
<PaymentCalendar>TARGET</PaymentCalendar>
<ScheduleData>

<Dates>
<Dates>
<Date>2019-12-31</Date>
<Date>2020-03-30</Date>
<Date>2020-06-30</Date>
<Date>2020-09-30</Date>
<Date>2020-12-30</Date>
<Date>2021-03-30</Date>

</Dates>
</Dates>

</ScheduleData>
<PaymentDates>
<PaymentDate>...</PaymentDate>

</PaymentDates>
<EquityMarginLegData>
...

</EquityMarginLegData>
</LegData>

values are as outlined in section 8.3.16.

• Multiplier [Optional]: in some cases, the cashflow amounts are multiplied by a
fixed amount. Defaults to 1.

Listing 293: Equity margin leg data outline.

<EquityMarginLegData>
<Rates>
<Rate>0.003</Rate>

</Rates>
<InitialMarginFactor>0.12</InitialMarginFactor>
<Multiplier>10</Multiplier>
<EquityLegData>

<ReturnType>Total</ReturnType>
<Name>RIC:.STOXX50E</Name>
<InitialPrice>2946</InitialPrice>
<NotionalReset>false</NotionalReset>
<FixingDays>2</FixingDays>

</EquityLegData>
</EquityMarginLegData>

8.3.27 CDS Reference Information

This trade component can be used to define the reference entity, tier, currency and
documentation clause in credit derivative trades. For example, it can be used in the

452

CreditDefaultSwapData section in a CDS trade and in the BasketData section in
credit derivatives involving more than one underlying reference entity. The value for
each of these fields is generally agreed and specified in the credit derivative contract
and they determine the credit curve that is used in pricing the trade.

Listing 294: CDS reference information node

<ReferenceInformation>
<ReferenceEntityId>...</ReferenceEntityId>
<Tier>...</Tier>
<Currency>...</Currency>
<DocClause>...</DocClause>

</ReferenceInformation>

The meanings and allowable values of the elements in the ReferenceInformation
node are as follows:

• ReferenceEntityId: This is typically a six digit Markit RED code specifying
the underlying reference entity with the prefix RED: e.g. RED:008CA0.

• Tier: The debt tier that is applicable for the specified reference entity in the
credit derivative. Table 39 provides the allowable values.

• Currency: The currency that is applicable for the specified reference entity in
the credit derivative. Table 28 provides the allowable values.

• DocClause: The documentation clause that is applicable for the specified
reference entity in the credit derivative. This defines what constitutes a credit
event for the contract as well as any limitations on the deliverable debt in the
event of a credit event. Table 40 provides the allowable values.

8.3.28 Basket Data

This trade component node is used in credit derivative trades referencing more than
one reference entity e.g. in the IndexCreditDefaultSwapData node of an index CDS
trade. It contains Name sub-nodes with the details of each constituent reference entities
(names) of the basket. An example structure of the BasketData trade component node
is shown in Listing 295.

453

Listing 295: Basket data

<BasketData>
<Name>
<IssuerId>CPTY_1</IssuerId>
<CreditCurveId>RED:...</CreditCurveId>
<Notional>100000.0</Notional>
<Currency>USD</Currency>

</Name>
<Name>
<IssuerId>CPTY_2</IssuerId>
<CreditCurveId>RED:...</CreditCurveId>
<Notional>100000.0</Notional>
<Currency>USD</Currency>

</Name>
<Name>
<IssuerId>CPTY_3</IssuerId>
<CreditCurveId>RED:...</CreditCurveId>
<Notional>100000.0</Notional>
<Currency>USD</Currency>

</Name>
...

</BasketData>

The meanings and allowable values of the elements in each Name sub-node of the
BasketData node follow below.

• IssuerId: A unique identifier for the index component reference entity. For
informational purposes and not used for pricing.

Allowable values: Any alphanumeric string.

• CreditCurveId: The unique identifier of the index component defining one of the
default curves used for pricing. The pricing can be set up to either use the curve
identifiers of the index components, or one single index curve id defined in the
trade specific data. A ReferenceInformation node may be used in place of this
CreditCurveId node.

Allowable values: See CreditCurveId for credit trades - single name in Table 36.
Duplicate CreditCurveId:s are not allowed.

• ReferenceInformation: This node may be used as an alternative to the
CreditCurveId node to specify the reference entity, tier, currency and
documentation clause for the basket constituent. This in turn defines the credit
curve used for this basket constituent in the pricing. The
ReferenceInformation node is described in further detail in Section 8.3.27.

• Notional: The notional of the index component reference entity. Note that the
sum of index component notionals (all names) must match the fixed premium leg
notional. Allowable values: Any positive real number.

• Weight: Can be used, instead of Notional, to specify the weight of the index
component reference entity. Note that the sum of index component notionals (all
names) must match 1. Allowable values: Any positive real number.

454

• Currency: Defines the currency of the component, only mandatory together with
a given notional.

8.3.29 Underlying

This trade component can be used to define the underlying entity for an Equity,
Commodity or FX trade, but it can also define an underlying interest rate, inflation
index, credit name or an underlying bond. It can be used for a single underlying, or
within a basket with associated weight. For an equity underlying a string
representation is used to match Underlying node to required configuration and
reference data. The string representation is of the form
IdentifierType:Name:Currency:Exchange, with all entries optional except for Name.

Listing 296: Underlying node

<Underlying>
<Type>...</Type>
<Name>...</Name>
<Weight>...</Weight>
<Currency>...</Currency>
<IdentifierType>...</IdentifierType>
<Exchange>...</Exchange>
<PriceType>...</PriceType>
<FutureMonthOffset>...</FutureMonthOffset>
<DeliveryRollDays>...</DeliveryRollDays>
<DeliveryRollCalendar>...</DeliveryRollCalendar>

</Underlying>

Example structures of the Underlying trade component node are shown in Listings
297 and 298 for an equity underlying, in Listing 301 for an fx underlying, in Listing
302 for a commodity underlying, in Listing 303 for an underlying interest rate index, in
Listing 304 for an underlying inflation index, in Listing 305 for an underlying credit
name, in listing 306 for an underlying bond.

Listing 297: Equity Underlying - RIC

<Underlying>
<Type>Equity</Type>
<Name>.SPX</Name>
<Weight>1.0</Weight>
<IdentifierType>RIC</IdentifierType>

</Underlying>

455

Listing 298: Equity Underlying - ISIN

<Underlying>
<Type>Equity</Type>
<Name>NL0000852580</Name>
<Weight>1.0</Weight>
<IdentifierType>ISIN</IdentifierType>
<Currency>EUR</Currency>
<Exchange>XAMS</Exchange>

</Underlying>

Listing 299: Equity Underlying - FIGI

<Underlying>
<Type>Equity</Type>
<Name>BBG000BLNNV0</Name>
<IdentifierType>FIGI</IdentifierType>

</Underlying>

Listing 300: Equity Underlying - Bloomberg Identifier (Parsekey)

<Underlying>
<Type>Equity</Type>
<Name>BARC LN Equity</Name>
<IdentifierType>BBG</IdentifierType>

</Underlying>

Listing 301: FX Underlying

<Underlying>
<Type>FX</Type>
<Name>ECB-EUR-USD</Name>
<Weight>1.0</Weight>

</Underlying>

Listing 302: Commodity Underlying

<Underlying>
<Type>Commodity</Type>
<Name>NYMEX:CL</Name>
<Weight>1.0</Weight>
<PriceType>FutureSettlement</PriceType>
<FutureMonthOffset>0</FutureMonthOffset>
<DeliveryRollDays>0</DeliveryRollDays>
<DeliveryRollCalendar>TARGET</DeliveryRollCalendar>

</Underlying>

456

Listing 303: InterestRate Underlying

<Underlying>
<Type>InterestRate</Type>
<Name>USD-CMS-10Y</Name>
<Weight>1.0</Weight>

</Underlying>

Listing 304: Inflation Index Underlying

<Underlying>
<Type>Inflation</Type>
<Name>USCPI</Name>
<Weight>1.0</Weight>
<!-- optional -->
<Interpolation>Linear</Interpolation>

</Underlying>

Listing 305: Credit Underlying

<Underlying>
<Type>Credit</Type>
<Name>ISSUER_A</Name>
<Weight>1.0</Weight>

</Underlying>

Listing 306: Bond Underlying

<Underlying>
<Type>Bond</Type>
<Name>US69007TAB08</Name>
<IdentifierType>ISIN</IdentifierType>
<Weight>0.5</Weight>
<BidAskAdjustment>-0.0025</BidAskAdjustment>

</Underlying>

The meanings and allowable values of the elements in the Underlying node are as
follows:

• Type: The type of the Underlying asset.

Allowable values: Equity, FX, Commodity, InterestRate, Inflation, Credit, Bond

• Name: The name of the Underlying asset.

Allowable values:

Equity : See Name for equity trades in Table 37

FX : A string on the form SOURCE-CCY1-CCY2, where SOURCE is the FX
fixing source, and the fixing is expressed as amount in CCY2 per one unit of

457

CCY1. See Table 34, and note that the FX- prefix is not included in Name as it is
already included in Type.

InterestRate: Any valid interest rate index name, see Table 32

Inflation: Any valid zero coupon inflation index (CPI) name, See Table 35

Credit : Any valid credit name with a configured default curve, see Table 36

Bond : Any valid bond identifier, the bond must be set up in the reference data.

Commodity : An identifier specifying the commodity being referenced in the leg.
Table 38 lists the allowable values for Name and gives a description.

• Weight [Optional]: The relative weight of the underlying if part of a basket. For
a single underlying this can be omitted or set to 1.

Allowable values: A real number. Defaults to 1 if left blank or omitted.
Notes on negative weights in the TotalReturnSwap trade type:
Negative weights for EquityOptionPositions are allowed, but not recommended.
A negative weight for an EquityOptionPosition is equivalent to inverting the
LongShort flag in the respective OptionData node.
For EquityPositions a negative weight means that flows are in the opposite
direction of the Payer flag on the return leg. A use case for negative weights is
for a basket of EquityPositions that include both long and short positions.

• IdentifierType [Optional]: Only valid when Type is Equity or Bond. The type
of the identifier being used.

Allowable values: RIC, ISIN, FIGI, BBG. Defaults to RIC, if left blank or
omitted, and Type: is Equity.

• Currency [Mandatory when IdentifierType is ISIN]: Only valid when Type is
Equity. The currency the underlying equity is quoted in. Used when
IdentifierType is ISIN, to - together with the Exchange convert a given ISIN
to a RIC code.

Allowable values: See Table 28 Currency. Mandatory when IdentifierType is
ISIN, and should not be used for other IdentifierType:s When Type is Equity,
Minor Currencies in Table 28 are also allowable.

• Exchange [Mandatory when IdentifierType is ISIN]: Only valid when Type is
Equity. A string code representing the exchange the equity is traded on. Used
when IdentifierType is ISIN, to - together with the Currency convert a given
ISIN to a RIC code.

Allowable values: The MIC code of the exchange, see Table 41. Mandatory when
IdentifierType is ISIN, and should not be used for other IdentifierType:s.

• PriceType [Optional]: Only valid when Type is Commodity. Whether the Spot
or Future price is referenced.

Allowable values: Spot, FutureSettlement. Mandatory when Type is Commodity .

• FutureMonthOffset [Optional]: Only valid when Type is Commodity. Only
relevant for the FutureSettlement price type, in which case the the N + 1th

458

future with expiry greater than ObservationDate for the given commodity
underlying will be referenced.

Allowable values: An integer. Mandatory for when Type is Commodity and
PriceType is FutureSettlement.

• DeliveryRollDays [Optional]: Only valid when Type is Commodity. The
number of days the observation date is rolled forward before the next future
expiry is looked up.

Allowable values: An integer. Defaults to 0 if left blank or omitted, and Type: is
Commodity.

• DeliveryRollCalendar [Optional]: Only valid when Type is Commodity. The
calendar used to roll forward the observation date.

Allowable values: See Table 30. Defaults to the null calendar if left blank or
omitted, and Type: is Commodity.

• Interpolation [Optional]: Only valid when Type is Inflation. The index
observation interpolation between fixings.

Allowable values: Flat, Linear

• BidAskAdjustment [Optional]: Only valid when Type is Bond. A correction
applied to the price found in the market data (usually mid), if the bond basket
price is defined on the bid or ask side rather than mid.

Allowable values: Any real number.

8.3.30 StrikeData

This trade component that can be used to define the strike entity for commodity,
equity and bond options. It can be used to define either a Price or Yield strike, with
examples below in 307 and 308 respectively.

Listing 307: Strike Price

<StrikeData>
<StrikePrice>

<Value>1</Value>
<Currency>EUR</Currency>

</StrikePrice>
</StrikeData>

The meanings and allowable values of the elements in the StrikePrice node are as
follows:

• Value: The strike price.

Allowable values: Any positive real number.

• Currency [Mandatory for Quanto/Compo, Optional otherwise]: The currency of
the amount given in Value, i.e. the strike currency.

Note:

459

Trade Data Container Supported Barrier Styles
FxBarrierOptionData American
FxDigitalBarrierOptionData American
FxEuropeanBarrierOptionData European
FxTouchOptionData American
FxDoubleTouchOptionData American
FxDoubleBarrierOptionData American
FxKIKOBarrierOptionData American

Table 24: Supported barrier styles per trade data container

Quanto: The payment/leg currency and the currency the underlying asset is
quoted in differ. The strike currency is in the currency the asset is quoted in.
Compo (Composite): The payment/leg currency and the currency the underlying
asset is quoted in differ. The strike currency is in the payment/leg currency.

Allowable values: See Table 28 Currency. Minor Currencies in Table 28 are also
allowable. In non-quanto/compo cases, if left blank or omitted, it defaults to the
currency of the leg for equity and commodity options, and to the currency the
underlying bond is quoted in for BondOptions using reference data.

Listing 308: Strike Yield

<StrikeData>
<StrikeYield>

<Yield>0.055</Yield>
<Compounding>SimpleThenCompounded</Compounding>

</StrikeYield>
</StrikeData>

The meanings and allowable values of the elements in the StrikeYield node are as
follows:

• Yield: A Yield quoted in decimal form, e.g. 10% should be entered as 0.1.

Allowable values: Any real number.

• Compounding [Optional]: The compounding or the yield given in Yield.

Allowable values: Simple, Compounded, Continuous, SimpleThenCompounded.
Defaults to SimpleThenCompounded if left blank or omitted.

8.3.31 Barrier Data

This trade component node is used within the trade data containers listed in table 24.
Note that not every trade type allows for all barrier styles, the allowable combinations
are listed in in table 24.

The barrier data element is specified as in listing 309

460

Listing 309: Barrier data

<BarrierData>
<Type>UpAndIn</Type>
<Style>American</Style>
<Levels>

<Level>1.2</Level>
</Levels>
<Rebate>100000</Rebate>
<RebateCurrency>USD</RebateCurrency>
<RebatePayTime>atExpiry</RebatePayTime>

</BarrierData>

The meanings and allowable values of the elements in the BarrierData node follow
below.

• Type: Specifies barrier type. The allowable values are given in Table 25.

Type Description
UpAndOut The underlying price starts below the barrier level and has to move

up for the option to be knocked out.
DownAndOut The underlying price starts above the barrier level and has to move

down for the option to become knocked out.
UpAndIn The underlying price starts below the barrier level and has to move

up for the option to become activated.
DownAndIn The underlying price starts above the barrier level and has to move

down for the option to become activated.
KnockOut For double level only. The underlying price starts between the

barrier levels and has to move up or down for the option to be
knocked out.

KnockIn For double level only. The underlying price starts between the
barrier levels and has to move up or down for the option to become
activated.

CumulatedProfitCap For TaRFs only. The instrument terminates once the generated
profit reaches the CumulatedProfitCap.

CumulatedProfitCapPoints For TaRFs only. The instrument terminates once the generated
profit divided by fixing amount and absolute value of leverage
reaches the CumulatedProfitCapPoints.

FixingCap For TaRFs only. The instrument terminates once the number of
observations where a profit is generated reaches the FixingCap.

FixingFloor For Accumulators only. The first n fixings are guaranteed regardless
of whether the trade has been knocked out already.

Table 25: Allowable Type Values.

• Style[Optional]: Specifies the monitoring style of the barrier. Optional, if not
given, defaults to the supported barrier style (see table 24 and if both American
and European barriers are supported, defaults to American.
Allowable values: American, European.

461

• Level: The barrier level, defined as the amount in sold (domestic) currency per
unit bought (foreign) currency. Double barrier instruments can have two Level
elements, and these must be in ascending order.
Allowable values: Any positive real number.

• Rebate[Optional]: The barrier rebate is a fixed amount, expressed in domestic /
sold currency paid out to the option holder if a barrier option expires inactive,
i.e. it is not knocked in/out. Note that Rebate is supported for

– FxBarrierOptionData

– FxDigitalBarrierOptionData

– FxDoubleBarrierOptionData

– FxEuropeanBarrierOptionData

only. If defined for several “in” barriers, the amounts must be identical across all
barrier definitions (because the rebate amount is paid if none of the “in” barrier is
touched and can therefore not depend on the particular barrier). Also, the
RebatePayTime must be atExpiry for “in” barriers obviously.
Allowable values: Any positive real number. Defaults to zero if omitted. Cannot
be left blank.

• RebateCurrency [Optional]: The currency in which the rebate amount is paid.
Defaults to the natural pay currency of the trade.

Allowable Values: See Table 28 Currency.

• RebatePayTime [Optional]: For “in” barriers only atExpiry is allowed. For “out”
barriers, both atExpiry and atHit is possible. If not given, defaults to “atExpiry”.

Allowable Values: atExpiry, atHit

8.3.32 RangeBound

This trade component node is used within the following trade data containers

• FxTaRFfData, EquityTaRFData, CommodityTaRFData

• FxAccumulatorData, EquityAccumulatorData, CommodityAccumulatorData

An example structure of the RangeBound trade component node is shown in Listing
310.

Listing 310: RangeBound

<RangeBound>
<RangeFrom>0</RangeFrom>
<RangeTo>155.00</RangeTo>
<Leverage>2</Leverage>
<Strike>150.54</Strike>

</RangeBound>

The meanings and allowable values of the elements in the RangeBound node follow
below.

462

• RangeFrom [Optional]: The lower bound of the range.

Allowable values: Any real number. If omitted, no lower bound applies. Cannot
be left blank.

• RangeTo [Optional]: The upper bound of the range.

Allowable values: Any real number. If omitted, no lower bound applies. Cannot
be left blank.

• Leverage [Optional]: The leverage that applies to the range. For TaRFs, negative
leverage can be mixed with positive leverage to reflect a TaRF with switching
buyer/seller. However, for Accumulators all given Leverage parameters within
the same instrument (in multiple RangeBound nodes) must have the same sign.

Allowable values: Any real number. Defaults to 1 if omitted. Cannot be left
blank.

• Strike [Optional]: The strike specific to the range. If given overwrites a strike
given on the trade level.

Allowable values: Any real number. Defaults to the trade level strike if omitted.
Cannot be left blank.

• StrikeAdjustment [Optional]: A strike adjustment relative to the strike given on
the trade level. If given the strike for the defined range is computed as K + A
where K is the strike on the trade level and A is the strike adjustment. Notice
that Strike and StrikeAdjustment can not be given both at the same time.

Allowable values: Any real number.

8.3.33 Bond Basket Data for Cashflow CDO

This trade component node is used in a Cashflow CDO trade as explained in 8.2.48.
An example structure of the BondBasketData trade component node is shown in
Listing 311.

463

Listing 311: Bond Basket Data for Cashflow CDO

<BondBasketData>
<Trade id="Bond_1">
<TradeType>Bond</TradeType>
<Envelope>
...

</Envelope>
<BondData>
...

</BondData>
</Trade>
<Trade id="Bond_2">
<TradeType>Bond</TradeType>
<Envelope>
...

</Envelope>
<BondData>
...

</BondData>
</Trade>

</BondBasketData>

The usage of the BondBasketData is akin to a portfolio of bond trades, but is
embraced by the keyword BondBasketData as opposed to Portfolio. Compare the
vanilla bond section 8.2.38 for usage and allowable values.

8.3.34 CBO Tranches

This trade component node is used in a CBO trade as explained in 8.2.48. An example
structure of the CBOTranches trade component node is shown in Listing 312.

Listing 312: CBO Tranches

<CBOTranches>
<Tranche>
<Name>JuniorNote</Name>
<ICRatio>0.0</ICRatio>
<OCRatio>0.0</OCRatio>
<Notional>4000000.00</Notional>
<FixedLegData>
<Rates>
<Rate>0.03</Rate>

</Rates>
</FixedLegData>

</Tranche>
...

</CBOTranches>

The meanings of the elements of the CBO tranches node follow below:

• Tranche: Multiple tranches are allowed and are indicated by the tranche node
within the embracing CBOTranches node.

464

• Name: This string is the name of the tranche, possibly reflecting the position in
the capital structure.

• ICRatio: The interest coverage ratio is a number, defined as BasketInterest over
TrancheInterest (incl. all senior tranches).

• OCRatio: The overcollateralisation ratio is a number, defined as BasketNotional
over TrancheNotional (incl. all senior tranches).

• Notional: The face amount of the tranche.

Depending on the tranche, one can specify a floating or fixed return via the nodes:

• FixedLegData, which is outlined in section 8.3.5.

• FloatingLegData, which is outlined in section 8.3.6.

465

8.4 Allowable Values

Date
Date Fields Allowable Values

All Date fields:
StartDate
EndDate
Date
ExerciseDate
PayDate
ValueDate
NearDate
FarDate
etc

Any of the following date formats are supported:
yyyymmdd
yyyy-mm-dd
yyyy/mm/dd
yyyy.mm.dd
dd-mm-yy
dd/mm/yy
dd.mm.yy
dd-mm-yyyy
dd/mm/yyyy
dd.mm.yyyy

and
Dates as serial numbers, comparable to Microsoft Excel
dates, with a minimum of 367 for Jan 1, 1901,
and a maximum of 109574 for Dec 31, 2199.

Table 26: Allowable Values for Date

Convention
Roll Convention Fields Allowable Values

All Convention fields:
Convention
TermConvention
PaymentConvention
etc

F, Following, FOLLOWING
MF, ModifiedFollowing, Modified Following, MODIFIEDF
P, Preceding, PRECEDING
MP, ModifiedPreceding, Modified Preceding, MODIFIEDP
U, Unadjusted, INDIFF
HMMF, HalfMonthModifiedFollowing, HalfMonthMF, Half Month Modified Following, HALFMONTHMF
NEAREST (takes future date in case of equal distance)

Table 27: Allowable Values for Roll Conventions

466

Currency
Category Allowable Values
Fiat Currencies AED,AFN,ALL,AMD,ANG,AOA,ARS,AUD,AWG,AZN,

BAM,BBD,BDT,BGN,BHD,BIF,BMD,BND,BOB,BOV,
BRL,BSD,BTN,BWP,BYN,BZD,CAD,CDF,CHE,CHF,
CHW,CLF,CLP,CNH,CNT,CNY,COP,COU,CRC,CUC,
CUP,CVE,CZK,DJF,DKK,DOP,DZD,EGP,ERN,ETB,
EUR,FJD,FKP,GBP,GEL,GGP,GHS,GIP,GMD,GNF,
GTQ,GYD,HKD,HNL,HRK,HTG,HUF,IDR,ILS,IMP,
INR,IQD,IRR,ISK,JEP,JMD,JOD,JPY,KES,KGS,
KHR,KID,KMF,KPW,KRW,KWD,KYD,KZT,LAK,LBP,
LKR,LRD,LSL,LYD,MAD,MDL,MGA,MKD,MMK,MNT,
MOP,MRU,MUR,MVR,MWK,MXN,MXV,MYR,MZN,NAD,
NGN,NIO,NOK,NPR,NZD,OMR,PAB,PEN,PGK,PHP,
PKR,PLN,PYG,QAR,RON,RSD,RUB,RWF,SAR,SBD,
SCR,SDG,SEK,SGD,SHP,SLL,SOS,SRD,SSP,STN,
SVC,SYP,SZL,THB,TJS,TMT,TND,TOP,TRY,TTD,
TWD,TZS,UAH,UGX,USD,USN,UYI,UYU,UYW,UZS,
VES,VND,VUV,WST,XAF,XAU,XCD,XOF,
XPF,XSU,XUA,YER,ZAR,ZMW,ZWL

Minor Currencies

GBp, GBX (for pennies of GBP)
ILa, ILX (for agorot of ILS)
ZAc, ZAC, ZAX (for cents of ZAR)
Note: Minor Currency codes are only supported for equity products.

Precious Metals
treated as Currencies

XAG, XAU, XPD, XPT

Cryptocurrencies BTC, XBT, ETH, ETC, BCH, XRP, LTC
This full list of currencies is available via loading the provided currencies.xml at start-up.
Note: Currency codes must also match available currencies in the simulation.xml file.

Table 28: Allowable Values for Currency

Rule
Allowable Values Effect
Backward Backward from termination date to effective date.
Forward Forward from effective date to termination date.
Zero No intermediate dates between effective date and termination date.
ThirdWednesday All dates but effective date and termination date are taken to be on

the third Wednesday of their month (with forward calculation.)
LastWednesday All dates but effective date and termination date are taken to be on

the last Wednesday of their month (with forward calculation.)
ThirdThursday All dates but effective date and termination date are taken to be on

the third Thursday of their month (with forward calculation.)
ThirdFriday All dates but effective date and termination date are taken to be on

the third Friday of their month (with forward calculation.)

467

MondayAfterThird-
Friday

All dates but effective date and termination date are taken to be on
the Monday following the third Friday of their month (with forward
calculation.)

TuesdayAfterThird-
Friday

All dates but effective date and termination date are taken to be on
the Tuesday following the third Friday of their month (with forward
calculation.)

Twentieth All dates but the effective date are taken to be the twentieth of their
month (used for CDS schedules in emerging markets.) The termination
date is also modified.

TwentiethIMM All dates but the effective date are taken to be the twentieth of an
IMM month (used for CDS schedules.) The termination date is also
modified.

OldCDS Same as TwentiethIMM with unrestricted date ends and long/short
stub coupon period (old CDS convention).

CDS Credit derivatives standard rule defined in ’Big Bang’ changes in 2009.

For quarterly periods (Tenor set to 3M):
(Assuming no FirstDate/LastDate)
Dates fall on 20th of March, June, September, December. A Following
roll convention will be applied if the 20th falls on a non-business day.
If the EndDate in the schedule is set to a date beyond the rolled
quarterly CDS date, the actual trade termination date will be on the
following quarterly CDS date.
The first coupon will be paid on the quarterly CDS date following the
StartDate, and be for the period since the previous quarterly CDS
date.

For monthly periods (Tenor set to 1M):
(Assuming no FirstDate/LastDate)
Dates fall on 20th of each month, but the termination is still adjusted
to be in line with quarterly periods.
If the EndDate in the schedule is set to a date beyond the rolled
quarterly CDS date (i.e. the 20th+roll Mar, Jun, Sep, Dec),
the actual termination date will be on the following quarterly CDS
date, causing a long final stub.
The first coupon will be paid on the next 20th monthly following the
StartDate, and be for the period since the previous month’s 20th.

CDS2015 Credit derivatives standard rule updated in 2015.
Same as CDS but with termination dates adjusted to
20th June and 20th December.
For schedule EndDates from the 20th of March to the 19th September,
both included, the termination date will fall on the 20th June (with
Following roll).
For schedule EndDates from the 20th September to the 19th March,
both included, the termination date will fall on the 20th December
(with Following roll).

468

EveryThursday If FirstDate is not given, all thursdays between start and end date. If
FirstDate is given, FirstDate plus all thursdays between FirstDate and
end date.

Table 29: Allowable Values for Rule

Calendar
Allowable Values Resulting Calendar
TARGET, TGT, EUR Target Calendar
CA, CAN, CAD, TRB Canada Calendar
JP, JPN, JPY, TKB Japan Calendar
CH, CHE, CHF, ZUB Switzerland Calendar
GB, GBR, GBP, LNB,
UK

UK Calendar

US, USA, USD, NYB US Calendar
US-SET US Settlement Calendar
US-GOV US Government Bond Calendar
US-NYSE, New York
stock exchange

US NYSE Calendar

US with Libor impact US Calendar for Libor fixings
US-NERC US NERC Calendar
AR, ARG, ARS Argentina Calendar
AU, AUD, AUS Australia Calendar
AT, AUT, ATS Austria Calendar
BE, BEL, BEF Belgium Calendar
BW, BWA, BWP Botswana Calendar
BR, BRA, BRL Brazil Calendar
CL, CHL, CLP Chile Calendar
CN, CHN, CNH, CNY China Calendar
CO, COL, COP Colombia Calendar
CY, CYP Cyprus Calendar
CZ, CZE, CZK Czech Republic Calendar
DK, DNK, DKK, DEN Denmark Calendar
FI, FIN Finland Calendar
FR, FRF France Calendar
DE, DEU Germany Calendar
GR, GRC Greek Calendar
HK, HKG, HKD Hong Kong Calendar
HU, HUN, HUF Hungary Calendar
IS, ISL, ISK Iceland Calendar
IN, IND, INR India Calendar
ID, IDN, IDR Indonesia Calendar
IE, IRL Ireland Calendar
IL, ISR, ILS Israel Calendar
Telbor Tel Aviv Inter-Bank Offered Rate Calendar
IT, ITA, ITL Italy Calendar
LU, LUX, LUF Luxembourg Calendar

469

MX, MEX, MXN Mexico Calendar
MY, MYS, MYR Malaysia Calendar
NL, NLD, NZD New Zealand Calendar
NO, NOR, NOK Norway Calendar
PE, PER, PEN Peru Calendar
PH, PHL, PHP Philippines Calendar
PO, POL, PLN Poland Calendar
RO, ROU, RON Romania Calendar
RU, RUS, RUB Russia Calendar
SAU, SAR Saudi Arabia
AE, ARE, AED United Arab Emirates
SG, SGP, SGD Singapore Calendar
ZA, ZAF, ZAR, SA South Africa Calendar
KR, KOR, KRW South Korea Calendar
ES, ESP Spain Calendar
SE, SWE, SEK, SS Sweden Calendar
TW, TWN, TWD Taiwan Calendar
TH, THA, THB Thailand Calendar
TR, TUR, TRY Turkey Calendar
UA, UKR, UAH Ukraine Calendar
XASX Australian Securities Exchange Calendar
BVMF Brazil Bovespa Calendar
XTSE Canada Toronto Stock Exchange Calendar
XSHG China Shanghai Stock Exchange Calendar
XFRA Germany Frankfurt Stock Exchange
XETR Germany XETRA Calendar
ECAG Germany EUREX Calendar
EUWA Germany EUWAX Calendar
XJKT Indonesia Jakarta Stock Exchange (now IDX) Calendar
XIDX Indonesia Indonesia Stock Exchange Calendar
XDUB Ireland Stock Exchange Calendar
XTAE Israel Tel Aviv Stock Exchange Calendar
XMIL Italy Italian Stock Exchange Calendar
MISX Russia Moscow Exchange Calendar
XKRX Korea Exchange Calendar
XSWX Switzerland SIX Swiss Exchange Calendar
XLON UK London Stock Exchange
XLME UK London Metal Exchange
XNYS US New York Stock Exchange Calendar
WMR Thomson Reuters QM/Reuters Spot
WeekendsOnly Weekends Only Calendar
ICE_FuturesUS ICE Futures U.S. Currency, Stock and Credit Index, Metal,

Nat Gas, Power, Oil and Environmental
ICE_FuturesUS_1 ICE Futures U.S. Sugar, Cocoa, Coffee, Cotton and FCOJ
ICE_FuturesUS_2 ICE Futures U.S. Canola
ICE_FuturesEU ICE Futures Europe

470

ICE_FuturesEU_1 ICE Futures Europe for contracts where 26 Dec is a holiday
ICE_EndexEnergy ICE Endex European power and natural gas products
ICE_EndexEquities ICE Endex European equities
ICE_SwapTradeUS ICE Swap Trade U.S.
ICE_SwapTradeUK ICE Swap Trade U.K.
ICE_FuturesSingapore ICE futures Singapore
CME CME group exchange calendar

Table 30: Allowable Values for Calendar. Combinations of calendars can be provided using
comma separated calendar names.

471

DayCount Convention
Allowable Values Resulting DayCount Conven-

tion
A360, Actual/360, ACT/360,
Act/360

Actual 360

A365, A365F, Actual/365
(Fixed), Actual/365 (fixed),
ACT/365.FIXED, ACT/365,
ACT/365L, Act/365, Act/365L

Actual 365 Fixed

A364, Actual/364, Act/364,
ACT/364

Actual 364

Actual/365 (No Leap), Act/365
(NL), NL/365, Actual/365
(JGB)

Actual 365 Fixed (No Leap Year)

Act/365 (Canadian Bond) Actual 365 Fixed (Canadian
Bond)

T360, 30/360, ACT/nACT,
30/360 US, 30/360 (US),
30U/360, 30US/360

Thirty 360 (US)

30/360 (Bond Basis) Thirty 360 (Bond Basis)
30E/360 (Eurobond Basis),
30E/360, 30/360 AIBD (Euro),
30E/360.ICMA, 30E/360 ICMA

Thirty 360 (European)

30E/360E, 30E/360 ISDA,
30E/360.ISDA, 30/360 German,
30/360 (German)

Thirty 360 (German)

30/360 Italian, 30/360 (Italian) Thirty 360 (Italian)
ActActISDA, ACT/ACT.ISDA,
Actual/Actual (ISDA), ActualAc-
tual (ISDA), ACT/ACT, Ac-
t/Act, ACT

Actual Actual (ISDA)

ActActISMA, Actual/Actual
(ISMA), ActualActual (ISMA),
ACT/ACT.ISMA

Actual Actual (ISMA)

ActActICMA, Actual/Actual
(ICMA), ActualActual (ICMA),
ACT/ACT.ICMA

Actual Actual (ICMA)

ActActAFB, ACT/ACT.AFB,
Actual/Actual (AFB), ACT29

Actual Actual (AFB)

BUS/252, Business/252 Brazilian Bus/252
1/1 1/1
Simple Simple Day Counter
Year Year Counter

Table 31: Allowable Values for DayCount Convention

472

Index
On form CCY-INDEX-TENOR, and matching available
indices in the market data configuration.
Index Component Allowable Values

CCY-INDEX

EUR-EONIA
EUR-ESTER, EUR-ESTR, EUR-STR
EUR-EURIBOR, EUR-EURIBOR365
EUR-LIBOR
EUR-CMS
USD-FedFunds
USD-SOFR
USD-Prime
USD-LIBOR
USD-SIFMA
USD-CMS
GBP-SONIA
GBP-LIBOR
GBP-CMS
GBP-BoEBase
JPY-LIBOR
JPY-TIBOR
JPY-EYTIBOR
JPY-TONAR
JPY-CMS
CHF-LIBOR
CHF-SARON
AUD-LIBOR
AUD-BBSW
CAD-CDOR
CAD-BA
SEK-STIBOR
SEK-LIBOR
SEK-STINA
DKK-LIBOR
DKK-CIBOR
DKK-CITA
SGD-SIBOR
SGD-SOR
HKD-HIBOR
HKD-HONIA
NOK-NIBOR
HUF-BUBOR
IDR-IDRFIX
INR-MIFOR
MXN-TIIE
PLN-WIBOR
RUB-MOSPRIME
SKK-BRIBOR
THB-THBFIX
THB-THOR
THB-BIBOR
NZD-BKBM

TENOR An integer followed by D, W, M or Y

Table 32: Allowable values for Index.

473

Defaults for FixingDays
Index Default value
Ibor indices 2, except for the Ibor indices below:
USD-SIFMA 1
GBP-LIBOR 0
AUD-BBSW 0
CAD-CDOR 0
CNY-SHIBOR 1
HKD-HIBOR 0
MXN-TIIE 1
MYR-KLIBOR 0
TRY-TRLIBOR 0
ZAR-JIBAR 0
Overnight indices 0, except for the Overnight indices below:
CHF-TOIS 1
CLP-CAMARA 2
PLN-POLONIA 1
DKK-DKKOIS 1
SEK-SIOR 1

Table 33: Defaults for FixingDays

FX Index
Index Format Allowable Values
FX-SOURCE-CCY1-CCY2 The FX- part of the string stays constant for all currency

pairs. SOURCE is the market data fixing source defined
in the market configuration. CCY1 and CCY2 are the ISO
currency codes of the fx pair. Fixings are expressed as
amount in CCY2 for one unit of CCY1.

Table 34: Allowable values for FX index fixings.

Inflation CPI Index
Trade Data Allowable Values
Index for CPI leg Any string (provided it is the ID of an infla-

tion index in the market configuration)

Table 35: Allowable values for CPI index.

474

Credit CreditCurveId
Trade Data Allowable Values

CreditCurveId
for credit trades
- single name
and index

Any string (provided it is the ID of a single name or index
reference entity in the market configuration).
Typically a RED-code with the RED: prefix
Examples:
RED:2I65BRHH6 (CDX N.A. High Yield, Series 13, Version 1)
RED:008CA0|SNRFOR|USD|MR14 (Agilent Tech Senior USD)

Table 36: Allowable values for credit CreditCurveId

Equity Name
Trade Data Allowable Values

Name for equity trades

Any string (provided it is the ID of an equity in the market
configuration).
Typically a RIC-code with the RIC: prefix
Examples:
RIC:.SPX (S&P 500 Index)
RIC:EEM.N (iShares MSCI Emerging Markets ETF)

Table 37: Allowable values for equity Name.

Commodity Curve Name
Trade Data Allowable Values
Name for com-
modity trades

Any string (provided it is the ID of an commodity in the market
configuration)

Table 38: Allowable values for commodity data.

Tier
Value Description
SNRFOR Senior unsecured for corporates or foreign debt for sovereigns
SUBLT2 Subordinated or lower Tier 2 debt for banks
SNRLAC Senior loss absorbing capacity
SECDOM Secured for corporates or domestic debt for sovereigns
JRSUBUT2 Junior subordinated or upper Tier 2 debt for banks
PREFT1 Preference shares or Tier 1 capital for banks
LIEN1 First lien
LIEN2 Second lien
LIEN3 Third lien

Table 39: Allowable values for Tier

475

DocClause
Value Description
CR Full or old restructuring referencing the 2003 ISDA Definitions
MM Modified modified restructuring referencing the 2003 ISDA Defini-

tions
MR Modified restructuring referencing the 2003 ISDA Definitions
XR No restructuring referencing the 2003 ISDA Definitions
CR14 Full or old restructuring referencing the 2014 ISDA Definitions
MM14 Modified modified restructuring referencing the 2014 ISDA Defini-

tions
MR14 Modified restructuring referencing the 2014 ISDA Definitions
XR14 No restructuring referencing the 2014 ISDA Definitions

Table 40: Allowable values for DocClause

Exchange
Trade Data Allowable Values
Exchange Any string, typically a MIC code (provided it is the ID of an ex-

change in the market configuration)

Table 41: Allowable Values for Exchange

Boolean nodes
Node Value Evaluates To
Y, YES, TRUE, true, 1 true
N, NO, FALSE, false, 0 false

Table 42: Allowable values for boolean node

476

9 Netting Set Definitions
The netting set definitions file - netting.xml - contains a list of definitions for various
ISDA netting agreements. The file is written in XML format.

Each netting set is defined within its own NettingSet node. All of these NettingSet
nodes are contained as children of a NettingSetDefinitions node.

There are two distinct cases to consider:

• An ISDA agreement which does not contain a Credit Support Annex (CSA).

• An ISDA agreement which does contain a CSA.

9.1 Uncollateralised Netting Set

If an ISDA agreement does not contain a Credit Support Annex, the portfolio
exposures are not eligible for collateralisation. In such a case the netting set can be
defined within the following XML template:

Listing 313: Uncollateralised netting set definition

<NettingSet>
<NettingSetId> </NettingSetId>
<ActiveCSAFlag> </ActiveCSAFlag>
<CSADetails></CSADetails>

</NettingSet>

The meanings of the various elements are as follows:

• NettingSetId: The unique identifier for the ISDA netting set.
Allowable values: Any string

• ActiveCSAFlag [Optional]: Boolean indicating whether the netting set is covered
by a Credit Support Annex. Allowable values: For uncollateralised netting sets
this flag should be False. If left blank or omitted, defaults to True.

• CSADetails [Optional]: Node containing as children details of the governing
Credit Support Annex. For uncollateralised netting sets, this node is not needed.

9.2 Collateralised Netting Set

If an ISDA agreement contains a Credit Support Annex, the portfolio exposures are
eligible for collateralisation. In such a case the netting set can be defined within the
following XML template:

477

Listing 314: Collateralised netting set definition

<NettingSet>
<NettingSetId> </NettingSetId>
<ActiveCSAFlag> </ActiveCSAFlag>
<CSADetails>

<Bilateral> </Bilateral>
<CSACurrency> </CSACurrency>
<Index> </Index>
<ThresholdPay> </ThresholdPay>
<ThresholdReceive> </ThresholdReceive>
<MinimumTransferAmountPay> </MinimumTransferAmountPay>
<MinimumTransferAmountReceive> </MinimumTransferAmountReceive>
<IndependentAmount>

<IndependentAmountHeld> </IndependentAmountHeld>
<IndependentAmountType> </IndependentAmountType>

</IndependentAmount>
<MarginingFrequency>

<CallFrequency> </CallFrequency>
<PostFrequency> </PostFrequency>

</MarginingFrequency>
<MarginPeriodOfRisk> </MarginPeriodOfRisk>
<CollateralCompoundingSpreadReceive>
</CollateralCompoundingSpreadReceive>
<CollateralCompoundingSpreadPay> </CollateralCompoundingSpreadPay>
<EligibleCollaterals>

<Currencies>
<Currency>USD</Currency>
<Currency>EUR</Currency>
<Currency>CHF</Currency>
<Currency>GBP</Currency>
<Currency>JPY</Currency>
<Currency>AUD</Currency>

</Currencies>
</EligibleCollaterals>
<ApplyInitialMargin>Y</ApplyInitialMargin>
<InitialMarginType>Bilateral</InitialMarginType>
<CalculateIMAmount>true</CalculateIMAmount>
<CalculateVMAmount>true</CalculateVMAmount>

</CSADetails>
</NettingSet>

CSADetails

The CSADetails node contains details of the Credit Support Annex which are relevant
for the purposes of exposure calculation. The meanings of the various elements are as
follows:

• Bilateral [Optional]: There are three possible values here:

– Bilateral : Both parties to the CSA are legally entitled to request collateral
to cover their counterparty credit risk exposure on the underlying portfolio.

– CallOnly : Only we are entitled to hold collateral; the counterparty has no
such entitlement.

– PostOnly : Only the counterparty is entitled to hold collateral; we have no

478

such entitlement.

Defaults to Bilateral if left blank or omitted.

• CSACurrency [Optional]: A three-letter ISO code specifying the master currency
of the CSA. All monetary values specified within the CSA are assumed to be
denominated in this currency.
Allowable values: Any currency. See Table 28.

• Index [Optional]: The index is used to derive the fixing which is used for
compounding cash collateral in the master currency of the CSA.
Allowable values: An alphanumeric string of the form CCY-INDEX-TENOR.
CCY, INDEX and TENOR must be separated by dashes (-). CCY and INDEX
must be among the supported currency and index combinations. TENOR must
be an integer followed by D, W, M or Y, except for Overnight indices which do
not require a TENOR. See Table 32.

• ThresholdPay [Optional]: A threshold amount above which the counterparty is
entitled to request collateral to cover excess exposure.
Allowable values: Any number.

• ThresholdReceive [Optional]: A threshold amount above which we are entitled
to request collateral from the counterparty to cover excess exposure.
Allowable values: Any number.

• MinimumTransferAmountPay [Optional]: Any margin calls issued by the
counterparty must exceed this minimum transfer amount. If the collateral
shortfall is less than this amount, the counterparty is not entitled to request
margin.
Allowable values: Any number.

• MinimumTransferAmountReceive [Optional]: Any margin calls issued by us to
the counterparty must exceed this minimum transfer amount. If the collateral
shortfall is less than this amount, we are not entitled to request margin.
Allowable values: Any number.

• IndependentAmount [Optional]: This element contains two child nodes:

– IndependentAmountHeld: The netted sum of all independent amounts
covered by this ISDA agreement/CSA.
Allowable values: Any number. A negative number implies that the
counterparty holds the independent amount.

– IndependentAmountType: The nature of the independent amount as defined
within the Credit Support Annex.
Allowable values: The only supported value here is FIXED.

• MarginingFrequency: This element contains two child nodes:

– CallFrequency: The frequency with which we are entitled to request
additional margin from the counterparty (e.g. 1D, 2W, 1M).
Allowable values:

– PostFrequency: The frequency with which the counterparty is entitled to
request additional margin from us.

479

Allowable values: Any period definition (e.g. 2D, 1W, 1M, 1Y).

This covers only the case where only one party has to post an independent
amount. In a future release this will be extended to the situation prescribed by
the Basel/IOSCO regulation (initial margin to be posted by both parties without
netting).

• MarginPeriodOfRisk: The length of time assumed necessary for closing out the
portfolio position after a default event.
Allowable values: Any period definition (e.g. 2D, 1W, 1M, 1Y).

• CollateralCompoundingSpreadReceive: The spread over the O/N interest
accrual rate taken by the clearing house, when holding collateral.
Allowable values: Any number.

• CollateralCompoundingSpreadPay: The spread over the O/N interest accrual
rate taken by the clearing house, when collateral is held by the counterparty.
Allowable values: Any number.

• EligibleCollaterals: For now the only supported type of collateral is cash. If
the CSA specifies a set of currencies which are eligible as collateral, these can be
listed using Currency nodes.
Allowable values: Any currency. See Table 28.

• ApplyInitialMargin: Apply (dynamic) initial Margin in addition to variation
margin
Allowable values: Boolean node, the set of allowable values is given in Table 42.

• InitialMarginType There are three possible values here:

– Bilateral : Both parties to the CSA are legally entitled to request collateral
to cover their MPOR risk exposure on the underlying portfolio.

– CallOnly : Only we are entitled to hold collateral; the counterparty has no
such entitlement.

– PostOnly : Only the counterparty is entitled to hold collateral; we have no
such entitlement.

• CalculateIMAmount: Boolean indicating whether to calculate initial margin from
SIMM. For uncollateralised netting sets this flag will be ignored. This only
applies to the SA-CCR calculations.
Allowable values: Boolean node, the set of allowable values is given in Table 42.

• CalculateVMAmount: Boolean indicating whether to calculate variation margin
from the netting set NPV. For uncollateralised netting sets this flag will be
ignored. This only applies to the SA-CCR calculations.
Allowable values: Boolean node, the set of allowable values is given in Table 42.

480

10 Market Data
In this section we discuss the market data, which enters into the calibration of OREs
risk factor evolution models. Market data in the market.txt file is given in three
columns; Date, Quote and Quote value.

• Date: The as of date of the market quote value.

Allowable values: See Date in Table 26.

• Quote: A generic description that contains Instrument Type and Quote Type,
followed by instrument specific descriptions (see 10.1 ff.). The base of a quote
consists of InstType/QuoteType followed by instrument specific information
separated by slashes "/".

Allowable values for Instrument Types and Quote Types are given in Table 43.

• Quote Value: The market quote value in decimal form for the given quote on
the given as of date. Quote values are assumed to be mid-market.

Allowable values: Any real number.

481

Market Data Parameter Allowable Values
Instrument Type ZERO, DISCOUNT, MM,

MM_FUTURE, FRA,
IMM_FRA, IR_SWAP,
BASIS_SWAP,
CC_BASIS_SWAP,
CDS, CDS_INDEX,
FX_SPOT, FX_FWD,
SWAPTION, CAPFLOOR,
FX_OPTION, HAZ-
ARD_RATE, RE-
COVERY_RATE,
ZC_INFLATIONSWAP,
YY_INFLATIONSWAP,
ZC_INFLATIONCAPFLOOR,
SEASONALITY, EQ-
UITY_SPOT, EQ-
UITY_FWD, EQ-
UITY_DIVIDEND, EQ-
UITY_OPTION, BOND,
INDEX_CDS_OPTION,
CPR, COMMODITY,
COMMODITY_FWD,
COMMODITY_OPTION

Quote Type BASIS_SPREAD,
CREDIT_SPREAD,
YIELD_SPREAD,
HAZARD_RATE,
RATE, RATIO, PRICE,
RATE_LNVOL,
RATE_NVOL,
RATE_SLNVOL,
BASE_CORRELATION,
SHIFT

Table 43: Allowable values for Instrument and Quote type market data.

An excerpt from a typical market.txt file is shown in Listing 315.

482

Listing 315: Excerpt of a market data file

2011-01-31 MM/RATE/EUR/0D/1D 0.013750
2011-01-31 MM/RATE/EUR/1D/1D 0.010500
2011-01-31 MM/RATE/EUR/2D/1D 0.010500
2011-01-31 MM/RATE/EUR/2D/1W 0.009500
2011-01-31 MM/RATE/EUR/2D/1M 0.008700
2011-01-31 MM/RATE/EUR/2D/2M 0.009100
2011-01-31 MM/RATE/EUR/2D/3M 0.010200
2011-01-31 MM/RATE/EUR/2D/4M 0.011000

2011-01-31 FRA/RATE/EUR/3M/3M 0.013080
2011-01-31 FRA/RATE/EUR/4M/3M 0.013890
2011-01-31 FRA/RATE/EUR/5M/3M 0.014630
2011-01-31 FRA/RATE/EUR/6M/3M 0.015230

2011-01-31 IR_SWAP/RATE/EUR/2D/3M/1Y 0.014400
2011-01-31 IR_SWAP/RATE/EUR/2D/3M/1Y3M 0.015400
2011-01-31 IR_SWAP/RATE/EUR/2D/3M/1Y6M 0.016500
2011-01-31 IR_SWAP/RATE/EUR/2D/3M/2Y 0.018675
2011-01-31 IR_SWAP/RATE/EUR/2D/3M/3Y 0.022030
2011-01-31 IR_SWAP/RATE/EUR/2D/3M/4Y 0.024670
2011-01-31 IR_SWAP/RATE/EUR/2D/3M/5Y 0.026870
2011-01-31 IR_SWAP/RATE/EUR/2D/3M/6Y 0.028700
2011-01-31 IR_SWAP/RATE/EUR/2D/3M/7Y 0.030125
2011-01-31 IR_SWAP/RATE/EUR/2D/3M/8Y 0.031340
2011-01-31 IR_SWAP/RATE/EUR/2D/3M/9Y 0.032450

10.1 Zero Rate

The instrument specific information to be captured for quotes representing Zero Rates
is shown in Table 44.

Property Allowable values Description
Instrument Type ZERO
Quote Type RATE, YIELD_SPREAD
Currency See Currency in Table 26 Currency of the Zero rate
CurveId A CCY concatenated

with a Tenor. Should
match CurveIds in the
yield-curves.xml file

Unique identifier for the yield curve as-
sociated with the zero quote

DayCounter See DayCount Convention
in Table 31

The day count basis associated with the
zero quote

Tenor or ZeroDate Tenor: An integer followed
by D, W, M or Y, ZeroDate:
See Date in Table 26

Either a Tenor for tenor based zero
quotes, or an explicit maturity date
(ZeroDate)

Table 44: Zero Rate

Examples with a Tenor and with a ZeroDate:

• ZERO/RATE/USD/USD6M/A365F/6M

483

• ZERO/RATE/USD/USD6M/A365F/12-05-2018

10.2 Discount Factor

The instrument specific information to be captured for quotes representing Discount
Factors is shown in Table 45.

Property Allowable values Description
Instrument Type DISCOUNT
Quote Type RATE
Currency See Currency in Table 26 Currency of the Discount rate
CurveId A CCY concatenated

with a Tenor. Should
match CurveIds in the
yield-curves.xml file

Unique identifier for the yield curve as-
sociated with the discount quote

Term or Discount-
Date

Term: An integer followed
by D, W, M or Y, Discount-
Date: See Date in Table 26

Either a Term is used to determine the
maturity date, or an explicit maturity
date (Discount Date) is given.

Table 45: Discount Rate

If a Term is given in the last element of the quote, it is converted to a maturity date
using the calendar, specified in the conventions. Bear in mind, only zero conventions
(see Listing 115) can be used for the discount factor instruments.

Examples with a Term and with a DiscountDate:

• DISCOUNT/RATE/EUR/EUR3M/3Y

• DISCOUNT/RATE/EUR/EUR3M/A365F/12-05-2018

10.3 FX Spot Rate

Property Allowable values Description
Instrument
Type

FX

Quote Type RATE
Unit currency See Currency in

Table 26
Unit/Source currency

Target currency See Currency in
Table 26

Target currency

Table 46: FX Spot Rate

Example:

• FX/RATE/EUR/USD

484

10.4 FX Forward Rate

An FX Forward quote is expected in either a “forward points” quotation, or an
“outright” quotation.

The forward points convention is given by:

Forward Points =
FX Forward− FX Spot

Conversion Factor

with conversion factor set to 1.

Property Allowable values Description
Instrument Type FX_FWD
Quote Type RATE
Unit currency See Currency in

Table 26
Unit/Source currency

Target currency See Currency in
Table 26

Target currency

Term An integer followed
by D, W, M or Y.

Period from today to maturity

Table 47: FX Forward Rate

The forward outright is given by:

Forward Outright = FX Spot + Forward Points× Conversion Factor

with conversion factor set to 1.

Property Allowable values Description
Instrument Type FX_FWD
Quote Type PRICE
Unit currency See Currency in

Table 26
Unit/Source currency

Target currency See Currency in
Table 26

Target currency

Term An integer followed
by D, W, M or Y.

Period from today to maturity

Table 48: FX Forward Rate

Example:

• FXFWD/RATE/EUR/USD/1M

• FXFWD/PRICE/EUR/USD/3M

485

10.5 Deposit Rate

Property Allowable values Description
Instrument
Type

MM

Quote Type RATE
Currency See Currency in

Table 26
Currency of the Deposit rate

IndexName Optional, any
string

Generally used to differentiate money
market rates referencing different inter-
est rate indices with the same tenor

Forward start An integer followed
by D, W, M or Y.

Period from today to start

Term An integer followed
by D, W, M or Y.

Period from start to maturity

Table 49: Deposit Rate

Deposits are usually quoted as ON (Overnight), TN (Tomorrow Next), SN (Spot
Next), SW (Spot Week), 3W (3 Weeks), 6M (6 Months), etc.
Forward start for ON is today (i.e. forward start = 0D), for TN tomorrow (forward
start = 1D), for SN two days from today (forward start = 2D). For longer term
Deposits, forward start is derived from conventions, see 7.11, and is between 0D and
2D, i.e. "spot days" are between 0 and 2.

Example:

• MM/RATE/EUR/2D/3M

10.6 FRA Rate

Property Allowable values Description
Instrument Type FRA
Quote Type RATE
Currency See Currency in

Table 26
Currency of the FRA rate

Forward start An integer followed
by D, W, M or Y

Period from today to start

Term An integer followed
by D, W, M or Y

Period from start to maturity

Table 50: FRA Rate

FRAs are typically quoted as e.g. 6x9 which means forward start 6M from today,
maturity 9M from today, with appropriate adjustment of dates.

IMM FRA quotes are represented as follows.

486

Property Allowable values Description
Instrument Type IMM_FRA
Quote Type RATE
Currency See Currency in

Table 26
Currency of the FRA rate

Start An integer Number of IMM dates from today to
start

End An integer Number of IMM dates from today to
maturity

Table 51: IMM FRA Rate

Example:

• FRA/RATE/EUR/9M/3M

• IMM_FRA/RATE/EUR/2/3

10.7 Money Market Futures Price

Property Allowable values Description
Instrument
Type

MM_FUTURE

Quote Type PRICE
Currency See Currency in Table 26 Currency of the MM Future price
Expiry Alphanumeric string of

the form YYYY-MM
Expiry month and year

Contract String Contract name
Term An integer followed by D,

W, M or Y
Underlying Term

Table 52: Money Market Futures Price

Expiry month is quoted here as YYYY-MM. The exact expiry date follows from a date
rule defined in the future conventions, see 7.11.3.

Example:

• MM_FUTURE/PRICE/EUR/2018-06/LIF3ME/3M

487

10.8 Overnight Index Futures Price

Property Allowable values Description
Instrument
Type

OI_FUTURE

Quote Type PRICE
Currency See Currency in Table 26 Currency of the Overnight Index Fu-

ture price
Expiry Alphanumeric string of

the form YYYY-MM
Expiry month and year

Contract String Contract name
Term An integer followed by M

or Y
Underlying Term in months or years

Table 53: Overnight Index Futures Price

Expiry month is quoted here as YYYY-MM. The exact expiry date follows from a date
rule defined in the future conventions, see 7.11.3.

Example: Three Months SOFR Futures (DEC 2019):

• OI_FUTURE/PRICE/USD/2019-12/CME:SR3Z2019/3M

10.9 Swap Rate

Property Allowable values Description
Instrument
Type

IR_SWAP

Quote Type RATE
Currency See Currency in

Table 26
Currency of the Swap rate

IndexName Optional, any
string

Generally used to differentiate swaps
referencing different interest rate in-
dices with the same tenor

Forward start An integer followed
by D, W, M or Y

Generic period from today to start

Tenor An integer followed
by D, W, M or Y

Underlying index period

Term An integer followed
by D, W, M or Y

Swap length from start to maturity

Table 54: Swap Rate

488

Property Allowable values Description
Instrument
Type

IR_SWAP

Quote Type RATE
Currency See Currency in

Table 26
Currency of the Swap rate

IndexName Optional, any
string

Generally used to differentiate swaps
referencing different interest rate in-
dices with the same tenor

Start Date A valid date
Tenor An integer followed

by D, W, M or Y
Underlying index period

End Date A valid date

Table 55: Swap Rate with Start and End Date

Forward start for the non-dated variant is usually not quoted, but needs to be derived
from conventions.

Example:

• IR_SWAP/RATE/EUR/2D/6M/10Y

• IR_SWAP/RATE/GBP/20230921/1D/20231102

10.10 Basis Swap Spread

Property Allowable values Description
Instrument Type BASIS_SWAP
Quote Type BASIS_SPREAD
Flat tenor An integer followed

by D, W, M or Y
Zero spread leg’s index tenor

Tenor An integer followed
by D, W, M or Y

Non-zero spread leg’s index tenor

Currency See Currency in Ta-
ble 26

Currency of the basis swap spread

Optional Identifier String Basis swap name
Term An integer followed

by D, W, M or Y
Swap length from start to maturity

Table 56: Basis Swap Spread

Examples:

• BASIS_SWAP/BASIS_SPREAD/6M/3M/CHF/10Y

• BASIS_SWAP/BASIS_SPREAD/3M/1D/USD/2Y

• BASIS_SWAP/BASIS_SPREAD/3M/1D/USD/LIBOR_PRIME/2Y

• BASIS_SWAP/BASIS_SPREAD/3M/1D/USD/LIBOR_FEDFUNDS/2Y

489

10.11 Cross Currency Basis Swap Spread

Property Allowable values Description
Instrument
Type

CC_BASIS_SWAP

Quote Type BASIS_SPREAD
Flat currency See Currency in

Table 26
Currency for zero spread leg

Flat tenor An integer followed
by D, W, M or Y

Zero spread leg’s index tenor

Currency See Currency in
Table 26

Currency for non-zero spread leg

Tenor An integer followed
by D, W, M or Y

Non-zero spread leg’s index tenor

Term An integer followed
by D, W, M or Y

Swap length from start to maturity

Table 57: Cross Currency Basis Swap Spread

Example:

• CC_BASIS_SWAP/BASIS_SPREAD/USD/3M/JPY/6M/10Y

10.12 CDS Spread

Property Allowable values Description
Instrument
Type

CDS

Quote Type CREDIT_SPREAD or
CONV_CREDIT_SPREAD

Entity String The CDS reference entity name
Tier String The CDS tier
DocClause String Optional, the CDS doc clause
Currency See Currency in

Table 26
The CDS currency

Term A valid tenor string The CDS tenor
RunningSpread A number The CDS running coupon in bps e.g.

100 for 0.01

Table 58: CDS spread quote

There are two possible quote types to allow for the presence of two CDS spread types
in the market data. In particular, there is typically a conventional CDS spread and a
par CDS spread quoted in the market. The quote type distinction here would allow the
conventional spreads to be stored with quote type set to CONV_CREDIT_SPREAD and the
par spreads to be stored with quote type set to CREDIT_SPREAD. As noted in the table
above, the CDS documentation clause and CDS running spread is optional. The
following list shows valid CDS spread quote examples.

490

• CDS/CREDIT_SPREAD/JPM/SNRFOR/USD/5Y

• CDS/CREDIT_SPREAD/JPM/SNRFOR/USD/5Y/100

• CDS/CREDIT_SPREAD/JPM/SNRFOR/USD/XR14/5Y

• CDS/CREDIT_SPREAD/JPM/SNRFOR/USD/XR14/5Y/100

• CDS/CREDIT_SPREAD/RBS/SUBLT2/EUR/MR14/10Y

• CDS/CREDIT_SPREAD/RBS/SUBLT2/EUR/MR14/10Y/500

• CDS/CREDIT_SPREAD/RBS/SUBLT2/EUR/1Y

• CDS/CREDIT_SPREAD/RBS/SUBLT2/EUR/1Y/500

10.13 CDS Upfront Price

Property Allowable values Description
Instrument
Type

CDS

Quote Type PRICE
Entity String The CDS reference entity name
Tier String The CDS tier
Currency See Currency in

Table 26
The CDS currency

DocClause String Optional, the CDS doc clause
Term A valid tenor string The CDS tenor
RunningSpread A number The CDS running coupon in bps e.g.

100 for 0.01

Table 59: CDS upfront price quote

As noted in the table above, the CDS documentation clause and CDS running spread is
optional. Note that if the running spread is omitted from the CDS upfront price quote
string, it should be included in any default curve configuration that uses those quotes.
In other words, to bootstrap a default curve from CDS price quotes, the contractual
running spread needs to be provided in either the quote string or in the default curve
configuration. If both are provided, the running spread in the quote string takes
precedence. The following list shows valid CDS upfront price quote examples.

• CDS/PRICE/JPM/SNRFOR/USD/5Y

• CDS/PRICE/JPM/SNRFOR/USD/5Y/100

• CDS/PRICE/JPM/SNRFOR/USD/XR14/5Y

• CDS/PRICE/JPM/SNRFOR/USD/XR14/5Y/100

• CDS/PRICE/RBS/SUBLT2/EUR/MR14/10Y

• CDS/PRICE/RBS/SUBLT2/EUR/MR14/10Y/500

• CDS/PRICE/RBS/SUBLT2/EUR/1Y

491

• CDS/PRICE/RBS/SUBLT2/EUR/1Y/500

10.14 CDS Recovery Rate

Property Allowable values Description
Instrument
Type

RECOVERY_RATE

Quote Type RATE
Entity String The CDS reference entity name
Tier String The CDS tier
Currency See Currency in

Table 26
The CDS currency

DocClause String Optional, the CDS doc clause

Table 60: CDS Recovery Rate

As noted in the table above, the CDS documentation clause is optional. The following
list shows valid recovery rate quote examples.

• RECOVERY_RATE/RATE/JPM/SNRFOR/USD

• RECOVERY_RATE/RATE/JPM/SNRFOR/USD/XR14

• RECOVERY_RATE/RATE/RBS/SUBLT2/EUR/MR14

• RECOVERY_RATE/RATE/RBS/SUBLT2/EUR

10.15 CDS Option Implied Volatility

A CDS option implied volatility quote can take any one of the following four forms:

1. INDEX_CDS_OPTION/RATE_LNVOL/[NAME]/[EXPIRY]

2. INDEX_CDS_OPTION/RATE_LNVOL/[NAME]/[EXPIRY]/[STRIKE]

3. INDEX_CDS_OPTION/RATE_LNVOL/[NAME]/[TERM]/[EXPIRY]

4. INDEX_CDS_OPTION/RATE_LNVOL/[NAME]/[TERM]/[EXPIRY]/[STRIKE]

The terms in the quote string have the following interpretations:

• The [NAME] is the name of the CDS reference entity or index CDS.

• The [EXPIRY] is the expiry of the CDS option and may be a tenor or an explicit
date.

• The [TERM] is optional and gives the term of the underlying CDS or index CDS.
This should be a tenor e.g. 3Y, 5Y, etc.

• The [STRIKE] is optional and gives the strike of the CDS or index CDS option.

492

10.16 Security Recovery Rate

Bond recovery rates can also be specified per security. This requires only one key, the
security ID, no need to specify a seniority or currency as for CDS:

Property Allowable values Description
Instrument
Type

RECOVERY_RATE

Quote Type RATE
ID String Security ID

Table 61: Security Recovery Rate

Example:

• RECOVERY_RATE/RATE/SECURITY_1

10.17 Hazard Rate (Instantaneous Probability of Default)

This allows to directly pass hazard rates as instantaneous probabilities of default.

Property Allowable values Description
Instrument
Type

HAZARD_RATE

Quote Type RATE
Issuer String Issuer name
Seniority String Seniority status
Currency See Currency in

Table 26
Hazard rate currency

Term An integer followed
by D, W, M or Y

Generic period from start to maturity

Table 62: Hazard Rate

Example:

• HAZARD_RATE/RATE/CPTY_A/SR/USD/30Y

• HAZARD_RATE/RATE/CPTY_C/SR/EUR/0Y

493

10.18 FX Option Implied Volatility

Property Allowable values Description
Instrument
Type

FX_OPTION

Quote Type RATE_LNVOL
Unit currency See Currency in

Table 26
Unit/Source currency

Target currency See Currency in
Table 26

Target currency

Expiry An integer followed
by D, W, M or Y

Period from today to expiry

Strike ATM, RR, BF ATM (Straddle), RR (Risk Reversal),
BF (Butterfly)

Table 63: FX Option Implied Volatility

Volatilities are quoted in terms of strategies - at-the-money straddle, risk reversal and
butterfly.

Example:

• FX_OPTION/RATE_LNVOL/EUR/USD/3M/ATM

494

10.19 Cap Floor Implied Volatility

Property Allowable values Description
Instrument
Type

CAPFLOOR

Quote Type RATE_LNVOL,
RATE_NVOL,
RATE_SLNVOL,
SHIFT, PRICE

Lognormal quoted volatility, normal
quoted volatility, shifted lognormal
quoted volatility, shift quote, premium
quote.

Currency See Currency in
Table 26

Currency of the cap floor quote.

Index Name A string (optional) An interest rate index name
giving the index underlying the cap
floor quotes. See Table 32.

Term A valid tenor string Period from start to cap or floor matu-
rity.

Index Tenor A valid tenor string Underlying index tenor e.g. 3M for
EUR-EURIBOR-3M.

ATM 1 or 0 True, i.e. 1, for an ATM quote and
false, i.e. 0, for a strike quote.

Relative 1 or 0 Should be set to 1 for a quote relative
to ATM and to 0 for an absolute strike
quote.

Strike Real number Strike of cap or floor. Should be set to
0 for an ATM quote.

Option Style C or F (optional) Valid for premium quotes
only, indicates whether the datum is a
cap or floor quote respectively.

Table 64: Cap floor implied volatility quote

An index name should be used where a currency has more than one index of a given
tenor with an options surface. It must match IborIndex in its corresponding
CapFloorVolatility configuration, see section 7.8.6.

If a cap floor shift quote needs to be provided, i.e. in the case of a shifted lognormal
surface, the quote is of the form CAPFLOOR/SHIFT/Currency/Index Tenor where the
meaning of Currency and Index Tenor are given in Table 64.

We have the following examples of cap floor implied volatility, shift, and premium
quotes:

• CAPFLOOR/RATE_LNVOL/EUR/10Y/6M/1/1/0: 10Y ATM cap floor implied
lognormal volatility quote where the index tenor is 6M.

• CAPFLOOR/RATE_LNVOL/EUR/10Y/6M/0/0/0.035: 10Y 3.5% strike cap floor
implied lognormal volatility quote where the index tenor is 6M.

• CAPFLOOR/RATE_SLNVOL/EUR/EURIBOR/5Y/6M/0/0/0.03: 5Y 3% strike cap floor
implied shifted lognormal volatility quote where the underlying rate is the
EUR-EURIBOR-6M.

495

• CAPFLOOR/SHIFT/EUR/EURIBOR/6M: Strike shift convention corresponding to
shifted lognormal implied capfloor volatility quotes where the underlying rate is
the EUR-EURIBOR-6M.

• CAPFLOOR/PRICE/EUR/EURIBOR/5Y/6M/0/0/0.03/C: 5Y 3% strike cap floor
premium quote where the underlying rate is the EUR-EURIBOR-6M.

10.20 Swaption Implied Volatility

Property Allowable values Description
Instrument
Type

SWAPTION

Quote Type RATE_LNVOL,
RATE_NVOL,
RATE_SLNVOL,
SHIFT, PRICE

Lognormal quoted volatility, Normal
quoted volatility, shifted lognormal
quoted volatility, shift, premium quote.

Currency See Currency in
Table 26

Currency of the Swaption volatility

Quote Tag A string (optional) A tag to differentiate differ-
ent sets of swaption data in a currency.
See note below.

Expiry An integer followed
by D, W, M or Y

Period from start to expiry

Term An integer followed
by D, W, M or Y

Underlying Swap term

Dimension Smile, ATM Whether volatility quote is a Smile or
ATM

Strike Real number (not required for ATM), deviation from
the ATM strike. Note that trailing 0s
are not ignored.

Option Style P or R (optional) Valid for premium quotes
only, indicates whether the datum rep-
resents a payer or receiver swaption
premium respectively.

Table 65: Swaption Implied Volatility

A quote tag should be used where a currency has more than one index with a swaption
surface. It must match QuoteTag in its corresponding SwaptionVolatility
configuration, see section 7.8.5.

Note: The volatility quote is expected to be an absolute volatility, and not the
deviation from the at-the-money volatility (the latter is e.g. the quotation convention
used by BGC partners).
If a swaption shift quote needs to be provided, i.e. in the case of a shifted lognormal
surface, the quote is of the form SWAPTION/SHIFT/Currency/Term where the meaning
of Currency and Term are given in Table 65.

Examples:

496

• SWAPTION/RATE_LNVOL/EUR/5Y/10Y/ATM (absolute ATM vol quote)

• SWAPTION/RATE_LNVOL/EUR/5Y/10Y/Smile/0.0050 (absolute vol quote
for ATM strike plus 50bp)

10.21 Equity Spot Price

Property Allowable values Description
Instrument
Type

EQUITY_SPOT

Quote Type PRICE
Name String Identifying name of the equity
Currency See Currency in

Table 26
Currency of the equity

Table 66: Equity Spot Price

10.22 Equity Forward Price

Property Allowable values Description
Instrument
Type

EQUITY_FWD

Quote Type PRICE
Name String Identifying name of the equity
Currency See Currency in

Table 26
Currency of the equity

Maturity Date string, or in-
teger followed by D,
W, M or Y

Maturity of the forward quote

Table 67: Equity Forward Price

Examples:

• EQUITY_FWD/PRICE/SP5/USD/2016-06-16

• EQUITY_FWD/PRICE/SP5/USD/2Y

497

10.23 Equity Dividend Yield

Property Allowable values Description
Instrument
Type

EQUITY_DIVIDEND

Quote Type RATE
Name String Identifying name of the equity
Currency See Currency in

Table 26
Currency of the equity

Maturity Date string, or in-
teger followed by D,
W, M or Y

Maturity of the forward quote

Table 68: Equity Dividend Yield Rate

Examples:

• EQUITY_DIVIDEND/RATE/SP5/USD/2016-06-16

• EQUITY_DIVIDEND/RATE/SP5/USD/2Y

10.24 Equity Option Implied Volatility

Property Allowable values Description
Instrument
Type

EQUITY_OPTION

Quote Type RATE_LNVOL
Name String Identifying name of the eq-

uity
Currency See Currency in Table 26 Currency of the equity
Expiry Date string, or integer followed

by D, W, M or Y
Maturity of the forward
quote

Strike ATM/AtmSpot (= ATM),
ATM/AtmFwd (=ATMF),
MNY/[Spot|Fwd]/1.2 where
1.2 is the moneyness level, or
a Real for an absolute strike

strike

CallPut C for Call, P for Put Optional Call/Put flag (de-
faults to Call)

Table 69: Equity Option Implied Volatility

Volatilities are quoted as a function of strike price - either at-the-money spot or
forward, a moneyness level or else a specified real number, corresponding to the
absolute strike value. Only log-normal implied volatilities (RATE_LNVOL) are supported.

If K is the absolute strike, S the spot, F the forward and m the moneyness level, we
have K = Sm if spot moneyness and K = Fm if forward moneyness is specified.

498

Example:

• EQUITY_OPTION/RATE_LNVOL/SP5/USD/6M/ATMF

• EQUITY_OPTION/RATE_LNVOL/SP5/USD/2018-06-30/ATMF

• EQUITY_OPTION/RATE_LNVOL/SP5/USD/6M/MNY/Fwd/1.2

10.25 Equity Option Premium

Property Allowable values Description
Instrument
Type

EQUITY_OPTION

Quote Type PRICE
Name String Identifying name of the eq-

uity
Currency See Currency in Table 26 Currency of the equity
Expiry Date string, or integer followed

by D, W, M or Y
Maturity of the forward
quote

Strike ATM/AtmSpot (= ATM),
ATM/AtmFwd (=ATMF) or a
Real for an absolute strike

strike

CallPut C for Call, P for Put Optional Call/Put flag (de-
faults to Call)

Table 70: Equity Option Premium

Premiums are quoted as a function of strike price - either at-the-money spot or
forward or else a specified real number, corresponding to the absolute strike value.

Example:

• EQUITY_OPTION/PRICE/SP5/USD/6M/ATMF

• EQUITY_OPTION/PRICE/SP5/USD/2018-06-30/2000

• EQUITY_OPTION/PRICE/SP5/USD/2018-06-30/2000/C

10.26 Commodity Spot Price

Property Allowable values Description
Instrument
Type

COMMODITY

Quote Type PRICE
Name String Identifying name of the commodity
Currency See Currency in

Table 26
Currency of the commodity

Table 71: Commodity Spot Price

Examples:

499

• COMMODITY/PRICE/PM:XAUUSD/USD

10.27 Commodity Forward Price

Property Allowable values Description
Instrument
Type

COMMODITY_FWD

Quote Type PRICE
Name String Identifying name of the commodity
Currency See Currency in Table 26 Currency of the commodity
Maturity Date string, or integer

followed by D, W, M or
Y

Maturity of the forward quote

Table 72: Commodity Forward Price

Examples:

• COMMODITY_FWD/PRICE/NYMEX:CL/USD/2030-11-20

10.28 Commodity Option Implied Volatility

Property Allowable values Description
Instrument Type COMMODITY_OPTION
Quote Type RATE_LNVOL
Name String Identifying name of the commodity
Currency See Currency in Table 26 Currency of the commodity
Expiry Date string, or integer followed

by D, W, M or Y or continua-
tion notation c1, c2, etc

Expiry of the volatility quote, for continu-
ation notation c1 indicates the next expiry,
c2 the one after that, etc.

Vol Quote Type,
or Absolute Strike

DEL, ATM or MNY
or a Real for absolute strikes

DEL is for delta quotes, i.e. the volatility is
for a call or put option with a given delta.
ATM is for At-The-Money volatility quotes.
MNY is for volatility smile quotes for given
relative moneyness levels.
Each Vol Quote Type is described further
in sub-tables below.
Note that instead of a Vol Quote Type, an
absolute strike level can be entered

Table 73: Commodity Option Implied Volatility - Root table

500

Property Allowable values Description
Vol Quote Type DEL, ATM or MNY In this table it is assumed DEL is chosen.
Delta Conven-
tion

Fwd or Spot Delta forward or spot quote

Option Type Call or Put Option type for the delta quote
Delta a positive Real number,

typically between 0.1
and 0.45

Delta, e.g. a delta of 0.40 for a Call means
that if the underlying commodity price
increases by 1 unit, the call option price
increases by 0.40 units

Table 74: Commodity Option Implied Volatility - Delta Quotes Table

Property Allowable values Description
Vol Quote Type DEL, ATM or MNY In this table it is assumed ATM is chosen.
Atm Convention AtmFwd, AtmSpot,

or AtmDeltaNeutral
Atm Forward or Atm Spot quote, to be used stand-
alone, or when the smile is given by moneyness
(MNY) quotes.
The Delta Neutral Atm to be used as standalone,
or when the smile is given by delta (DEL) quotes.

Note that when AtmFwd or AtmSpot are used,
the string stops here, no further entries "tokens"
are required

Atm Quote Type DEL When AtmDeltaNeutral is used, the quote type
must be set to Delta (DEL)

Atm Delta Con-
vention

Fwd or Spot When AtmDeltaNeutral is used, the Atm delta
quote can be a Spot or Forward quote.

Table 75: Commodity Option Implied Volatility - ATM Quotes Table

Property Allowable values Description
Vol Quote Type DEL, ATM or MNY In this table it is assumed MNY is chosen.
Moneyness Type Fwd or Spot Moneyness Forward or Spot quote
Moneyness a positive Real num-

ber
The relative moneyness expressed in decimal form,
relative to the AtmSpot or the AtmFwd strikes

Table 76: Commodity Option Implied Volatility - Moneyness Quotes Table

Volatilities are quoted:

• as a function of the delta - either the delta neutral at-the-money spot or forward,
or for a call or put option with a given delta, or

• as a function of strike price - either at-the-money spot or forward, or a relative
strike moneyness level, or else

• as a specified real number, corresponding to the absolute strike value.

501

Only log-normal implied commodity volatilities (RATE_LNVOL) are supported.

For strike quoted volatilities, If K is the absolute strike, S the spot, F the forward and
m the moneyness level, we have K = Sm if spot moneyness and K = Fm if forward
moneyness is specified.

Example of delta forward quotes:

COMMODITY_OPTION/RATE_LNVOL/ICE:B/USD/c9/DEL/Fwd/Put/0.40
COMMODITY_OPTION/RATE_LNVOL/ICE:B/USD/c9/DEL/Fwd/Put/0.45
COMMODITY_OPTION/RATE_LNVOL/ICE:B/USD/c9/ATM/AtmDeltaNeutral/DEL/Fwd
COMMODITY_OPTION/RATE_LNVOL/ICE:B/USD/c9/DEL/Fwd/Call/0.45
COMMODITY_OPTION/RATE_LNVOL/ICE:B/USD/c9/DEL/Fwd/Call/0.40

Example of delta spot quotes:

COMMODITY_OPTION/RATE_LNVOL/PM:XAGEUR/EUR/1Y/DEL/Spot/Put/0.35
COMMODITY_OPTION/RATE_LNVOL/PM:XAGEUR/EUR/1Y/DEL/Spot/Put/0.45
COMMODITY_OPTION/RATE_LNVOL/PM:XAGEUR/EUR/1Y/ATM/AtmDeltaNeutral/DEL
/Spot
COMMODITY_OPTION/RATE_LNVOL/PM:XAGEUR/EUR/1Y/DEL/Spot/Call/0.25
COMMODITY_OPTION/RATE_LNVOL/PM:XAGEUR/EUR/1Y/DEL/Spot/Call/0.15

Example of forward strike quotes with relative moneyness:

COMMODITY_OPTION/RATE_LNVOL/NYMEX:AA5/USD/c11/MNY/Fwd/1.40
COMMODITY_OPTION/RATE_LNVOL/NYMEX:AA5/USD/c11/MNY/Fwd/1.20
COMMODITY_OPTION/RATE_LNVOL/NYMEX:AA5/USD/c11/ATM/AtmFwd
COMMODITY_OPTION/RATE_LNVOL/NYMEX:AA5/USD/c11/MNY/Fwd/0.80
COMMODITY_OPTION/RATE_LNVOL/NYMEX:AA5/USD/c11/MNY/Fwd/0.60

Example of absolute moneyness quotes:

COMMODITY_OPTION/RATE_LNVOL/PM:XAUUSD/USD/c12/1600
COMMODITY_OPTION/RATE_LNVOL/PM:XAUUSD//USD/c12/1700
COMMODITY_OPTION/RATE_LNVOL/PM:XAUUSD//USD/c12/1800
COMMODITY_OPTION/RATE_LNVOL/PM:XAUUSD//USD/c12/1900
COMMODITY_OPTION/RATE_LNVOL/PM:XAUUSD//USD/c12/2000

10.29 Zero Coupon Inflation Swap Rate

Property Allowable values Description
Instrument
Type

ZC_INFLATIONSWAP

Quote Type RATE
Index String Identifying name of the inflation index
Maturity integer followed by

D, W, M or Y
Maturity of the swap quote

Table 77: Zero Coupon Inflation Swap Rate

Examples:

502

• ZC_INFLATIONSWAP/RATE/EUHICPXT/1Y

• ZC_INFLATIONSWAP/RATE/EUHICPXT/2Y

Examples for inflation index names include EUHICP, EUHICPXT, FRHICP, FRCPI,
UKRPI, USCPI, ZACPI, BEHICP, AUCPI.

10.30 Year on Year Inflation Swap Rate

Property Allowable values Description
Instrument
Type

YY_INFLATIONSWAP

Quote Type RATE
Index String Identifying name of the inflation index
Maturity integer followed by

D, W, M or Y
Maturity of the swap quote

Table 78: Year on Year Inflation Swap Rate

Examples:

• YY_INFLATIONSWAP/RATE/EUHICPXT/1Y

• YY_INFLATIONSWAP/RATE/EUHICPXT/2Y

Examples for inflation index names include EUHICP, EUHICPXT, FRHICP, FRCPI,
UKRPI, USCPI, ZACPI, BEHICP.

10.31 Zero Coupon Inflation Cap Floor Price

Property Allowable values Description
Instrument
Type

ZC_INFLATIONCAPFLOOR

Quote Type PRICE
Index String Identifying name of the inflation index
Maturity integer followed by

D, W, M or Y
Maturity of the swap quote

Cap/Floor C or F Cap or Floor tag
Strike Real number Strike

Table 79: Zero Coupon Inflation Cap Floor Price

Examples:

• ZC_INFLATIONCAPFLOOR/PRICE/EUHICPXT/1Y/F/-0.02

• ZC_INFLATIONCAPFLOOR/PRICE/EUHICPXT/2Y/C/0.01

Examples for inflation index names include EUHICP, EUHICPXT, FRHICP, FRCPI,
UKRPI, USCPI, ZACPI, BEHICP.

503

10.32 Inflation Seasonality Correction Factors

Property Allowable values Description
Instrument
Type

SEASONALITY

Quote Type RATE
Type MULT Type of the correction factor
Index String Identifying name of the inflation index
Month JAN, ..., DEC Month of the correction factor

Table 80: Inflation Seasonality Correction Factors

Examples:

• SEASONALITY/RATE/MULT/EUHICPXT/JAN

• SEASONALITY/RATE/MULT/EUHICPXT/FEB

• SEASONALITY/RATE/MULT/EUHICPXT/NOV

Examples for inflation index names include EUHICP, EUHICPXT, FRHICP, FRCPI,
UKRPI, USCPI, ZACPI, BEHICP.

10.33 Bond Yield Spreads

Property Allowable values Description
Instrument
Type

BOND

Quote Type YIELD_SPREAD
Name String Identifying name of the bond

Table 81: Bond Yield Spreads

This quote provides the spread for a specified bond over the benchmark rate.

Examples:

• BOND/YIELD_SPREAD/SECURITY_1

504

10.34 Base Correlations

Property Allowable values Description
Instrument
Type

CDS_INDEX

Quote Type BASE_CORRELATION
Index String CDS index name
Term Period (e.g. 5Y) Term on the base correlation curve, the

curve is flat if quotes for only one term
are provided

DetachmentPoint Real in (0...1) Detachment point of the equity tranche
this quote refers to

Table 82: Base correlation quotes

This quote provides the base correlation for a CDS index’ equity tranche with the
specified detachment point. Example:

• CDS_INDEX/BASE_CORRELATION/2I65BYBD6/5Y/0.03

Typically there are several base correlation quotes per term for several detachment
points such as 0.03, 0.07, 0.15.

10.35 Correlations

Property Allowable values Description
Instrument
Type

Correlation

Quote Type RATE or PRICE
Index1 String Identifying name of the first index
Index2 String Identifying name of the second index

Table 83: Correlation quotes

This quote either provides the correlation between two indices, in which case Quote
Type is RATE, or a premium that can be used to bootstrap the correlations, in which
case Quote Type is Price. Currently only CMS Spread correlations are supported, in
this case the Price quote is the price of a CMS Spread Cap.

Examples:

• CORRELATION/RATE/INDEX1/INDEX2/1Y/ATM

505

10.36 Conditional Prepayment Rates

Property Allowable values Description
Instrument
Type

CPR

Quote Type RATE
Name String Identifying name of the bond

Table 84: Conditional Prepayment Rates

This quote provides the spread for a specified bond over the benchmark rate.

Examples:

• CPR/RATE/SECURITY_1

506

11 Fixing History
Historical fixings data in the fixings.txt file is given in three columns; Index Name,
Fixing Date and Index value. Columns are separated by semicolons ";" or blanks.
Fixings are used in cases where the current coupon of a trade has been fixed in the
past, or other path dependent features.

• Fixing Date: The date of the fixing.

Allowable values: See Date in Table 26.

• Index Name: The name of the Index.

Allowable values are given in Table 85.

• Index Value: The index value for the given fixing date.

Allowable values: Any real number (not expressed as a percentage or basis
points).

An excerpt of a fixings file is shown in Listing 316. Note that alternative index name
formats are used (Table 85).

Listing 316: Excerpt of a fixings file

20150202 EUR-EONIA -0.00024
20150202 EUR-EURIBOR-1M 0.00003
20150202 EUR-EURIBOR-1W -0.00022
20150202 EUR-EURIBOR-2W -0.00017
20150202 EUR-EURIBOR-3M 0.00055
20150202 EUR-EURIBOR-3M 0.00055
20150202 EUR-EURIBOR-6M 0.00134
20150202 EUR-EURIBOR-6M 0.00271
20150202 GBP-LIBOR-12M 0.009565
20150202 GBP-LIBOR-1M 0.0050381
20150202 GBP-LIBOR-1W 0.0047938
20150202 GBP-LIBOR-3M 0.0056338
20150202 GBP-LIBOR-6M 0.006825
20150202 JPY-LIBOR-12M 0.0026471
20150202 JPY-LIBOR-1M 0.0007143
20150202 JPY-LIBOR-1W 0.0004357
20150202 JPY-LIBOR-3M 0.0010429
20150202 JPY-LIBOR-6M 0.0014357
20150202 USD-LIBOR-12M 0.006194
20150202 USD-LIBOR-1M 0.001695
20150202 USD-LIBOR-1W 0.00136
20150202 USD-CMS-10Y 0.01500
20150202 EUR-CMS-20Y 0.01700
20150202 FX-ECB-EUR-USD 1.0919
20150801 FRHICP 100.36

507

IR Index of form CCY-INDEX-TENOR:
Index Component Allowable Values

CCY-INDEX

EUR-EONIA
EUR-EURIBOR
EUR-LIBOR
USD-FedFunds
USD-Prime
USD-LIBOR
GBP-SONIA
GBP-LIBOR
JPY-TONAR
JPY-LIBOR
CHF-LIBOR
CHF-TOIS
AUD-LIBOR
AUD-BBSW
CAD-CDOR
CAD-BA
CAD-LIBOR
SEK-STIBOR
SEK-STINA
SEK-LIBOR
DKK-LIBOR
DKK-CIBOR
DKK-CITA
SGD-SIBOR
HKD-HIBOR
CZK-PRIBOR
HUF-BUBOR
IDR-IDRFIX
INR-MIFOR
JPY-TIBOR
JPY-EYTIBOR
KRW-KORIBOR
MXN-TIIE
MYR-KLIBOR
NOK-NIBOR
NZD-BKBM
PLN-WIBOR
RUB-MOSPRIME
SEK-STIBOR
SGD-SOR
SKK-BRIBOR
TWD-TAIBOR
THB-THBFIX
THB-BIBOR
ZAR-JIBAR
DEM-LIBOR

TENOR An integer followed by D, W, M or Y

Table 85: Allowable values for IR indices.508

If the interest rate index is for an overnight rate (e.g. EONIA), then the third token
(i.e. the tenor) is not needed.

IR Swap Index of form CCY-CMS-TENOR or CCY-CMS-TAG-TENOR:
Index Component Allowable Values
CCY Any supported currency code
CMS Must be “CMS” (to denote a swap index)
TAG An optional tag that allows to define several CMS indices per currency
TENOR An integer followed by D, W, M or Y

Table 86: Allowable values for IR swap indices.

FX fixings of form FX-SOURCE-FOR-DOM:
Index Component Allowable Values
FX Must be “FX” (to denote an FX fixing)
SOURCE Any string
FOR Any supported currency code
DOM Any supported currency code

Table 87: Allowable values for FX fixings.

Zero Inflation Indices of form NAME:
Index Component Allowable Values

NAME

CACPI
DKCPI
EUHICP
EUHICPXT
FRHICP
FRCPI
SECPI
UKRPI
USCPI
ZACPI
BEHICP

Table 88: Allowable values for zero inflation indices.

Generic Indices of form GENERIC-NAME:
Index Component Allowable Values
GENERIC Must be “GENERIC” (to denote a generic fixing)
NAME Any string

Table 89: Allowable values for generic indices.

509

12 Dividends History
Historical dividend payments data in the dividends.txt file is given in three columns;
Equity Name, Ex-Dividend Date and Dividend Amount in the Currency of the Equity
Curve. Columns are separated by semicolons ";" or blanks. Dividends are used in
some trades with path dependent features.

• Ex-Dividend Date: The day the stock starts trading without the value of the
dividend payment

Allowable values: See Date in Table 26.

• Equity Name: The name of the dividend paying equity.

Allowable values are the names of the Equity Curves defined in
curveconfig.xml.

• Dividend Amount: The amount of the dividend payment date.

Allowable values: Any real number (not expressed as a percentage).

An excerpt of a fixings file is shown in Listing 317.

510

Listing 317: Excerpt of a dividends file

20130411 DAI:GR 2.2
20140410 DAI:GR 2.25
20150402 DAI:GR 2.45
20160407 DAI:GR 3.25
20170330 DAI:GR 3.25
20180406 DAI:GR 3.65
20190523 DAI:GR 3.25
20120815 HSBA:LN 5.5538
20121024 HSBA:LN 5.604
20130320 HSBA:LN 11.585
20130522 HSBA:LN 6.58
20130821 HSBA:LN 6.2033
20131023 HSBA:LN 6.102
20140312 HSBA:LN 11.2919
20140521 HSBA:LN 5.8768
20140820 HSBA:LN 6.1622
20141023 HSBA:LN 6.3633
20150305 HSBA:LN 13.4
20150521 HSBA:LN 6.3709
20150813 HSBA:LN 6.4436
20151022 HSBA:LN 6.6015
20160303 HSBA:LN 14.7908
20160519 HSBA:LN 7.5421
20160811 HSBA:LN 7.6633
20161020 HSBA:LN 8.0417
20170223 HSBA:LN 16.6757
20170518 HSBA:LN 7.8636
20170803 HSBA:LN 7.577
20171012 HSBA:LN 7.6405
20180222 HSBA:LN 14.762
20180517 HSBA:LN 7.5502
20180816 HSBA:LN 7.632
20181011 HSBA:LN 7.78
20190221 HSBA:LN 15.9271
20190516 HSBA:LN 7.8368

511

A Methodology Summary

A.1 Risk Factor Evolution Model

ORE applies the cross asset model described in detail in [21] to evolve the market
through time. So far the evolution model in ORE supports IR and FX risk factors for
any number of currencies, Equity and Inflation as well as Credit. Extensions to full
simulation of Commodity is planned.
The Cross Asset Model is based on the Linear Gauss Markov model (LGM) for interest
rates, lognormal FX and equity processes, Dodgson-Kainth model for inflation, LGM
or Extended Cox-Ingersoll-Ross model (CIR++) for credit, and a single-factor
log-normal model for commodity curves. We identify a single domestic currency; its
LGM process, which is labelled z0; and a set of n foreign currencies with associated
LGM processes that are labelled zi, i = 1, . . . , n.

We denote the equity spot price processes with state variables sj and the index of the
denominating currency for the equity process as φ(j). The dividend yield
corresponding to each equity process sj is denoted by qj.

Following [21], 13.27 - 13.29 we write the inflation processes in the domestic LGM
measure with state variables zI,k and yI,k for k = 1, . . . , K and the credit processes in
the domestic LGM measure with state variables C, k and yC,k for k = 1, . . . , K. If we
consider n foreign exchange rates for converting foreign currency amounts into the
single domestic currency by multiplication, xi, i = 1, . . . , n, then the cross asset model
is given by the system of SDEs

dz0 = α0 dW
z
0

dzi = γi dt+ αi dW
z
i , i > 0

dxi
xi

= µi dt+ σi dW
x
i , i > 0

dsj
sj

= µSj dt+ σSj dW
S
j

dzI,k = αI,k(t)dW
I
k

dyI,k = αI,k(t)HI,k(t)dW
I
k

dzC,k = αC,k(t)dW
C
k

dyC,k = HC,k(t)αC,k(t)dW
C
k

γi = −α2
i Hi − ρzxii σi αi + ρzzi0 αi α0H0

µi = r0 − ri + ρzx0i α0H0 σi

µSj = (rφ(j)(t)− qj(t) + ρzs0jα0H0σ
S
j − εφ(j)ρ

sx
jφ(j)σ

S
j σφ(j))

ri = fi(0, t) + zi(t)H
′
i(t) + ζi(t)Hi(t)H

′
i(t), ζi(t) =

∫ t

0

α2
i (s) ds

dWα
a dW

β
b = ραβij dt, α, β ∈ {z, x, I, C}, a, b suitable indices

where we have dropped time dependencies for readability, fi(0, t) is the instantaneous
forward curve in currency i, and εi is an indicator such that εi = 1− δ0i, where δ is the
Kronecker delta.

512

Parameters Hi(t) and αi(t) (or alternatively ζi(t)) are LGM model parameters which
determine, together with the stochastic factor zi(t), the evolution of numeraire and
zero bond prices in the LGM model:

N(t) =
1

P (0, t)
exp

{
Ht zt +

1

2
H2
t ζt

}
(13)

P (t, T, zt) =
P (0, T)

P (0, t)
exp

{
−(HT −Ht) zt −

1

2

(
H2
T −H2

t

)
ζt

}
. (14)

Note that the LGM model is closely related to the Hull-White model in T-forward
measure [21].

The parameters HI,k(t) and αI,k(t) determine together with the factors zI,k(t), yI,k(t)
the evolution of the spot Index I(t) and the forward index Î(t, T) = PI(t, T)/Pn(t, T)
defined as the ratio of the inflation linked zero bond and the nominal zero bond,

Î(t, T) =
Î(0, T)

Î(0, t)
e(HI,k(T)−HI,k(t))zI,k(t)+Ṽ (t,T)

I(t) = I(0)Î(0, t)eHI,k(t)zI,k(t)−yI,k(t)−V (0,t)

with, in case of domestic currency inflation,

V (t, T) =
1

2

∫ T

t

(HI,k(T)−HI,k(s))
2α2

I,k(s)ds

−ρzI0,kH0(T)

∫ T

t

(HI,k(t)−HI,k(s))α0(s)αI,k(s)ds

Ṽ (t, T) = V (t, T)− V (0, T)− V (0, t)

= −1

2
(H2

I,k(T)−H2
I,k(t))ζI,k(t, 0)

+(HI,k(T)−HI,k(t))ζI,k(t, 1)

+(H0(T)HI,k(T)−H0(t)HI,k(t))ζ0I(t, 0)

−(H0(T)−H0(t))ζ0I(t, 1)

V (0, t) =
1

2
H2
I,k(t)ζI,k(t, 0)−HI,k(t)ζI,k(t, 1) +

1

2
ζI,k(t, 2)

−H0(t)HI,k(t)ζ0I(t, 0) +H0(t)ζ0I(t, 1)

ζI,k(t, k) =

∫ t

0

Hk
I,k(s)α

2
I,k(s)ds

ζ0I(t, k) = ρzI0,k

∫ t

0

Hk
I,k(t)α0(s)αI,k(s)ds

and for foreign currency inflation in currency i > 0, with

Ṽ (t, T) = V (t, T)− V (0, T) + V (0, T)

513

and

V (t, T) =
1

2

∫ T

t

(HI,k(T)−HI,k(s))
2αI,k(s)ds

−ρzI0,k
∫ T

t

H0(s)α0(s)(HI,k(T)−HI,k(s)αI,k(s))ds

−ρzIi,k
∫ T

t

(Hi(T)−Hi(s))αi(s)(HI,k(T)−HI,k(s))αI,k(s)ds

+ρxIi,k

∫ T

t

σi(s)(HI,k(T)−HI,k(s))αI,k(s)ds

Commodity

Each commodity component models the commodity price curve as

dF (t, T)

F (t, T)
= σ e−κ (T−t) dW (t) (15)

which is a single-factor version of the Gabillon (1991) model that is e.g. described in
[21]. It can also be seen as the Schwartz (1997) model formulated in terms of forward
curve dynamics. The extension to the full Gabillon model with two factors and
time-dependent multiplier

dF (t, T)

F (t, T)
= α(t)

(
σS e

−κ (T−t) dWS(t) + σL
(
1− e−κ (T−t)) dWL(t)

)
(16)

for richer dynamics of the curve and accurate calibration to options will follow.

The commodity components’ Wiener processes can be correlated. However, the
integration of commodity components into the overall CAM assumes zero correlations
between commodities and non-commodity drivers for the time being.

To propagate the one-factor model, we can use an artificial (Ornstein-Uhlenbeck) spot
price process

dX(t) = −κX(t) dt+ σ(t) dW (t), X(0) = 0

X(t) = X(s) e−κ(t−s) +

∫ t

s

σ e−κ(t−u) dW (u)

with

F (t, T) = F (0, T) exp

(
X(t) e−κ (T−t) − 1

2
(V (0, T)− V (t, T))

)
V (t, T) = e−2κT

∫ T

t

σ2 e2κu du.

Note that
V[lnF (T, T)] = V[X(T)]

is the variance that is used in the pricing of a Futures Option which in turn is used in
the calibration of the Schwartz model.

514

Alternatively, one can use the drift-free state variable Y (t) = eκtX(t) with

dY (t) = σ eκ t dW (t).

Both choices of state dynamics are possible in ORE.

A.2 Analytical Moments of the Risk Factor Evolution Model

We follow [21], chapter 16. The expectation of the interest rate process zi conditional
on Ft0 at t0 + ∆t is

Et0 [zi(t0 + ∆t)] = zi(t0) + Et0 [∆zi], with ∆zi = zi(t0 + ∆t)− zi(t0)

= zi(t0)−
∫ t0+∆t

t0

Hz
i (αzi)

2 du+ ρzz0i

∫ t0+∆t

t0

Hz
0 α

z
0 α

z
i du

−εiρzxii
∫ t0+∆t

t0

σxi α
z
i du

where εi is zero for i = 0 (domestic currency) and one otherwise.

The expectation of the FX process xi conditional on Ft0 at t0 + ∆t is

Et0 [lnxi(t0 + ∆t)] = lnxi(t0) + Et0 [∆ lnxi], with ∆ lnxi = lnxi(t0 + ∆t)− lnxi(t0)

= ln xi(t0) + (Hz
0 (t)−Hz

0 (s)) z0(s)− (Hz
i (t)−Hz

i (s)) zi(s)

+ ln

(
P n

0 (0, s)

P n
0 (0, t)

P n
i (0, t)

P n
i (0, s)

)
−1

2

∫ t

s

(σxi)2 du

+
1

2

(
(Hz

0 (t))2ζz0 (t)− (Hz
0 (s))2ζz0 (s)−

∫ t

s

(Hz
0)2(αz0)2 du

)
−1

2

(
(Hz

i (t))2ζzi (t)− (Hz
i (s))2ζzi (s)−

∫ t

s

(Hz
i)2(αzi)

2 du

)
+ρzx0i

∫ t

s

Hz
0 α

z
0 σ

x
i du

−
∫ t

s

(Hz
i (t)−Hz

i) γi du, with s = t0, t = t0 + ∆t

with

γi = −Hz
i (αzi)

2 +Hz
0 α

z
0 α

z
i ρ

zz
0i − σxi αzi ρzxii

The expectation of the Inflation processes zI,k, yI,k conditional on Ft0 at any time
t > t0 is equal to zI,k(t0) resp. yI,k(t0) since both processes are drift free.

515

The expectation of the equity processes sj conditional on Ft0 at t0 + ∆t is

Et0 [ln sj(t0 + ∆t)] = ln sj(t0) + Et0 [∆ ln sj], with ∆ ln sj = ln sj(t0 + ∆t)− ln sj(t0)

= ln sj(t0) + ln

[
Pφ(j)(0, s)

Pφ(j)(0, t)

]
−
∫ t

s

qj(u)du− 1

2

∫ t

s

σSj (u)σSj (u)du

+ρzs0j

∫ t

s

α0(u)H0(u)σSj (u)du− εφ(j)ρ
sx
jφ(j)

∫ t

s

σSj (u)σφ(j)(u)du

+
1

2

(
H2
φ(j)(t)ζφ(j)(t)−H2

φ(j)(s)ζφ(j)(s)−
∫ t

s

H2
φ(j)(u)α2

φ(j)(u)du

)
+(Hφ(j)(t)−Hφ(j)(s))zφ(j)(s) + εφ(j)

∫ t

s

γφ(j)(u)(Hφ(j)(t)−Hφ(j)(u))du

The IR-IR covariance over the interval [s, t] := [t0, t0 + ∆t] (conditional on Ft0) is

Cov[∆za,∆ lnxb] = ρzz0a

∫ t

s

(Hz
0 (t)−Hz

0)αz0 α
z
a du

−ρzzab
∫ t

s

αza (Hz
b (t)−Hz

b)αzb du

+ρzxab

∫ t

s

αza σ
x
b du.

The IR-FX covariance over the interval [s, t] := [t0, t0 + ∆t] (conditional on Ft0) is

Cov[∆za,∆ lnxb] = ρzz0a

∫ t

s

(Hz
0 (t)−Hz

0)αz0 α
z
a du

−ρzzab
∫ t

s

αza (Hz
b (t)−Hz

b)αzb du

+ρzxab

∫ t

s

αza σ
x
b du.

The FX-FX covariance over the interval [s, t] := [t0, t0 + ∆t] (conditional on Ft0) is

516

Cov[∆ lnxa,∆ lnxb] =

∫ t

s

(Hz
0 (t)−Hz

0)2 (αz0)2 du

−ρzz0a
∫ t

s

(Hz
a(t)−Hz

a)αza (Hz
0 (t)−Hz

0)αz0 du

−ρzz0b
∫ t

s

(Hz
0 (t)−Hz

0)αz0 (Hz
b (t)−Hz

b)αzb du

+ρzx0b

∫ t

s

(Hz
0 (t)−Hz

0)αz0σ
x
b du

+ρzx0a

∫ t

s

(Hz
0 (t)−Hz

0)αz0 σ
x
a du

−ρzxab
∫ t

s

(Hz
a(t)−Hz

a)αzaσ
x
b , du

−ρzxba
∫ t

s

(Hz
b (t)−Hz

b)αzb σ
x
a du

+ρzzab

∫ t

s

(Hz
a(t)−Hz

a)αza (Hz
b (t)−Hz

b)αzb du

+ρxxab

∫ t

s

σxa σ
x
b du

The IR-INF covariance over the interval [s, t] := [t0, t0 + ∆t] (conditional on Ft0) is

Cov[∆za,∆zI,b] = ρzIab

∫ t

s

αa(s)αI,b(s)ds

Cov[∆za,∆yI,b] = ρzIab

∫ t

s

αa(s)HI,b(s)αI,b(s)ds

The FX-INF covariance over the interval [s, t] := [t0, t0 + ∆t] (conditional on Ft0) is

Cov[∆xa,∆zI,b] = ρzI0b

∫ t

s

α0(s)(H0(t)−H0(s))αI,b(s)ds

−ρzIab
∫ t

s

αa(s)(Ha(t)−Ha(s))αI,b(s)ds

+ρxIab

∫ t

s

σa(s)αI,b(s)ds

Cov[∆xa,∆yI,b] = ρzI0b

∫ t

s

α0(s)(H0(t)−H0(s))HI,b(s)αI,b(s)ds

−ρzIab
∫ t

s

αa(s)(Ha(t)−Ha(s))HI,b(s)αI,b(s)ds

+ρxIab

∫ t

s

σa(s)HI,b(s)αI,b(s)ds

The INF-INF covariance over the interval [s, t] := [t0, t0 + ∆t] (conditional on Ft0) is

517

Cov[∆zI,a,∆zI,b] = ρIIab

∫ t

s

αI,a(s)αI,b(s)ds

Cov[∆zI,a,∆yI,b] = ρIIab

∫ t

s

αI,a(s)HI,b(s)αI,b(s)ds

Cov[∆yI,a,∆yI,b] = ρIIab

∫ t

s

HI,a(s)αI,a(s)HI,b(s)αI,b(s)ds

The equity/equity covariance over the interval [s, t] := [t0, t0 + ∆t] (conditional on Ft0)
is

Cov [∆ln[si],∆ln[sj]] = ρzzφ(i)φ(j)

∫ t

s

(Hφ(i)(t)−Hφ(i)(u))(Hφ(j)(t)

−Hφ(j)(u))αφ(i)(u)αφ(j)(u)du

+ρzsφ(i)j

∫ t

s

(Hφ(i)(t)−Hφ(i)(u))αφ(i)(u)σSj (u)du

+ρzsφ(j)i

∫ t

s

(Hφ(j)(t)−Hφ(j)(u))αφ(j)(u)σSi (u)du

+ρssij

∫ t

s

σSi (u)σSj (u)du

The equity/FX covariance over the interval [s, t] := [t0, t0 + ∆t] (conditional on Ft0) is

Cov [∆ln[si],∆ln[xj]] = ρzzφ(i)0

∫ t

s

(Hφ(i)(t)−Hφ(i)(u))(H0(t)−H0(u))αφ(i)(u)α0(u)du

−ρzzφ(i)j

∫ t

s

(Hφ(i)(t)−Hφ(i)(u))(Hj(t)−Hj(u))αφ(i)(u)αj(u)du

+ρzxφ(i)j

∫ t

s

(Hφ(i)(t)−Hφ(i)(u))αφ(i)(u)σj(u)du

+ρszi0

∫ t

s

(H0(t)−H0(u))α0(u)σSi (u)du

−ρszij
∫ t

s

(Hj(t)−Hj(u))αj(u)σSi (u)du

+ρsxij

∫ t

s

σSi (u)σj(u)du

The equity/IR covariance over the interval [s, t] := [t0, t0 + ∆t] (conditional on Ft0) is

Cov [∆ln[si],∆zj] = ρzzφ(i)j

∫ t

s

(Hφ(i)(t)−Hφ(i)(u))αφ(i)(u)αj(u)du

+ρszij

∫ t

s

σSi (u)αj(u)du

518

The equity/inflation covariances over the interval [s, t] := [t0, t0 + ∆t] (conditional on
Ft0) are as follows:

Cov [∆ln[si],∆zI,j] = ρzIφ(i)j

∫ t

s

(Hφ(i)(t)−Hφ(i)(u))αφ(i)(u)αI,j(u)du

+ρsIij

∫ t

s

σSi (u)αI,j(u)du

Cov [∆ln[si],∆yI,j] = ρzIφ(i)j

∫ t

s

(Hφ(i)(t)−Hφ(i)(u))αφ(i)(u)HI,j(u)αI,j(u)du

+ρsIij

∫ t

s

σSi (u)HI,j(u)αI,j(u)du

The expectation of the Credit processes zC,k, yC,k conditional on Ft0 at any time t > t0
is equal to zC,k(t0) resp. yC,k(t0) since both processes are drift free.

The credit/credit covariances over the interval [s, t] := [t0, t0 + ∆t] (conditional on Ft0)
are as follows:

Cov [∆zC,a,∆zC,b] = ρCCab

∫ t

s

αC,a(u)αC,b(u)du

Cov [∆zC,a,∆yC,b] = ρCCab

∫ t

s

αC,a(u)HC,b(u)αC,b(u)du

Cov [∆yC,a,∆yC,b] = ρCCab

∫ t

s

αC,a(u)HC,a(u)αC,b(u)HC,b(u)du

The IR/credit covariances over the interval [s, t] := [t0, t0 + ∆t] (conditional on Ft0) are
as follows:

Cov [∆za,∆zC,b] = ρzCab

∫ t

s

αa(u)αC,b(u)du

Cov [∆za,∆yC,b] = ρzCab

∫ t

s

αa(u)HC,b(u)αC,b(u)du

The FX/credit covariances over the interval [s, t] := [t0, t0 + ∆t] (conditional on Ft0)
are as follows:

Cov[∆xa,∆zC,b] = ρzC0b

∫ t

s

α0(s)(H0(t)−H0(s))αC,b(s)ds

−ρzCab
∫ t

s

αa(s)(Ha(t)−Ha(s))αC,b(s)ds

+ρxCab

∫ t

s

σa(s)αC,b(s)ds

Cov[∆xa,∆yC,b] = ρzC0b

∫ t

s

α0(s)(H0(t)−H0(s))HC,b(s)αC,b(s)ds

−ρzCab
∫ t

s

αa(s)(Ha(t)−Ha(s))HC,b(s)αC,b(s)ds

+ρxCab

∫ t

s

σa(s)HC,b(s)αC,b(s)ds

519

The inflation/credit covariances over the interval [s, t] := [t0, t0 + ∆t] (conditional on
Ft0) are as follows:

Cov[∆zI,a,∆zC,b] = ρICab

∫ t

s

αI,aαC,b(u)du

Cov[∆zI,a,∆yC,b] = ρICab

∫ t

s

αI,aHC,b(u)αC,b(u)du

Cov[∆yI,a,∆zC,b] = ρICab

∫ t

s

αI,aHI,a(u)αC,b(u)du

Cov[∆yI,a,∆yC,b] = ρICab

∫ t

s

αI,aHI,a(u)αC,b(u)HC,b(u)du

The equity/credit covariances over the interval [s, t] := [t0, t0 + ∆t] (conditional on Ft0)
are as follows:

Cov [∆ln[si],∆zC,j] = ρzCφ(i)j

∫ t

s

(Hφ(i)(t)−Hφ(i)(u))αφ(i)(u)αC,j(u)du

+ρsCij

∫ t

s

σSi (u)αC,j(u)du

Cov [∆ln[si],∆yC,j] = ρzCφ(i)j

∫ t

s

(Hφ(i)(t)−Hφ(i)(u))αφ(i)(u)HC,j(u)αC,j(u)du

+ρsCij

∫ t

s

σSi (u)HC,j(u)αC,j(u)du

A.3 Change of Measure

We can change measure from LGM to the T-Forward measure by applying a shift
transformation to the H parameter of the domestic LGM process, as explained in [21]
and shown in Example 12, section 5.12. This does not involve amending the system of
SDEs above.

In the following we show how to move from the LGM to the Bank Account measure
when we start with the Cross Asset Model in the LGM measure. This description and
the implementation in ORE is limited so far to the cross currency case.

First note that the stochastic Bank Account (BA) can be written

B(t) =
1

P (0, t)
exp

(∫ t

0

(Ht −Hs)αs dW
B
s +

1

2

∫ t

0

(Ht −Hs)
2 α2

s ds

)
with Wiener processes in the BA measure. We can express this in terms of the
domestic LGM’s state variable z(t) and an auxiliary random variable y(t)

B(t) =
1

P (0, t)
exp

(
H(t) z(t)− y(t) +

1

2

(
H2(t) ζ0(t) + ζ2(t)

))

520

with

dz(t) = α(t) dWB(t)−H(t)α2(t) dt

dy(t) = H(t)α(t) dWB(t)

ζn(t) =

∫ t

0

α2(s)Hn(s) ds

Note the drift of LGM state variable z(t) in the BA measure and the auxiliary state
variable y(t) which is driven by the same Wiener process as z(t). The instantaneous
correlation of dz and dy is one, but the terminal correlation of z(t) and y(t) is less than
one because of their different volatility functions. This is all we need to switch measure
to BA in a pure domestic currency case.

To change measure in the cross currency case we need to make changes to the SDE
beyond adding an auxiliary state variable y and adding a drift to the domestic LGM
state. Let us write down the SDEs in the LGM and BA measure with respective drift
terms that ensure martingale properties.

SDE in the LGM measure

dz0 = α0 dW
z
0

dzi =
(
−α2

i Hi − ρzxii σi αi + ρzzi0 αi α0H0

)
dt+ αi dW

z
i

d lnxi =

(
r0 − ri −

1

2
σ2
i + ρzx0i α0H0 σi

)
dt+ σi dW

x
i

SDE in the BA measure

dy0 = α0H0 dW̃
z
0

dz0 = −α2
0 H0 dt+ α0 dW̃

z
0

dzi =
(
−α2

i Hi − ρzxii σi αi
)
dt+ αi dW̃

z
i

d lnxi =

(
r0 − ri −

1

2
σ2
i

)
dt+ σi dW̃

x
i , ri = fi(0, t) + zi(t)H

′
i(t) + ζi(t)Hi(t)H

′
i(t)

Blue terms are added, red terms are removed when moving from LGM to BA.

521

These drift term changes lead to the following changes in conditional expectations

E[∆y0] =0

E[∆z0] =−
∫ t

s

H0 α
2
0 du

E[∆zi] =−
∫ t

s

Hi α
2
i du− ρzxii

∫ t

s

σxi αi du+ ρzz0i

∫ t

s

H0 α0 αi du

E[∆ lnx] = (H0(t)−H0(s)) z0(s)− (Hi(t)−Hi(s)) zi(s)

+ ln

(
P n

0 (0, s)

P n
0 (0, t)

P n
i (0, t)

P n
i (0, s)

)
− 1

2

∫ t

s

(σxi)2 du

+
1

2

(
H2

0 (t) ζ0(t)−H2
0 (s) ζ0(s)−

∫ t

s

H2
0α

2
0 du

)
− 1

2

(
H2
i (t) ζi(t)−H2

i (s) ζi(s)−
∫ t

s

H2
i α

2
i du

)
+ ρzx0i

∫ t

s

H0 α0 σ
x
i du

−
∫ t

s

(Hi(t)−Hi) γi du with γi = −α2
i Hi − ρzxii σi αi + ρzzi0 αi α0H0

+

∫ t

s

(H0(t)−H0) γ0 du with γ0 = −H0 α
2
0

and the following additional variances and covariances

Var[∆y0] =

∫ t

s

α2
0 H

2
0 du

Cov[∆y0,∆zi] =ρzz0i

∫ t

s

α0H0 αi du

Cov[∆y0,∆ lnxi] =

∫ t

s

(H0(t)−H0)α2
0 H0 du

− ρzz0i
∫ t

s

α0H0 (Hi(t)−Hi) αi du

+ ρzx0i

∫ t

s

α0H0 σ
x
i du

Example 36 in section 5.36 illustrates the effect of the choice of measure on exposure
simulations.

A.4 Exposures

In ORE we use the following exposure definitions

EE (t) = EPE (t) = EN
[

(NPV (t)− C(t))+

N(t)

]
(17)

ENE (t) = EN
[

(−NPV (t) + C(t))+

N(t)

]
(18)

522

where NPV (t) stands for the netting set NPV and C(t) is the collateral balance14 at
time t. Note that these exposures are expectations of values discounted with numeraire
N (in ORE the Linear Gauss Markov model’s numeraire) to today, and expectations
are taken in the measure associated with numeraire N . These are the exposures which
enter into unilateral CVA and DVA calculation, respectively, see next section. Note
that we sometimes label the expected exposure (17) EPE, not to be confused with the
Basel III Expected Positive Exposure below.

Basel III defines a number of exposures each of which is a ’derivative’ of Basel’s
Expected Exposure:

Expected Exposure

EEB(t) = E[max(NPV (t)− C(t), 0)] (19)

Expected Positive Exposure

EPEB(T) =
1

T

∑
t<T

EEB(t) ·∆t (20)

Effective Expected Exposure, recursively defined as running maximum

EEEB(t) = max(EEEB(t−∆t), EEB(t)) (21)

Effective Expected Positive Exposure

EEPEB(T) =
1

T

∑
t<T

EEEB(t) ·∆t (22)

The last definition, Effective EPE, is used in Basel documents since Basel II for
Exposure At Default and capital calculation. Following [12, 13] the time averages in
the EPE and EEPE calculations are taken over the first year of the exposure evolution
(or until maturity if all positions of the netting set mature before one year).

To compute EEB(t) consistently in a risk-neutral setting, we compound (17) with the
deterministic discount factor P (t) up to horizon t:

EEB(t) =
1

P (t)
EE (t)

Finally, we define another common exposure measure, the Potential Future Exposure
(PFE), as a (typically high) quantile α of the NPV distribution through time, similar
to Value at Risk but at the upper end of the NPV distribution:

PFEα(t) = (inf {x|Ft(x) ≥ α})+ (23)

where Ft is the cumulative NPV distribution function at time t. Note that we also take
the positive part to ensure that PFE is a positive measure even if the quantile yields a
negative value which is possible in extreme cases.

14C(t) > 0 means that we have received collateral from the counterparty

523

A.5 Exposures using American Monte Carlo

The exposure analysis implemented in ORE that is used in the bulk of the examples in
this user guide, mostly vanilla portfolios, is divided into two independent steps:

1. in a first step a list of NPVs (or a “NPV cube”) is computed. The list is indexed
by the trade ID, the simulation time step and the scenario sample number. Each
entry of the cube is computed using the same pricers as for the T0 NPV
calculation by shifting the evaluation date to the relevant time step of the
simulation and updating the market term structures to the relevant scenario
market data. The market data scenarios are generated using a risk factor
evolution model which can be a cross asset model, but also be based on e.g.
historical simulation.

2. in a second step the generated NPV cube is passed to a post processor that
aggregates the results to XVA figures of different kinds.

We label this approach in the following as the classic exposure analysis.

The AMC module in ORE allows to replace the first step by a different approach
which works faster in particular for exotic deals. The second step remains the same.
The risk factor evolution model coincides with the pricing models for the single trades
in this approach and is always a cross asset model operated in a pricing measure.

For AMC the entries of the NPV cube are now viewed as conditional NPVs at the
simulation time given the information that is generated by the cross asset model’s
driving stochastic process up to the simulation time. The conditional expectations are
then computed using a regression analysis of some type. In our current implementation
this is chosen to be a parametric regression analysis.

The regression models are calibrated per trade during a training phase and later on
evaluated in the simulation phase. The set of paths in the two phases is in general
different w.r.t. their number, time step structure, and generation method (Sobol,
Mersenne Twister) and seed. Typically the regressand is the (deflated) dirty path NPV
of the trade in question, or also its underlying NPV or an option continuation value (to
take exercise decisions or represent the physical underlying for physical exercise rights).
The regressor is typically the model state. Certain exotic features that introduce
path-dependency (e.g. a TaRN structure) may require an augmentation of the
regressor though (e.g. by the already accumulated amount in case of the TaRN).

The path NPVs are generated at their natural event dates, like the fixing date for
floating rate coupons or the payment date for fixed cashflows. This reduces the
requirements for the cross asset model to provide closed form expressions for the
numeraire and conditional zero bonds only.

Since the evaluation of the regression functions is computationally cheap the overall
timings of the NPV cube generation are generally smaller compared to the classic
approach, in particular for exotic deals like Bermudan Swaptions.

From a methodology point of view an important difference between the classic and the
AMC exposure analysis lies in the model consistency: While the conditional NPVs
computed with AMC are by construction consistent with the risk factor evolution
model driving the XVA simulation, the scenario NPVs in the classic approach are in

524

general not consistent in this sense unless the market scenarios are fully implied by the
cross asset model. Here “fully implied” means that not only rate curves, but also
market volatility and correlation term structures like FX volatility surfaces, Swaption
volatilities or CMS correlation term structures as well as other parameters used by the
single trade pricers have to be deduced from the cross asset model, e.g. the mean
reversion of the Hull White 1F model and a suitable model volatility feeding into a
Bermudan Swaption pricer.

We note that the generation of such implied term structures can be computationally
expensive even for simple versions of a cross asset model like one composed from LGM
IR and Black-Scholes FX components etc., and even more so for more exotic
component flavours like Cheyette IR components, Heston FX components etc.

In the current implementation only a subset of all ORE trade types can be simulated
using AMC while all other trade types are still simulated using the classic engine. The
separation of the trades and the joining of the resulting classic and AMC cubes is
automatic. The post processing step is run on the joint cube from the classic and
AMC simulations as before.

Trade types supported by AMC so far:

1. Swap

2. CrossCurrencySwap

3. FxOption

4. BermudanSwaption

5. MultiLegOption

A.5.1 Implementation Details

AMC valuation engine and AMC pricing engines

The AMCValuationEngine is responsible for generating a NPV cube for a portfolio of
AMC enabled trades and (optionally) to populate a AggregationScenarioData
instance with simulation data for post processing, very similar to the classic
ValuationEngine in ORE.

The AMC valuation engine takes a cross asset model defining the risk factor evolution.
This is set up identically to the cross asset model used in the
CrossAssetModelScenarioGenerator. Similarly the same parameters for the path
generation (given as a ScenarioGeneratorData instance) are used, so that it is
guaranteed that both the AMC engine and the classic engine produce the same paths,
hence can be combined to a single cube for post processing. It is checked, that a
non-zero seed for the random number generation is used.

The portfolio that the AMC engine consumes is build against an engine factory set up
by a pricing engine configuration given in the amc analytics type (see 5.39). This
configuration should select special AMC engine builders which (by a pure naming
convention) have the engine type “AMC”. These engine builders are retrieved from
getAmcEngineBuilders() in oreappplus.cpp and are special in that unlike usual
engine builders they take two parameters

525

1. the cross asset model which serves as a risk factor evolution model in the AMC
valuation engine

2. the date grid used within the AMC valuation engine

For technical reasons, the configuration also contains configurations for
CapFlooredIborLeg and CMS because those are used within the trade builders (more
precisely the leg builders called from these) to build the trade. The configuration can
be the same as for T0 pricing for them, it is actually not used by the AMC pricing
engines.

The AMC engine builders build a smaller version of the global cross asset model only
containing the model components required to price the specific trade. Note that no
deal specific calibration of the model is performed.

The AMC pricing engines perform a T0 pricing and - as a side product - can be used
as usual T0 pricing engines if a corresponding engine builder is supplied, see 5.39.

In addition the AMC pricing engines perform the necessary calculations to yield
conditional NPVs on the given global simulation grid. How these calcuations are
performed is completely the responsibility of the pricing engines, altough some
common framework for many trade types is given by a base engine, see A.5.1. This
way the approximation of conditional NPVs on the simulation grid can be taylored to
each product and also each single trade, with regards to

1. the number of traning paths and the required date grid for the training (e.g.
containing all relevant coupon and exercise event dates of a trade)

2. the order and type of regressoin basis functions to be used

3. the choice of the regressor (e.g. a TaRN might require a regressor augmented by
the accumulated coupon amount)

The AMC pricing engines then provide an additional result labelled amcCalculator
which is a class implementing the AmcCalculator interface which consists of two
methods: The method simulatePath() takes a MultiPath instance representing one
simulated path from the global risk factor evolution model and returns an array of
conditional, deflated NPVs for this path. The method npvCurrency() returns the
currency c of the calculated conditional NPVs. This currency can be different from the
base currency b of the global risk factor evolution model. In this case the conditional
NPVs are converted to the global base currency within the AMC valuation engine by
multiplying them with the conversion factor

Nc(t)Xc,b(t)

Nb(t)
(24)

where t is the simulation time, Nc(t) is the numeraire in currency c, Nb(t) is the
numeraire in currency b and Xc,b(t) is the FX rate at time t converting from c to b.

The technical criterion for a trade to be processed within the AMC valuation is engine
is that a) it can be built against the AMC engine factory described above and b) it
provides an additional result amcCalculator. If a trade does not meet these criteria it

526

is simulated using the classic valuation engine. The logic that does this is located in
the overide of the method OREAppPlus::generateNPVCube().

The AMC valuation engine can also populate an aggregation scenario data instance.
This is done only if necessary, i.e. only if no classic simulation is performed anyway.
The numeraire and fx spot values produced by the AMC valuation engine are identical
to the classic engine. Index fixings are close, but not identical, because the AMC
engine used the T0 curves for projection while the classic engine uses scenario
simulation market curves, which are not exactly matching those of the T0 market. In
this sense the AMC valuation engine produces more precise values compared to the
classic engine.

The multileg option AMC base engine and derived engines

Table 11 provides an overview of the implemented AMC engine builders. These
builders use the following QuantExt pricing engines

1. McLgmSwapEngine for single currency swaps

2. McCamCurrencySwapEngine for cross currency swaps

3. McCamFxOptionEngine for fx options

4. McLgmSwaptionEngine for Bermudan swaptions

5. McMultiLegOptionEngine for Multileg option

All these engine are based on a common McMultiLegBaseEngine which does all the
computations. For this each of the engines sets up the following protected member
variables (serving as parameters for the base engine) in their calculate() method:

1. leg_: a vector of QuantLib::Leg

2. currency_: a vector of QuantLib::Currency corresponding to the leg vector

3. payer_: a vector of +1.0 or −1.0 double values indicating receiver or payer legs

4. exercise_: a QuantLib::Exercise instance describing the exercise dates (may
be nullptr, if the underlying represents the deal already)

5. optionSettlement_: a Settlement::Type value indicating whether the option
is settled physically or in cash

A call to McMultiLegBaseEngine::calculate() will set the result member variables

1. resultValue_: T0 NPV in the base currency of the cross asset model passed to
the pricing engine

2. underlyingValue_: T0 NPV of the underlying (again in base ccy)

3. *amcCalculator_: the AMC calculator engine to be used in the AMC valuation
engine

The specific engine implementations should convert the resultValue_ to the npv
currency of the trade (as defined by the (ORE) trade builder) so that they can be used
as regular pricing engine consistently within ORE. Note that only the additional

527

amcCalculator result is used by the AMC valuation engine, not any of the T0 NPVs
directly.

A.5.2 Limitations and Open Points

This sections lists known limitations of the AMC simulation engine.

Trade Features

Some trade features are not yet supported by the multileg option engine:

1. legs with fx resetting feature

2. legs with naked option = true

3. coupon types are restricted to Ibor and CMS

4. exercise flows (like a notional exchange common to cross currency swaptions) are
not supported

Flows Generation (for DIM Analysis)

At the current stage the AMC engine does not generate flows which are required for
the DIM analysis in the post processor.

State interpolation for exercise decisions

During the simulation phase exercise times of a specific trade are not necessarily part
of the simulated time grid. Therefore the model state required to take the exercise
decision has in to be interpolated in general on the simulated path. Currently this is
done using a simple linear interpolation while from a pure methodology point of view a
Brownian Bridge would be preferable. In our tests we do not see a big impact of this
approximation though.

Missing recalibration of the MCMultiLegOptionEngine

The MC Multi Leg Option Engine builder uses the CrossAssetModelBuilder to set
up the pricing model. This class does not implement the ModelBuidler interface
meaning that the model is not recalibrated in a sensitivity analysis run. Therefore the
sensitivities calculated by this engine are not valid.

Basis Function Selection

Currently the basis function system is generated by specifying the type of the
functions and the order, see 5.39. The number of independent variables varies by
product type and details. Depending on the number of independent variables and the
order the number of generated basis functions can get quite big which slows down the
computation of regression coefficients. It would be desirable to have the option to filter
the full set of basis functions, e.g. by explicitly enumerating them in the configuration,
so that a high order can be chosen even for products with a relatively large number of
independent variables (like e.g. FX Options or Cross Currency Swaps).

528

A.5.3 Outlook: Trade Compression

For vanilla trades where the regression is only required to produce the NPV cube
entries (and not to take exercise decisions etc.) it is not strictly necessary to do the
regression analysis on a single trade level15. Although in the current implementation
there is no direct way to do the regression analysis on whole (sub-)portfolios instead of
single trades, one can represent such a subportfolio as a single technical trade (e.g. as
a single swap or multileg option trade) to achieve a similar result. This might lead to
better performance than the usual single trade calculation. However one should also try
to keep the regressions as low-dimensional as possible (for performance and accuracy
reasons) and therefore define the sub-portfolios by e.g. currency, i.e. as big as possible
while at the same time keeping the associated model dimension as small as possible.

A.6 CVA and DVA

Using the expected exposures in A.4 unilateral discretised CVA and DVA are given by
[21]

CVA =
∑
i

PD(ti−1, ti)× LGD × EPE (ti) (25)

DVA =
∑
i

PDBank(ti−1, ti)× LGDBank × ENE (ti) (26)

where

EPE (t) expected exposure (17)
ENE (t) expected negative exposure (18)

PD(ti, tj) counterparty probability of default in [ti; tj]

PDBank(ti, tj) our probability of default in [ti; tj]

LGD counterparty loss given default
LGDBank our loss given default

Note that the choice ti in the arguments of EPE (ti) and ENE (ti) means we are
choosing the advanced rather than the postponed discretization of the CVA/DVA
integral [16]. This choice can be easily changed in the ORE source code or made
configurable.
Moreover, formulas (25, 26) assume independence of credit and other market risk
factors, so that PD and LGD factors are outside the expectations. With the extension
of ORE to credit asset classes and in particular for wrong-way-risk analysis, CVA/DVA
formulas is generaised and is applicable to calculations with dynamic credit

CVAdyn =
∑
i

EN
[
PDdyn(ti−1, ti)× PE (ti)

N(t)

]
× LGD (27)

DVAdyn =
∑
i

EN
[
PDdyn

Bank(ti−1, ti)× NE (ti)

N(t)

]
× LGDBank (28)

15except single trade exposures are explicitly required of course

529

where

PE (t) random variables representing positive exposure at t : (NPV (t)− C(t))+

NE (t) random variables representing negative exposure at t : (−NPV (t) + C(t))+

PDdyn(ti, tj) random variables representing counterparty probability of default in [ti; tj]

PDdyn
Bank(ti, tj) random variables representing our probability of default in [ti; tj]

LGD counterparty loss given default
LGDBank our loss given default

A.7 FVA

Any exposure (uncollateralised or residual after taking collateral into account) gives
rise to funding cost or benefits depending on the sign of the residual position. This can
be expressed as a Funding Value Adjustment (FVA). A simple definition of FVA can
be given in a very similar fashion as the sum of unilateral CVA and DVA which we
defined by (25,26), namely as an expectation of exposures times funding spreads:

FVA =
n∑
i=1

fl(ti−1, ti) δi EN
{
SC(ti−1)SB(ti−1) [−NPV (ti) + C(ti)]

+D(ti)
}

︸ ︷︷ ︸
Funding Benefit Adjustment (FBA)

−
n∑
i=1

fb(ti−1, ti) δi EN
{
SC(ti−1)SB(ti−1) [NPV (ti)− C(ti)]

+D(ti)
}

︸ ︷︷ ︸
Funding Cost Adjustment (FCA)

(29)

where

D(ti) stochastic discount factor, 1/N(ti) in LGM
NPV (ti) portfolio value at time ti

C(ti)Collateral account balance at time ti
SC(tj) survival probability of the counterparty
SB(tj) survival probability of the bank
fb(tj) borrowing spread for the bank relative to OIS flat
fl(tj) lending spread for the bank relative to OIS flat

For details see e.g. Chapter 14 in Gregory [19] and the discussion in [21].

The reasoning leading to the expression above is as follows. Consider, for example, a
single partially collateralised derivative (no collateral at all or CSA with a significant
threshold) between us (the Bank) and counterparty 1 (trade 1).

We assume that we enter into an offsetting trade with (hypothetical) counterparty 2
which is perfectly collateralised (trade 2). We label the NPV of trade 1 and 2 NPV 1,2

respectively (from our perspective, excluding CVA). Then NPV 2 = −NPV 1. The
respective collateral amounts due to trade 1 and 2 are C1 and C2 from our perspective.
Because of the perfect collateralisation of trade 2 we assume C2 = NPV 2. The

530

imperfect collateralisation of trade 1 means C1 6= NPV 1. The net collateral balance
from our perspective is then C = C1 + C2 which can be written
C = C1 + C2 = C1 + NPV 2 = −NPV 1 + C1.

• If C > 0 we receive net collateral and pay the overnight rate on this notional
amount. On the other hand we can invest the received collateral and earn our
lending rate, so that we have a benefit proportional to the lending spread fl
(lending rate minus overnight rate). It is a benefit assuming fl > 0. C > 0 means
−NPV 1 + C1 > 0 so that we can cover this case with “lending notional”
[−NPV 1 + C1]+.

• If C < 0 we post collateral amount −C and receive the overnight rate on this
amount. Amount −C needs to be funded in the market, and we pay our
borrowing rate on it. This leads to a funding cost proportional to the borrowing
spread fb (borrowing rate minus overnight). C < 0 means NPV 1 − C1 > 0, so
that we can cover this case with “borrowing notional” [NPV 1 − C1]+. If the
borrowing spread is positive, this term proportional to fb × [NPV 1 − C1]+ is
indeed a cost and therefore needs to be subtracted from the benefit above.

Formula (29) evaluates these funding cost components on the basis of the original
trade’s or portfolio’s NPV . Perfectly collateralised portfolios hence do not contribute
to FVA because under the hedging fiction, they are hedged with a perfectly
collateralised opposite portfolio, so any collateral payments on portfolio 1 are canceled
out by those of the opposite sign on portfolio 2.

A.8 COLVA

When the CSA defines a collateral compounding rate that deviates from the overnight
rate, this gives rise to another value adjustment labeled COLVA [21]. In the simplest
case the deviation is just given by a constant spread ∆:

COLVA = EN
[∑

i

−C(ti) ·∆ · δi ·D(ti+1)

]
(30)

where C(t) is the collateral balance16 at time t and D(t) is the stochastic discount
factor 1/N(t) in LGM. Both C(t) and N(t) are computed in ORE’s Monte Carlo
framework, and the expectation yields the desired adjustment.
Replacing the constant spread by a time-dependent deterministic function in ORE is
straight forward.

A.9 Collateral Floor Value

A less trivial extension of the simple COLVA calculation above, also covered in ORE,
is the case where the deviation between overnight rate and collateral rate is stochastic
itself. A popular example is a CSA under which the collateral rate is the overnight rate
floored at zero. To work out the value of this CSA feature one can take the difference
of discounted margin cash flows with and without the floor feature. It is shown in [21]

16see A.4, C(t) > 0 means that we have received collateral from the counterparty

531

that the following formula is a good approximation to the collateral floor value

ΠFloor = EN
[∑

i

−C(ti) · (−r(ti))+ · δi ·D(ti+1)

]
(31)

where r is the stochastic overnight rate and (−r)+ = r+ − r is the difference between
floored and ’un-floored’ compounding rate.
Taking both collateral spread and floor into account, the value adjustment is

ΠFloor,∆ = EN
[∑

i

−C(ti) · ((r(ti)−∆)+ − r(ti)) · δi ·D(ti+1)

]
(32)

A.10 Dynamic Initial Margin and MVA

The introduction of Initial Margin posting in non-cleared OTC derivatives business
reduces residual credit exposures and the associated value adjustments, CVA and
DVA.

On the other hand, it gives rise to additional funding cost. The value of the latter is
referred to as Margin Value Adjustment (MVA).
To quantify these two effects one needs to model Initial Margin under future market
scenarios, i.e. Dynamic Initial Margin (DIM). Potential approaches comprise

• Monte Carlo VaR embedded into the Monte Carlo simulation

• Regression-based methods

• Delta VaR under scenarios

• ISDA’s Standard Initial Margin (SIMM) under scenarios

We skip the first option as too computationally expensive for ORE. In the current ORE
release we focus on a relatively simple regression approach as in [22, 25]. Consider the
netting set values NPV (t) and NPV (t+ ∆) that are spaced one margin period of risk
∆ apart. Moreover, let F (t, t+ ∆) denote cumulative netting set cash flows between
time t and t+ ∆, converted into the NPV currency. Let X(t) then denote the netting
set value change during the margin period of risk excluding cash flows in that period:

X(t) = NPV (t+ ∆) + F (t, t+ ∆)− NPV (t)

ignoring discounting/compounding over the margin period of risk. We actually want to
determine the distribution of X(t) conditional on the ‘state of the world’ at time t, and
pick a high (99%) quantile to determine the Initial Margin amount for each time t.
Instead of working out the distribution, we content ourselves with estimating the
conditional variance V(t) or standard deviation S(t) of X(t), assuming a normal
distribution and scaling S(t) to the desired 99% quantile by multiplying with the usual
factor α = 2.33 to get an estimate of the Dynamic Initial Margin DIM :

V(t) = Et[X2]− E2
t [X], S(t) =

√
V(t), DIM (t) = αS(t)

We further assume that Et[X] is small enough to set it to the expected value of X(t)
across all Monte Carlo samples X at time t (rather than estimating a scenario
dependent mean). The remaining task is then to estimate the conditional expectation

532

Et[X2]. We do this in the spirit of the Longstaff Schwartz method using regression of
X2(t) across all Monte Carlo samples at a given time. As a regressor (in the
one-dimensional case) we could use NPV (t) itself. However, we rather choose to use an
adequate market point (interest rate, FX spot rate) as regression variable x, because
this is generalised more easily to the multi-dimensional case. As regression basis
functions we use polynomials, i.e. regression functions of the form
c0 + c1 x+ c2 x

2 + ...+ cn x
n where the order n of the polynomial can be selected by the

user. Choosing the lowest order n = 0, we obtain the simplest possible estimate, the
variance of X across all samples at time t, so that we apply a single DIM (t)
irrespective of the ’state of the world’ at time t in that case. The extension to
multi-dimensional regression is also implemented in ORE. The user can choose several
regressors simultaneously (e.g. a EUR rate, a USD rate, USD/EUR spot FX rate, etc.)
in order order to cover complex multi-currency portfolios.

Given the DIM estimate along all paths, we can next work out the Margin Value
Adjustment [21] in discrete form

MVA =
n∑
i=1

(fb − sI) δi SC(ti) SB(ti)× EN [DIM (ti)D(ti)] . (33)

with borrowing spread fb as in the FVA section A.7 and spread sI received on initial
margin, both spreads relative to the cash collateral rate.

A.11 KVA (CCR)

The KVA is calculated for the Counterparty Credit Risk Capital charge (CCR)
following the IRB method concisely described in [20], Appendix 8A. It is following the
Basel rules by computing risk capital as the product of alpha weighted exposure at
default, worst case probability of default at 99.9 and a maturity adjustment factor also
described in the Basel annex 4. The risk capital charges are discounted with a capital
discount factor and summed up to give the total CCR KVA after being multiplied with
the risk weight and a capital charge (following the RWA method).

Basel II internal rating based (IRB) estimate of worst case probability of default: large
homogeneous pool (LHP) approximation of Vasicek (1997), KVA regulatory
probability of default is the worst case probability of default floored at 0.03 (the latter
is valid for corporates and banks, no such floor applies to sovereign counterparties):

PD99.9% = max

(
floor,N

(
N−1(PD) +

√
ρN−1(0.999)

√
1− ρ

)
− PD

)
N is the cumulative standard normal distribution,

ρ = 0.12
1− e−50PD

1− e−50
+ 0.24

(
1− 1− e−50PD

1− e−50

)

Maturity adjustment factor for RWA method capped at 5, floored at 1:

MA(PD ,M) = min

(
5,max

(
1,

1 + (M − 2.5)B(PD)

1− 1.5B(PD)

))
533

where B(PD) = (0.11852− 0.05478 ln(PD))2 and M is the effective maturity of the

portfolio (capped at 5):

M = min

5, 1 +

∑
tk>1yr

EEB(tk)∆tkB(0, tk)∑
tk≤1yr

EEEB(tk)∆tkB(0, tk)

where B(0, tk) is the risk-free discount factor from the simulation date tk to today, ∆tk
is the difference between time points, EEB(tk) is the expected (Basel) exposure at time
tk and EEEB(tk) is the associated effective expected exposure.

Expected risk capital at ti:

RC (ti) = EAD(ti)× LGD × PD99.9% ×MA(PD ,M)

where

• EAD(ti) = α× EEPE (ti)

• EEPE (ti) is estimated as the time average of the running maximum of EPE (t)
over the time interval ti ≤ t ≤ ti + 1

• α is the multiplier resulting from the IRB calculations (Basel II defines a
supervisory alpha of 1.4, but gives banks the option to estimate their own
α,subject to a floor of 1.2).

• the maturity adjustment MA is derived from the EPE profile for times t ≥ ti

KVACCR is the sum of the expected risk capital amount discounted at capital discount
rate rcd and compounded at rate given by the product of capital hurdle h and
regulatory adjustment a:

KVACCR =
∑
i

RC (ti)×
1

(1 + rcd)δ(ti−1,ti)
× δ(ti−1, ti)× h× a

assuming Actual/Actual day count to compute the year factions delta.

In ORE we compute KVA CCR from both perspectives - “our” KVA driven by EPE
and the counterparty default risk, and similarly “their” KVA driven by ENE and our
default risk.

A.12 KVA (BA-CVA)

This section briefly summarizes the calculation of a capital value adjustment
associated with the CVA capital charge (in the basic approach, BA-CVA) as
introduced in Basel III [13, 14, 15]. ORE implements the stand-alone capital charge
SCVA for a netting set and computes a KVA for it17. In the basic approach, the

17In the reduced version of BA-CVA, where hedges are not recognized, the total BA-CVA capital
charge across all counterparties c is given by

K =

√√√√(ρ∑
c

SCVAc

)2

+ (1− ρ2)
∑
c

SCVA2
c

534

stand-alone capital charge for a netting set is given by

SCVA = RW c ·M · EEPE · DF

with

• supervisory risk weight RW c for the counterparty;

• effective netting set maturity M as in section A.11 (for a bank using IMM to
calculate EAD), but without applying a cap of 5;

• supervisory discount DF for the netting set which is equal to one for banks using
IMM to calculate EEPE and DF = (1− exp (−0.05M)) /(0.05M) for banks not
using IMM to calculate EEPE .

The associated capital value adjustment is then computed for each netting set’s
stand-alone CVA charge as above

KVABA−CVA =
∑
i

SCVA(ti)×
1

(1 + rcd)δ(ti−1,ti)
× δ(ti−1, ti)× h× a

with
SCVA(ti) = RW c ·M(ti) · EEPE (ti) · DF

where we derive both M and EEPE from the EPE profile for times t ≥ ti.

In ORE we compute KVA BA-CVA from both perspectives - “our” KVA driven by
EPE and the counterparty risk weight, and similarly “their” KVA driven by ENE and
our risk weight.
Note: Banks that use the BA-CVA for calculating CVA capital requirements are
allowed to cap the maturity adjustment factor MA(PD ,M) in section A.11 at 1 for
netting sets that contribute to CVA capital, if using the IRB approach for CCR capital.

A.13 Collateral Model

The collateral model implemented in ORE is based on the evolution of collateral
account balances along each Monte Carlo path taking into account thresholds,
minimum transfer amounts and independent amounts defined in the CSA, as well as
margin periods of risk.

ORE computes the collateral requirement (aka Credit Support Amount) through time
along each Monte Carlo path

CSA(tm) =

{
max(0, Vset(tm)− IA − Thold), Vset(tm)− IA ≥ 0

min(0, Vset(tm)− IA + Thold), Vset(tm)− IA < 0
(34)

where

• Vset(tm) is the value of the netting set as of time tm,

• Thold is the threshold exposure below which no collateral is required (possibly
asymmetric),

with supervisory correlation ρ = 0.5 to reflect that the credit spread risk factors across counterparties
are not perfectly correlated. Each counterparty SCVAc is given by a sum over all netting sets with this
counterparty.

535

• IA is the sum of all collateral independent amounts attached to the underlying
portfolio of trades (positive amounts imply that the bank has received a net
inflow of independent amounts from the counterparty), assumed here to be cash.

As the collateral account already has a value of C(tm) at time tm, the collateral
shortfall is simply the difference between C(tm) and CSA(tm). However, we also need
to account for the possibility that margin calls issued in the past have not yet been
settled (for instance, because of disputes). If M(tm) denotes the net value of all
outstanding margin calls at tm, and ∆(t) is the difference
∆(t) = CSA(tm)− C(tm)−M(tm) between the Credit Support Amount and the
current and outstanding collateral, then the actual margin Delivery Amount D(tm) is
calculated as follows:

D(tm) =

{
∆(t), |∆(t)| ≥MTA

0, |∆(t)| < MTA
(35)

where MTA is the minimum transfer amount.

A.13.1 Margin Period of Risk

After a counterparty defaults, it takes time to close out the portfolio. During this time
period the portfolio value will change upon market conditions, therefore the portfolio’s
close-out value is subject to market risk, which is referred also as the close-out risk and
the corresponding close-out period is called as the Margin Period of Risk (MPoR).

Therefore, when a loss on the defaulted counterparty is realised at time td, the last
time the collateral could be received is td − τ , where τ denotes the MPoR. That is, the
collateral at time td is determined by the collateral value at td − τ , namely
CSA(td − τ), see equation 34.

In ORE, we have two approaches to incorporate MPoR in the exposure simulations:

• Close-out Approach: Simulating on an auxiliary close-out grid additional to the
default time grid.

• Lagged Approach: Simulating only on a default time grid and delaying the
margin calls on the grid.

In the Close-out Approach, we use an auxiliary “close-out” grid in addition to the main
simulation grid (see section 7.4). The main simulation grid is used to compute “default
values” which feed into the collateral balance C(t) filtered by MTA and Threshold etc.
The auxiliary “close-out” grid, offset from the main grid by the MPoR, is used to
compute the delayed close-out values V (t) associated with default time t18. The
difference between V (t) and C(t) causes a residual exposure [V (t)− C(t)]+ even if
minimum transfer amounts and thresholds are zero, see for example [17]. This
approach allows a detailed modelling of what happens in the close-out period by
calculating the close-out values in different ways. ORE currently supports two options:

• the close-out value can be computed as of default date, by just evolving the
market from default date to close-out date (“sticky date”), or

18We note that in ORE when the exposure of an uncollateralised netting-set or a single trade without
considering the netting-set is calculated, then the default value is calculated at the main simulation
grid, not on the close-out grid.

536

• the close-out value can be computed as of close-out date, by evolving both
valuation date and market over the close-out period (“actual date”), i.e., the
portfolio ages and cash flows might occur in the close-out period causing spikes
in the evolution of exposures.

The option “sticky date” is more aggressive in that it avoids any exposure evolution
spikes due to contractual cashflows that occur in the close-out period after default, the
only exposure effect is due to market evolution over the period. The “actual date”
option is more conservative in that it includes the effect of all contractual cash flows in
the close-out period, in particular outgoing cashflows at any time in the period which
cause an exposure jump upwards. A more detailed framework for collateralised
exposure modelling is introduced in the article [23], indicating a potential route for
extending ORE.

On the other hand, in the Lagged Approach the simulation is conducted only on a
default time grid. The collateral values are calculated, by delaying the delivery
amounts between default times, specified by the Margin Period of Risk (MPoR) which
leads to residual exposure.

In table 90, we present a toy example to illustrate how the delayed margin calls lead to
residual exposures. In this example, we assume that the default time grid is
equally-spaced with time steps that match the MPoR (which is 1M). Further, we
assume zero threshold and MTA. At the initial time, the delivery amount is 2.00,
which is the difference between the initial value of the portfolio and the default value
at 1M. If this amount were settled immediately, then the collateral value would have
been 10 and hence the residual exposure would habe been zero at 1M. The delay of the
delivery amount by MPoR implies a collateral value of 8.00 until 1M and hence a
residual exposure of 2.

Time
Grid

Default
Value

Delivery
Amount

Delivery
Amount
Delayed

Collateral
Value

NPV

0 8.00 2.00 True
1M 10.00 5.00 True 8.00 10.00
2M 15.00 -3.00 True 10.00 15.00
3M 12.00 -3.00 True 15.00 12.00
4M 9.00 5.00 True 12.00 9.00
5M 14.00 6.00 True 9.00 14.00
6M 20.00 14.00 20.00

Table 90: Toy example for delayed margin calls.

Some remarks and observations:

• Lagged Approach has the disadvantage that we need to use equally-spaced time
grids with time steps that match the MPoR. In the above example, let us assume
that the MPoR is 2W. Then, delaying the first delivery amount by 2W would
still imply a collateral value of 10.00 at 1M and hence a zero residual exposure.

• In Lagged Approach approach, we support three calculation (settlement) types
where the delay of the Delivery Amount depends on its sign. The above example

537

corresponds to a “symmetric” calculation type where both positive and negative
delivery amounts are settled with delay, see section 7.1.4 for other calculation
types.

• In ORE, the Close-out Approach is the preferred method -and the Lagged
Approach is the legacy method- to incorporate MPoR in the collateral model.

A.14 Exposure Allocation

XVAs and exposures are typically computed at netting set level. For accounting
purposes it is typically required to allocate XVAs from netting set to individual trade
level such that the allocated XVAs add up to the netting set XVA. This distribution is
not trivial, since due to netting and imperfect correlation single trade (stand-alone)
XVAs hardly ever add up to the netting set XVA: XVA is sub-additive similar to VaR.
ORE provides an allocation method (labeled marginal allocation in the following)
which slightly generalises the one proposed in [18]. Allocation is done pathwise which
first leads to allocated expected exposures and then to allocated CVA/DVA by
inserting these exposures into equations (25,26). The allocation algorithm in ORE is as
follows:

• Consider the netting set’s discounted NPV after taking collateral into account,
on a given path at time t:

E(t) = D(0, t) (NPV (t)− C(t))

• On each path, compute contributions Ai of the latter to trade i as

Ai(t) =

{
E(t)× NPV i(t)/NPV (t), |NPV (t)| > ε
E(t)/n, |NPV (t)| ≤ ε

with number of trades n in the netting set and trade i’s value NPV i(t).

• The EPE fraction allocated to trade i at time t by averaging over paths:

EPE i(t) = E
[
A+
i (t)

]
By construction,

∑
iAi(t) = E(t) and hence

∑
i EPE i(t) = EPE (t).

We introduced the cutoff parameter ε > 0 above in order to handle the case where the
netting set value NPV (t) (almost) vanishes due to netting, while the netting set
’exposure’ E(t) does not. This is possible in a model with nonzero MTA and MPoR.
Since a single scenario with vanishing NPV (t) suffices to invalidate the expected
exposure at this time t, the cutoff is essential. Despite introducing this cutoff, it is
obvious that the marginal allocation method can lead to spikes in the allocated
exposures. And generally, the marginal allocation leads to both positive and negative
EPE allocations.

As a an example for a simple alternative to the marginal allocation of EPE we provide
allocation based on today’s single-trade CVAs

wi = CVAi/
∑
i

CVAi.

This yields allocated exposures proportional to the netting set exposure, avoids spikes
and negative EPE , but does not distinguish the ’direction’ of each trade’s contribution
to EPE and CVA.

538

A.15 Sensitivity Analysis

ORE’s sensitivity analysis framework uses “bump and revalue” to compute Interest
Rate, FX, Inflation, Equity and Credit sensitivities to

• Discount curves (in the zero rate domain)

• Index curves (in the zero rate domain)

• Yield curves including e.g. equity forecast yield curves (in the zero rate domain)

• FX Spots

• FX volatilities

• Swaption volatilities, ATM matrix or cube

• Cap/Floor volatility matrices (in the caplet/floorlet domain)

• Default probability curves (in the “zero rate” domain, expressing survival
probabilities S(t) in term of zero rates z(t) via S(t) = exp(−z(t)× t) with
Actual/365 day counter)

• Equity spot prices

• Equity volatilities, ATM or including strike dimension

• Zero inflation curves

• Year-on-Year inflation curves

• CDS volatilities

• Base correlation curves

Apart from first order sensitivities (deltas), ORE computes second order sensitivities
(gammas and cross gammas) as well. Deltas are computed using up-shifts and base
values as

δ =
f(x+ ∆)− f(x)

∆
,

where the shift ∆ can be absolute or expressed as a relative move ∆r from the current
level, ∆ = x∆r. Gammas are computed using up- and down-shifts

γ =
f(x+ ∆) + f(x−∆)− 2 f(x)

∆2
,

cross gammas using up-shifts and base values as

γcross =
f(x+ ∆x, y + ∆y)− f(x+ ∆x, y)− f(x, y + ∆y) + f(x, y)

∆x ∆y

.

From the above it is clear that this involves the application of 1-d shifts (e.g. to
discount zero curves) and 2-d shifts (e.g. to Swaption volatility matrices). The
structure of the shift curves/matrices does not have to match the structure of the
underlying data to be shifted, in particular the shift “curves/matrices” can be less
granular than the market to be shifted. Figure 36 illustrates for the one-dimensional
case how shifts are applied.

539

shift curve grid points

shifted curve grid points

Figure 36: 1-d shift curve (bottom) applied to a more granular underlying curve (top).

Shifts at the left and right end of the shift curve are extrapolated flat, i.e. applied to
all data of the original curve to the left and to the right of the shift curve ends. In
between, all shifts are distributed linearly as indicated to the left and right up to the
adjacent shift grid points. As a result, a parallel shift of the all points on the shift
curve yields a parallel shift of all points on the underlying curve.
The two-dimensional case is covered in an analogous way, applying flat extrapolation at
the boundaries and “pyramidal-shaped” linear interpolation for the bulk of the points.

The details of the computation of sensitivities to implied volatilities in strike direction
can be summarised as follows, see also table 91 for an overview of the admissible
configurations and the results that are obtained using them.

For Swaption Volatilities, the initial market setup can be an ATM surface only or a full
cube. The simulation market can be set up to simulate ATM only or to simulate the
full cube, but the latter choice is only possible if a full cube is set up in the initial
market. The sensitivity set up must match the simulation setup with regards to the
strikes (i.e. it is ATM only if and only if the simulation setup is ATM only, or it must
contain exactly the same strike spreads relative to ATM as the simulation setup).
Finally, if the initial market setup is a full cube, and the simulation / sensitivity setup
is to simulate ATM only, then sensitivities are computed by shifting the ATM
volatility w.r.t. the given shift size and type and shifting the non-ATM volatilities by
the same absolute amount as the ATM volatility.

For Cap/Floor Volatilities, the initial market setup always contains a set of fixed
strikes, i.e. there is no distinction between ATM only and a full surface. The same
holds for the simulation market setup. The sensitivity setup may contain a different
strike grid in this case than the simulation market. Sensitivity are computed per
expiry and per strike in every case.

For Equity Volatilities, the initial market setup can be an ATM curve or a full surface.
The simulation market can be set up to simulate ATM only or to simulate the full
surface, where a full surface is allowed even if the initial market setup in an ATM
curve only. If we have a full surface in the initial market and simulate the ATM curve
only in the simulation market, sensitivities are computed as in the case of Swaption
Volatilities, i.e. the ATM volatility is shifted w.r.t. the specified shift size and type and
the non-ATM volatilities are shifted by the same absolute amount as the ATM
volatility. If the simulation market is set up to simulate the full surface, then all

540

volatilities are shifted individually using the specified shift size and type. In every case
the sensitivities are aggregated on the ATM bucket in the sensitivity report.

For FX Volatilities, the treatment is similar to Equity Volatilities, except for the case
of a full surface definition in the initial market and an ATM only curve in the
simulation market. In this case, the pricing in the simulation market is using the ATM
curve only, i.e. the initial market’s smile structure is lost.

For CDS Volatilities only an ATM curve can be defined.

In all cases the smile dynamics is “sticky strike”, i.e. the implied vol used for pricing a
deal does not change if the underlying spot price changes.

Type Init Mkt. Config. Sim. Mkt Config. Sensitivity Config. Pricing Sensitivities w.r.t.
Swaption ATM Simulate ATM only Shift ATM only ATM Curve ATM Shifts
Swaption Cube Simulate Cube Shift Smile Strikes Full Cube Smile Strike Shiftsa

Swaption Cube Simulate ATM only Shift ATM only Full Cube ATM Shiftsb

Cap/Floor Surface Simulate Surface Shift Smile Strikes Full Surface Smile Strike Shifts
Equity ATM Simulate ATM only Shift ATM only ATM Curve ATM Shifts
Equity ATM Simulate Surface Shift ATM only ATM Curve Smile Strike Shiftsc

Equity Surface Simulate ATM only Shift ATM only Full Surface ATM Shiftsb
Equity Surface Simulate Surface Shift ATM only Full Surface Smile Strike Shiftsc

FX ATM Simulate ATM only Shift ATM only ATM Curve ATM Shifts
FX ATM Simulate Surface Shift ATM only ATM Curve Smile Strike Shiftsc
FX Surface Simulate ATM only Shift ATM only ATM Curve ATM Shifts
FX Surface Simulate Surface Shift ATM only Full Surface Smile Strike Shiftsc

CDS ATM Simulate ATM only Shift ATM only ATM Curve ATM Shifts

Table 91: Admissible configurations for Sensitivity computation in ORE

asmile strike spreads must match simulation market configuration
bsmile is shifted in parallel
cresult sensitivities are aggregated on ATM

A.16 Par Sensitivity Analysis

The “raw” sensitivities in ORE are generated in a computationally convenient domain
(such as zero rates, caplet/floorlet volatilities, integrated hazard rates, inflation zero
rates). These raw sensitivities are typically further processed in risk analytics such as
VaR measures. On the other hand, for hedging purposes one is rather interested in
sensitivities with respect to fair rates of hedge instruments such as Forward Rate
Agreements, Swaps, flat Caps/Floors, CDS, Zero Coupon Inflation Swaps.
It is possible to generate par sensitivities from raw sensitivities using the chain rule as
follows, and this is the approach taken in ORE. Recall for example the fair swap rate c
for some maturity as a function of zero rates zi in a single curve setting:

c =
1− e−zn tn∑n
i=1 δi e

−zi ti

More realistically, a given fair swap rate might be a function of the zero rates spanning
the discount and index curves in the chosen currency. In a multi currency curve
setting, that swap rate might even be a function of the zero rates spanning a foreign
(collateral) currency discount curve, foreign and domestic currency index curves.
Generally, we can write any fair par rate ci as function of raw rates zj,

ci ≡ ci(z1, z2, ..., zn)

541

This function may not be available in closed form, but numerically we can evaluate the
sensitivity of ci with respect to changes in all raw rates,

∂ci
∂zj

.

These sensitivities form a Jacobi matrix of derivatives. Now let V denote some trade’s
price. Its sensitivity with respect a raw rate change ∂V/∂zk can then be expressed in
terms of sensitivities w.r.t. par rates using the chain rule

∂V

∂zj
=

n∑
i=1

∂V

∂ci

∂ci
∂zj

,

or in vector/matrix form

∇zV = C · ∇cV, Cji =
∂ci
∂zj

.

Given the raw sensitivity vector ∇zV , we need to invert the Jacobi matrix C to obtain
the par rate sensitivity vector

∇cV = C−1 · ∇zV.

We then compute the Jacobi matrix C by

• setting up par instruments with links to all required term structures expressed in
terms of raw rates

• “bumping” all relevant raw rates and numerically computing the par instrument’s
fair rate shift for each bump

• thus filling the Jacobi matrix with finite difference approximations of the partial
derivatives ∂ci/∂zj.

The par rate conversion supports the following par instruments:

• Deposits

• Forward rate Agreements

• Interest Rate Swaps (fixed vs. ibor)

• Overnight Index Swaps

• Tenor Basis Swaps (ibor vs. ibor)

• Overnight Index Basis Swaps (ibor vs. OIS)

• FX Forwards

• Cross Currency Basis Swaps

• Credit Default Swaps

• Caps/Floors

542

A.17 Value at Risk

For the computation of the parametric, or variance-covariance VaR, we rely on a
second order sensitivity-based P&L approximation

πS =
n∑
i=1

Di
Ti
V · Yi +

1

2

n∑
i,j=1

Di,j
Ti,Tj

V · Yi · Yj (36)

with

• portfolio value V

• random variables Yi representing risk factor returns; these are assumed to be
multivariate normally distributed with zero mean and covariance matrix matrix
C = {ρi,kσiσk}i,k, where σi denotes the standard deviation of Yi; covariance
matrix C may be estimated using the Pearson estimator on historical return data
{ri(j)}i,j. Since the raw estimate might not be positive semidefinite, we apply a
salvaging algorithm to ensure this property, which basically replaces negative
Eigenvalues by zero and renormalises the resulting matrix, see [26];

• first or second order derivative operators D, depending on the market factor
specific shift type Ti ∈ {A,R,L} (absolute shifts, relative shifts, absolute
log-shifts), i.e.

Di
A V (x) =

∂V (x)

∂xi

Di
R V (x) = Di

Lf(x) = xi
∂V (x)

∂xi

and using the short hand notation

Di,j
Ti,Tj

V (x) = Di
Ti
Dj
Tj
V (x)

In ORE, these first and second order sensitivities are computed as finite
difference approximations (“bump and revalue”).

To approximate the p-quantile of πS in (36) ORE offers the techniques outlined below.

Delta Gamma Normal Approximation

The distribution of (36) is non-normal due to the second order terms. The delta
gamma normal approximation in ORE computes mean m and variance v of the
portfolio value change πS (discarding moments higher than two) following [27] and
provides a simple VaR estimate

V aR = m+N−1(q)
√
v

for the desired quantile q (N is the cumulative standard normal distribution).
Omitting the second order terms in (36) yields the delta normal approximation.

543

Cornish-Fisher Expansion

The first four moments of the distribution of πS in (36) can be computed in closed
form using the covariance matrix C and the sensitivities of first and second order Di

and Di,k, see e.g. [27]. Once these moments are known, an approximation to the true
quantile of πS can be computed using the Cornish-Fisher expansion, see also [7], which
in practice often gives a decent approximation of the true value, but may also show
bigger differences in certain configurations.

Saddlepoint Approximation

Another approximation of the true quantile of πS can be computed using the
Saddlepoint approximation using results from [28] and [29]. This method typically
produces more accurate results than the Cornish-Fisher method, while still being fast
to evaluate.

Monte Carlo Simulation

By simulating a large number of realisations of the return vector Y = {Yi}i and
computing the corresponding realisations of πS in (36) we can estimate the desired
quantile as the quantile of the empirical distribution generated by the Monte Carlo
samples. Apart from the Monte Carlo Error no approximation is involved in this
method, so that albeit slow it is well suited to produce values against which any other
approximate approaches can be tested. Numerically, the simulation is implemented
using a Cholesky Decomposition of the covariance matrix C in conjunction with a
pseudo random number generator (Mersenne Twister) and an implementation of the
inverse cumulative normal distribution to transform U [0, 1] variates to N(0, 1) variates.

References
[1] http://www.opensourcerisk.org

[2] http://www.quantlib.org

[3] http://www.quaternion.com

[4] http://www.acadia.inc

[5] http://quantlib.org/install/vc10.shtml

[6] https://git-scm.com/downloads

[7] https://sourceforge.net/projects/boost/files/boost-binaries

[8] http://www.boost.org

[9] http://jupyter.org

[10] https://docs.continuum.io/anaconda

[11] http://www.libreoffice.org

[12] Basel Committee on Banking Supervision, International Convergence of Capital
Measurement and Capital Standards, A Revised Framework,
http://www.bis.org/publ/bcbs128.pdf, June 2006

544

http://www.opensourcerisk.org
http://www.quantlib.org
http://www.quaternion.com
http://www.acadia.inc
http://quantlib.org/install/vc10.shtml
https://git-scm.com/downloads
https://sourceforge.net/projects/boost/files/boost-binaries
http://www.boost.org
http://jupyter.org
https://docs.continuum.io/anaconda
http://www.libreoffice.org
http://www.bis.org/publ/bcbs128.pdf

[13] Basel Committee on Banking Supervision, Basel III: A global regulatory
framework for more resilient banks and banking systems,
http://www.bis.org/publ/bcbs189.pdf, June 2011

[14] Basel Committee on Banking Supervision, Review of the Credit Valuation
Adjustment Risk Framework, https://www.bis.org/bcbs/publ/d325.pdf, 2015

[15] Basel Committee on Banking Supervision, Basel III: Finalising post-crisis
reforms, https://www.bis.org/bcbs/publ/d424.pdf, 2017

[16] Damiano Brigo and Fabio Mercurio, Interest Rate Models: Theory and Practice,
2nd Edition, Springer, 2006.

[17] Michael Pykhtin, Collateralized Credit Exposure, in Counterparty Credit Risk, (E.
Canabarro, ed.), Risk Books, 2010

[18] Michael Pykhtin and Dan Rosen, Pricing Counterparty Risk at the Trade Level
and CVA Allocations, Finance and Economics Discussion Series, Divisions of
Research & Statistics and Monetary Affairs, Federal Reserve Board, Washington,
D.C., 2010

[19] Jon Gregory, Counterparty Credit Risk and Credit Value Adjustment, 2nd Ed.,
Wiley Finance, 2013.

[20] Jon Gregory, The xVA Challenge, 3rd Ed., Wiley Finance, 2015.

[21] Roland Lichters, Roland Stamm, Donal Gallagher, Modern Derivatives Pricing
and Credit Exposure Analysis, Theory and Practice of CSA and XVA Pricing,
Exposure Simulation and Backtesting, Palgrave Macmillan, 2015.

[22] Fabrizio Anfuso, Daniel Aziz, Paul Giltinan, Klearchos Loukopoulos, A Sound
Modelling and Backtesting Framework for Forecasting Initial Margin Requirements,
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2716279, 2016

[23] Leif B. G. Andersen, Michael Pykhtin, Alexander Sokol, Rethinking Margin Period
of Risk, http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2719964, 2016

[24] Andersen, L., and Piterbarg, V. (2010): Interest Rate Modeling, Volume I-III

[25] Peter Caspers, Paul Giltinan, Paul; Lichters, Roland; Nowaczyk , Nikolai.
Forecasting Initial Margin Requirements – A Model Evaluation, Journal of Risk
Management in Financial Institutions, Vol. 10 (2017), No. 4,
https://ssrn.com/abstract=2911167

[26] R. Rebonato and P. Jaeckel, The most general methodology to create a valid
correlation matrix for risk management and option pricing purposes, The Journal
of Risk, 2(2), Winter 1999/2000,
http://www.quarchome.org/correlationmatrix.pdf

[27] Carol Alexander, Market Risk Analysis, Volume IV, Value at Risk Models, Wiley
2009

[28] Lugannani, R.and S.Rice (1980), Saddlepoint Approximations for the Distribution
of the Sum of Independent Random Variables, Advances in Applied Probability,
12,475-490.

545

http://www.bis.org/publ/bcbs189.pdf
https://www.bis.org/bcbs/publ/d325.pdf
https://www.bis.org/bcbs/publ/d424.pdf
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2716279
https://ssrn.com/abstract=2911167
http://www.quarchome.org/correlationmatrix.pdf

[29] Daniels, H. E. (1987), Tail Probability Approximations, International Statistical
Review, 55, 37-48.

546

	Introduction
	Scope
	ORE in Python or Java
	Roadmap
	Further Resources

	Release Notes
	ORE Data Flow
	Getting and Building ORE
	ORE Releases
	Building ORE
	Git
	Boost
	ORE Libraries and Application

	Python and Jupyter
	Building ORE-SWIG and Python Wheels

	Examples
	Interest Rate Swap Exposure, Flat Market
	Interest Rate Swap Exposure, Realistic Market
	European Swaption Exposure
	Bermudan Swaption Exposure
	Callable Swap Exposure
	Cap/Floor Exposure
	FX Forward and FX Option Exposure
	Cross Currency Swap Exposure, without FX Reset
	Cross Currency Swap Exposure, with FX Reset
	Netting Set, Collateral, XVAs, XVA Allocation
	Basel Exposure Measures
	Long Term Simulation with Horizon Shift
	Dynamic Initial Margin and MVA
	Minimal Market Data Setup
	Sensitivity Analysis, Stress Testing and Parametric Value-at-Risk
	Equity Derivatives Exposure
	Inflation Swap Exposure under Dodgson-Kainth
	Bonds and Amortisation Structures
	Swaption Pricing with Smile
	Credit Default Swap Pricing
	CMS and CMS Cap/Floor Pricing
	Option Sensitivity Analysis with Smile
	FRA and Average OIS Exposure
	Commodity Derivatives, Pricing, Sensitivity, Exposure
	CMS Spread with (Digital) Cap/Floor
	Bootstrap Consistency
	BMA Basis Swap
	Discount Ratio Curves
	Curve Building using Fixed vs. Float Cross Currency Helpers
	USD-Prime Curve Building via Prime-LIBOR Basis Swap
	Exposure Simulation using a Close-Out Grid
	Inflation Swap Exposure under Jarrow-Yildrim
	CDS Exposure Simulation
	Wrong Way Risk
	Flip View
	Choice of Measure
	Multifactor Hull-White Scenario Generation
	Cross Currency Swap Exposure using Multifactor Hull-White Models
	Exposure Simulation using American Monte Carlo
	Par Sensitivity Analysis
	Multi-threaded Exposure Simultion
	ORE Python Module
	Credit Portfolio Model
	ISDA SIMM Model
	Collateralized Bond Obligation
	Generic Total Return Swap
	Composite Trade
	Convertible Bond and ASCOT
	Bond Yield Shifted
	Zero to Par sensitivity Conversion Analysis
	Custom Trade Fixings
	Scripted Trade
	GBP OIS Curve using MPC Swaps

	Launchers and Visualisation
	Jupyter
	Calc
	Excel

	Parameterisation
	Master Input File: ore.xml
	Setup
	Logging
	Markets
	Analytics

	Market: todaysmarket.xml
	Discounting Curves
	Index Curves
	Yield Curves
	Swap Index Curves
	FX Spot
	FX Volatilities
	Swaption Volatilities
	Cap/Floor Volatilities
	Default Curves
	Securities
	Equity Curves
	Equity Volatilities
	Inflation Index Curves
	Inflation Cap/Floor Volatility Surfaces
	CDS Volatility Structures
	Base Correlation Structures
	Correlation Structures
	Market Configurations

	Pricing Engines: pricingengine.xml
	Simulation: simulation.xml
	Parameters
	Model
	Market

	Sensitivity Analysis: sensitivity.xml
	Stress Scenario Analysis: stressconfig.xml
	Calendar Adjustment: calendaradjustment.xml
	Curves: curveconfig.xml
	Yield Curves
	Default Curves from CDS
	Benchmark Default Curve
	Multi-Section Default Curve
	Swaption Volatility Structures
	Cap Floor Volatility Structures
	FX Volatility Structures
	Equity Curve Structures
	Equity Volatility Structures
	Inflation Curves
	Inflation Cap/Floor Volatility Surfaces
	CDS Volatilities
	Base Correlations
	FXSpots
	Securities
	Correlations
	Commodity Curves
	Commodity Volatilities
	Bootstrap Configuration
	One Dimensional Solver Configuration

	Reference Data referencedata.xml
	Ibor Fallback Config: iborFallbackConfig.xml
	Conventions: conventions.xml
	Zero Conventions
	Deposit Conventions
	Future Conventions
	FRA Conventions
	OIS Conventions
	Swap Conventions
	Average OIS Conventions
	Tenor Basis Swap Conventions
	Tenor Basis Two Swap Conventions
	FX Conventions
	Cross Currency Basis Swap Conventions
	Inflation Swap Conventions
	CMS Spread Option Conventions
	Ibor Index Conventions
	Overnight Index Conventions
	Inflation Index Conventions
	Swap Index Conventions
	FX Option Conventions
	Commodity Forward Conventions
	Commodity Future Conventions
	Credit Default Swap Conventions
	Bond Yield Conventions

	Trade Data
	Envelope
	Netting Set Details

	Trade Specific Data
	Swap
	Zero Coupon Swap
	Cap/Floor
	Forward Rate Agreement
	Swaption
	FX Forward
	FX Average Forward
	FX Swap
	FX Option
	FX Asian Option
	FX Barrier Option
	FX Digital Barrier Option
	FX Digital Option
	FX Double Barrier Option
	FX Double Touch Option
	FX European Barrier Option
	FX KIKO Barrier Option
	FX Touch Option
	FX Variance and Volatility Swap
	Equity Option
	Equity Futures Option
	Equity Forward
	Equity Swap
	Dividend Swap
	Equity Asian Option
	Equity Barrier Option
	Equity Digital Option
	Equity Double Barrier Option
	Equity Double Touch Option
	Equity European Barrier Option
	Equity Touch Option
	Equity Variance Swap
	Equity Cliquet Option
	Equity Position
	Equity Option Position
	CPI Swap
	Year on Year Inflation Swap
	Bond
	Bond Position
	Forward Bond
	Bond Forward / T-Lock / J-Lock (using ref. data)
	Bond Repo
	Bond Option
	Bond Option (using bond reference data)
	Bond Total Return Swap
	Convertible Bond
	Ascot
	Collateral Bond Obligation CBO
	Composite Trade
	Credit Default Swap / Quanto Credit Default Swap
	Index Credit Default Swap
	Index Credit Default Swap Option
	Synthetic CDO
	Credit Linked Swap
	Commodity Forward
	Commodity Swap and Basis Swap
	Commodity Swaption
	Commodity Option
	Commodity Digital Option
	Commodity Spread Option
	Commodity Average Price Option
	Commodity Option Strip
	Commodity Variance and Volatility Swap
	Commodity Position
	Generic Total Return Swap / Contract for Difference (CFD)

	Trade Components
	Option Data
	Premiums
	Leg Data and Notionals
	Schedule Data (Rules, Dates and Derived)
	Fixed Leg Data and Rates
	Floating Leg Data, Spreads, Gearings, Caps and Floors
	Leg Data with Amortisation Structures
	Indexings
	Cashflow Leg Data
	CMS Leg Data
	Constant Maturity Bond Leg Data
	Digital CMS Leg Data
	Duration Adjusted CMS Leg Data
	CMS Spread Leg Data
	Digital CMS Spread Leg Data
	Equity Leg Data
	CPI Leg Data
	YY Leg Data
	ZeroCouponFixed Leg Data
	Commodity Fixed Leg
	Commodity Fixed Leg Data
	Commodity Floating Leg
	Commodity Schedules
	Commodity Floating Leg Data
	Equity Margin Leg
	Equity Margin Leg Data
	CDS Reference Information
	Basket Data
	Underlying
	StrikeData
	Barrier Data
	RangeBound
	Bond Basket Data for Cashflow CDO
	CBO Tranches

	Allowable Values

	Netting Set Definitions
	Uncollateralised Netting Set
	Collateralised Netting Set

	Market Data
	Zero Rate
	Discount Factor
	FX Spot Rate
	FX Forward Rate
	Deposit Rate
	FRA Rate
	Money Market Futures Price
	Overnight Index Futures Price
	Swap Rate
	Basis Swap Spread
	Cross Currency Basis Swap Spread
	CDS Spread
	CDS Upfront Price
	CDS Recovery Rate
	CDS Option Implied Volatility
	Security Recovery Rate
	Hazard Rate (Instantaneous Probability of Default)
	FX Option Implied Volatility
	Cap Floor Implied Volatility
	Swaption Implied Volatility
	Equity Spot Price
	Equity Forward Price
	Equity Dividend Yield
	Equity Option Implied Volatility
	Equity Option Premium
	Commodity Spot Price
	Commodity Forward Price
	Commodity Option Implied Volatility
	Zero Coupon Inflation Swap Rate
	Year on Year Inflation Swap Rate
	Zero Coupon Inflation Cap Floor Price
	Inflation Seasonality Correction Factors
	Bond Yield Spreads
	Base Correlations
	Correlations
	Conditional Prepayment Rates

	Fixing History
	Dividends History
	Methodology Summary
	Risk Factor Evolution Model
	Analytical Moments of the Risk Factor Evolution Model
	Change of Measure
	Exposures
	Exposures using American Monte Carlo
	Implementation Details
	Limitations and Open Points
	Outlook: Trade Compression

	CVA and DVA
	FVA
	COLVA
	Collateral Floor Value
	Dynamic Initial Margin and MVA
	KVA (CCR)
	KVA (BA-CVA)
	Collateral Model
	Margin Period of Risk

	Exposure Allocation
	Sensitivity Analysis
	Par Sensitivity Analysis
	Value at Risk

